Skip to main content
Erschienen in:

06.09.2018 | Research Article

Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish

verfasst von: Ashwin A. Bhandiwad, David W. Raible, Edwin W. Rubel, Joseph A. Sisneros

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

ABSTRACT

Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5–7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10–15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms−2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.
Literatur
Zurück zum Zitat Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113(4):2170–2179CrossRefPubMed Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113(4):2170–2179CrossRefPubMed
Zurück zum Zitat Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA (2015) Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 20(8):974–985CrossRefPubMed Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA (2015) Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 20(8):974–985CrossRefPubMed
Zurück zum Zitat Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A et al (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacol 33(5):1206–1215CrossRef Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A et al (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacol 33(5):1206–1215CrossRef
Zurück zum Zitat Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216(18):3504–3513CrossRefPubMedPubMedCentral Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216(18):3504–3513CrossRefPubMedPubMedCentral
Zurück zum Zitat Bhandiwad AA, Sisneros JA (2016) Revisiting psychoacoustic methods for the assessment of fish hearing. In: J Sisneros (ed) Fish hearing and bioacoustics. Adv Exp Med Biol 877, Springer, Cham, pp 157–184 Bhandiwad AA, Sisneros JA (2016) Revisiting psychoacoustic methods for the assessment of fish hearing. In: J Sisneros (ed) Fish hearing and bioacoustics. Adv Exp Med Biol 877, Springer, Cham, pp 157–184
Zurück zum Zitat Blumenthal TD (1997) Prepulse inhibition decreases as startle reactivity habituates. Psychophysiol 34(4):446–450CrossRef Blumenthal TD (1997) Prepulse inhibition decreases as startle reactivity habituates. Psychophysiol 34(4):446–450CrossRef
Zurück zum Zitat Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994CrossRefPubMed Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994CrossRefPubMed
Zurück zum Zitat Carder HM, Miller JD (1972) Temporary threshold shifts from prolonged exposure to noise. J Speech Lang Hear Res 15(3):603–623CrossRef Carder HM, Miller JD (1972) Temporary threshold shifts from prolonged exposure to noise. J Speech Lang Hear Res 15(3):603–623CrossRef
Zurück zum Zitat Casper BM, Smith ME, Halvorsen MB, Sun H, Carlson TJ et al (2013) Effects of exposure to pile driving sounds on fish inner ear tissues. Comp Biochem Physiol A Mol Integr Physiol 166(2):352–360CrossRefPubMed Casper BM, Smith ME, Halvorsen MB, Sun H, Carlson TJ et al (2013) Effects of exposure to pile driving sounds on fish inner ear tissues. Comp Biochem Physiol A Mol Integr Physiol 166(2):352–360CrossRefPubMed
Zurück zum Zitat Chen G, Lee C, Sandridge SA, Butler HM, Manzoor NF et al (2013) Behavioral evidence for possible simultaneous induction of hyperacusis and tinnitus following intense sound exposure. J Assoc Res Otolaryngol 14(3):413–424CrossRefPubMedPubMedCentral Chen G, Lee C, Sandridge SA, Butler HM, Manzoor NF et al (2013) Behavioral evidence for possible simultaneous induction of hyperacusis and tinnitus following intense sound exposure. J Assoc Res Otolaryngol 14(3):413–424CrossRefPubMedPubMedCentral
Zurück zum Zitat Davis M (1974) Sensitization of the rat startle response by noise. J Comp Physiol Psych 87(3):571–581CrossRef Davis M (1974) Sensitization of the rat startle response by noise. J Comp Physiol Psych 87(3):571–581CrossRef
Zurück zum Zitat Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2(6):791–805CrossRefPubMed Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2(6):791–805CrossRefPubMed
Zurück zum Zitat Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61(8):741CrossRefPubMed Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61(8):741CrossRefPubMed
Zurück zum Zitat Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A (2016) Molecular regulation of auditory hair cell death and approaches to protect sensory receptory cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 9:96 Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A (2016) Molecular regulation of auditory hair cell death and approaches to protect sensory receptory cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 9:96
Zurück zum Zitat Eggermont JJ (2015) Animal models of spontaneous activity in the healthy and impaired auditory system. Front Neur Circuit 9:19 Eggermont JJ (2015) Animal models of spontaneous activity in the healthy and impaired auditory system. Front Neur Circuit 9:19
Zurück zum Zitat Faber DS, Korn H (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev 69(3):821–863CrossRefPubMed Faber DS, Korn H (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev 69(3):821–863CrossRefPubMed
Zurück zum Zitat Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacol 156:216–224CrossRef Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacol 156:216–224CrossRef
Zurück zum Zitat Finneran JJ (2012) Auditory effects of underwater noise in odontocetes. In: The effects of noise on aquatic life. Springer, New York, pp 197–202 Finneran JJ (2012) Auditory effects of underwater noise in odontocetes. In: The effects of noise on aquatic life. Springer, New York, pp 197–202
Zurück zum Zitat Griffiths B, Schoonheim PJ, Ziv L, Voelker L, Baier H et al (2012) A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci 6:68CrossRefPubMedPubMedCentral Griffiths B, Schoonheim PJ, Ziv L, Voelker L, Baier H et al (2012) A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci 6:68CrossRefPubMedPubMedCentral
Zurück zum Zitat Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(3):552–564CrossRefPubMed Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(3):552–564CrossRefPubMed
Zurück zum Zitat Honore T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P et al (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241(4866):701–703CrossRefPubMed Honore T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P et al (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241(4866):701–703CrossRefPubMed
Zurück zum Zitat Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28CrossRefPubMed Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28CrossRefPubMed
Zurück zum Zitat Koyama M, Minale F, Shum J et al (2016) A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right. eLife 5:e16808CrossRefPubMedPubMedCentral Koyama M, Minale F, Shum J et al (2016) A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right. eLife 5:e16808CrossRefPubMedPubMedCentral
Zurück zum Zitat Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY (2017) Cellular mechanisms of noise-induced hearing loss. Hear Res 349:129–137CrossRefPubMed Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY (2017) Cellular mechanisms of noise-induced hearing loss. Hear Res 349:129–137CrossRefPubMed
Zurück zum Zitat Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16CrossRefPubMed Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16CrossRefPubMed
Zurück zum Zitat Li L, Du Y, Li N, Wu X, Wu Y (2009) Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 33(8):1157–1167CrossRefPubMed Li L, Du Y, Li N, Wu X, Wu Y (2009) Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 33(8):1157–1167CrossRefPubMed
Zurück zum Zitat Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31(3):801–808CrossRefPubMedPubMedCentral Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31(3):801–808CrossRefPubMedPubMedCentral
Zurück zum Zitat Marsden KC, Granato M (2015) Vivo Ca 2+ imaging reveals that decreased dendritic excitability drives startle habituation. Cell Rep 13(9):1733–1740CrossRefPubMedPubMedCentral Marsden KC, Granato M (2015) Vivo Ca 2+ imaging reveals that decreased dendritic excitability drives startle habituation. Cell Rep 13(9):1733–1740CrossRefPubMedPubMedCentral
Zurück zum Zitat Melnick W (1976). Human asymptotic threshold shift. Effects of noise on hearing. pp 277–289 Melnick W (1976). Human asymptotic threshold shift. Effects of noise on hearing. pp 277–289
Zurück zum Zitat Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90(1):147–154CrossRefPubMed Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90(1):147–154CrossRefPubMed
Zurück zum Zitat Mirjany M, Faber DS (2011) Characteristics of the anterior lateral line nerve input to the Mauthner cell. J Exp Biol 214(20):3368–3377CrossRefPubMed Mirjany M, Faber DS (2011) Characteristics of the anterior lateral line nerve input to the Mauthner cell. J Exp Biol 214(20):3368–3377CrossRefPubMed
Zurück zum Zitat Olt J, Johnson SL, Marcotti W (2014) In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Phys 592(10):2041–2058 Olt J, Johnson SL, Marcotti W (2014) In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Phys 592(10):2041–2058
Zurück zum Zitat Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald Group Publishing, Bingley Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald Group Publishing, Bingley
Zurück zum Zitat Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41(1):14–38CrossRefPubMed Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41(1):14–38CrossRefPubMed
Zurück zum Zitat Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18(2):145–151CrossRefPubMed Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18(2):145–151CrossRefPubMed
Zurück zum Zitat Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS One 6(2):e17478CrossRefPubMedPubMedCentral Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS One 6(2):e17478CrossRefPubMedPubMedCentral
Zurück zum Zitat Roberts AC, Reichl J, Song MY, Dearinger AD Moridzadeh N et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12):e29132CrossRefPubMedPubMedCentral Roberts AC, Reichl J, Song MY, Dearinger AD Moridzadeh N et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12):e29132CrossRefPubMedPubMedCentral
Zurück zum Zitat Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101CrossRef Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101CrossRef
Zurück zum Zitat Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A et al (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88CrossRefPubMed Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A et al (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88CrossRefPubMed
Zurück zum Zitat Ryan AF, Kujawa SG, Hammill T, LePrell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275CrossRefPubMedPubMedCentral Ryan AF, Kujawa SG, Hammill T, LePrell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275CrossRefPubMedPubMedCentral
Zurück zum Zitat Rybalko N, Bures Z, Burianova J, Popelar J, Grecova J et al (2011) Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiol Behav 102(5):453–458CrossRefPubMed Rybalko N, Bures Z, Burianova J, Popelar J, Grecova J et al (2011) Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiol Behav 102(5):453–458CrossRefPubMed
Zurück zum Zitat Scholik AR, Yan HY (2001) Effects of underwater noise on auditory sensitivity of a cyprinid fish. Hear Res 152(1):17–24CrossRefPubMed Scholik AR, Yan HY (2001) Effects of underwater noise on auditory sensitivity of a cyprinid fish. Hear Res 152(1):17–24CrossRefPubMed
Zurück zum Zitat Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca2+-permeable AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J Neurosci 37(25):6162–6175CrossRefPubMedPubMedCentral Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca2+-permeable AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J Neurosci 37(25):6162–6175CrossRefPubMedPubMedCentral
Zurück zum Zitat Smith ME (2012). Predicting hearing loss in fishes. In The effects of noise on aquatic life. Springer New York, pp 259–262 Smith ME (2012). Predicting hearing loss in fishes. In The effects of noise on aquatic life. Springer New York, pp 259–262
Zurück zum Zitat Smith ME, Coffin AB, Miller DL, Popper AN (2006) Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. J Exp Biol 209(21):4193–4202CrossRefPubMed Smith ME, Coffin AB, Miller DL, Popper AN (2006) Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. J Exp Biol 209(21):4193–4202CrossRefPubMed
Zurück zum Zitat Smith ME, Kane AS, Popper AN (2004) Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J Exp Biol 207(3):427–435CrossRefPubMed Smith ME, Kane AS, Popper AN (2004) Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J Exp Biol 207(3):427–435CrossRefPubMed
Zurück zum Zitat Smith ME, Schuck JB, Gilley RR, Rogers BD (2011) Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule. BMC Neurosci 12(1):19CrossRefPubMedPubMedCentral Smith ME, Schuck JB, Gilley RR, Rogers BD (2011) Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule. BMC Neurosci 12(1):19CrossRefPubMedPubMedCentral
Zurück zum Zitat Sun W, Lu J, Stolzberg DJ, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334CrossRefPubMed Sun W, Lu J, Stolzberg DJ, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334CrossRefPubMed
Zurück zum Zitat Suta D, Rybalko N, Shen D, Popelar J, Poon PWF et al (2015) Frequency discrimination in rats exposed to noise as juveniles. Physiol Behav 144:60–65CrossRefPubMed Suta D, Rybalko N, Shen D, Popelar J, Poon PWF et al (2015) Frequency discrimination in rats exposed to noise as juveniles. Physiol Behav 144:60–65CrossRefPubMed
Zurück zum Zitat Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T et al (2014) Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 112(4):834–844CrossRefPubMedPubMedCentral Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T et al (2014) Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 112(4):834–844CrossRefPubMedPubMedCentral
Zurück zum Zitat Trapani JG, Nicolson T (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral line organ. J Neurosci 31:1614–1623CrossRefPubMedPubMedCentral Trapani JG, Nicolson T (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral line organ. J Neurosci 31:1614–1623CrossRefPubMedPubMedCentral
Zurück zum Zitat Uribe PM, Sun H, Wang K, Asunscion JD, Wang Q, Chen CW et al (2013) Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in the adult zebrafish (Danio rerio). PLoS One 8:e58755CrossRefPubMedPubMedCentral Uribe PM, Sun H, Wang K, Asunscion JD, Wang Q, Chen CW et al (2013) Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in the adult zebrafish (Danio rerio). PLoS One 8:e58755CrossRefPubMedPubMedCentral
Zurück zum Zitat Vanwalleghem G, Heap LA, Scott EK (2017) A profile of auditory-responsive neurons in the larval zebrafish brain. J Comp Neurol 525(14):3031–3043CrossRefPubMed Vanwalleghem G, Heap LA, Scott EK (2017) A profile of auditory-responsive neurons in the larval zebrafish brain. J Comp Neurol 525(14):3031–3043CrossRefPubMed
Zurück zum Zitat Wang J, Ding D, Salvi RJ (2002) Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 168(1):238–249CrossRefPubMed Wang J, Ding D, Salvi RJ (2002) Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 168(1):238–249CrossRefPubMed
Zurück zum Zitat Weiss SA, Preuss T, Faber DS (2008) A role of electrical inhibition in sensorimotor integration. Proc Natl Acad Sci 105(46):18047–18052CrossRefPubMed Weiss SA, Preuss T, Faber DS (2008) A role of electrical inhibition in sensorimotor integration. Proc Natl Acad Sci 105(46):18047–18052CrossRefPubMed
Zurück zum Zitat Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press, Eugene Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press, Eugene
Zurück zum Zitat Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458CrossRefPubMed Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458CrossRefPubMed
Zurück zum Zitat Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci 108(37):15468–15473CrossRefPubMed Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci 108(37):15468–15473CrossRefPubMed
Zurück zum Zitat Yang G, Lobarinas F, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253 Yang G, Lobarinas F, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253
Zurück zum Zitat Yokogawa T, Hannan MC, Burgess HA (2012) The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 32(43):15205–15215CrossRefPubMedPubMedCentral Yokogawa T, Hannan MC, Burgess HA (2012) The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 32(43):15205–15215CrossRefPubMedPubMedCentral
Metadaten
Titel
Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish
verfasst von
Ashwin A. Bhandiwad
David W. Raible
Edwin W. Rubel
Joseph A. Sisneros
Publikationsdatum
06.09.2018
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 6/2018
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-018-00685-0

Neu im Fachgebiet HNO

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Kopf-Hals-Tumore: Lebensqualität von Langzeitüberlebenden

Eine aktuelle Studie des Universitätsklinikums Erlangen verdeutlicht, dass Langzeitüberlebende von Kopf-Hals-Tumoren eine geringe Symptomlast aufweisen. Die am häufigsten auftretenden Beschwerden – Müdigkeit, Angstzustände, Schläfrigkeit und Schmerzen – sollten von den behandelnden Ärztinnen und Ärzten gezielt adressiert werden.

Schlafapnoe – es lag an einer verbogenen Nasenscheidewand

Tritt eine obstruktive Schlafapnoe vor allem in einer bestimmten Seitenlage auf, kann dies auch an einem verbogenen Nasenseptum liegen. Eine Septumplastik lindert die Beschwerden mitunter deutlich.

Das alles ändert sich für Arztpraxen in 2025

  • 31.12.2024
  • EBM
  • Nachrichten

Ab Januar greifen jede Menge Neuerungen – ob im EBM, Arbeits- und Steuerrecht oder bei der digitalen Vernetzung. Darunter einige Verbesserungen, aber teils auch Mehraufwand. „Same procedure as every year?“ – Ein Überblick.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.