Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2018

26.01.2018

Non-coding RNAs, epigenetics, and cancer: tying it all together

verfasst von: Humberto J. Ferreira, Manel Esteller

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Literatur
1.
Zurück zum Zitat Crick, F. H. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.PubMed Crick, F. H. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.PubMed
2.
Zurück zum Zitat Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., & Gerstein, M. B. (2010). Annotating non-coding regions of the genome. Nature Reviews. Genetics, 11(8), 559–571.PubMedCrossRef Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., & Gerstein, M. B. (2010). Annotating non-coding regions of the genome. Nature Reviews. Genetics, 11(8), 559–571.PubMedCrossRef
3.
Zurück zum Zitat Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.PubMedCrossRef Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.PubMedCrossRef
4.
Zurück zum Zitat ENCODE. (2012). Project Consortium, an integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.CrossRef ENCODE. (2012). Project Consortium, an integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.CrossRef
5.
Zurück zum Zitat Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O. J., Park, E., Persaud, K., Preall, J. B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L. H., Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S. E., Hannon, G., Giddings, M. C., Ruan, Y., Wold, B., Carninci, P., Guigo, R., & Gingeras, T. R. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.PubMedPubMedCentralCrossRef Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O. J., Park, E., Persaud, K., Preall, J. B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L. H., Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S. E., Hannon, G., Giddings, M. C., Ruan, Y., Wold, B., Carninci, P., Guigo, R., & Gingeras, T. R. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Dhanasekaran, K., Kumari, S., & Kanduri, C. (2013). Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Sub-Cellular Biochemistry, 61, 343–372.PubMedCrossRef Dhanasekaran, K., Kumari, S., & Kanduri, C. (2013). Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Sub-Cellular Biochemistry, 61, 343–372.PubMedCrossRef
7.
Zurück zum Zitat Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., Lieberman, J., Rigoutsos, I., & Pandolfi, P. P. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.PubMedPubMedCentralCrossRef Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., Lieberman, J., Rigoutsos, I., & Pandolfi, P. P. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., & Gingeras, T. R. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488.PubMedCrossRef Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., & Gingeras, T. R. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488.PubMedCrossRef
9.
Zurück zum Zitat Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20(2), 116–117.PubMedCrossRef Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20(2), 116–117.PubMedCrossRef
10.
Zurück zum Zitat Liang, G., Chan, M. F., Tomigahara, Y., Tsai, Y. C., Gonzales, F. A., Li, E., Laird, P. W., & Jones, P. A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Molecular and Cellular Biology, 22(2), 480–491.PubMedPubMedCentralCrossRef Liang, G., Chan, M. F., Tomigahara, Y., Tsai, Y. C., Gonzales, F. A., Li, E., Laird, P. W., & Jones, P. A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Molecular and Cellular Biology, 22(2), 480–491.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews. Genetics, 8(4), 272–285.PubMedCrossRef Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews. Genetics, 8(4), 272–285.PubMedCrossRef
12.
Zurück zum Zitat Xie, M., Hong, C., Zhang, B., Lowdon, R. F., Xing, X., Li, D., Zhou, X., Lee, H. J., Maire, C. L., Ligon, K. L., Gascard, P., Sigaroudinia, M., Tlsty, T. D., Kadlecek, T., Weiss, A., O'Geen, H., Farnham, P. J., Madden, P. A., Mungall, A. J., Tam, A., Kamoh, B., Cho, S., Moore, R., Hirst, M., Marra, M. A., Costello, J. F., & Wang, T. (2013). DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 45(7), 836–841.PubMedPubMedCentralCrossRef Xie, M., Hong, C., Zhang, B., Lowdon, R. F., Xing, X., Li, D., Zhou, X., Lee, H. J., Maire, C. L., Ligon, K. L., Gascard, P., Sigaroudinia, M., Tlsty, T. D., Kadlecek, T., Weiss, A., O'Geen, H., Farnham, P. J., Madden, P. A., Mungall, A. J., Tam, A., Kamoh, B., Cho, S., Moore, R., Hirst, M., Marra, M. A., Costello, J. F., & Wang, T. (2013). DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 45(7), 836–841.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Reik, W., & Lewis, A. (2005). Co-evolution of X-chromosome inactivation and imprinting in mammals. Nature Reviews. Genetics, 6(5), 403–410.PubMedCrossRef Reik, W., & Lewis, A. (2005). Co-evolution of X-chromosome inactivation and imprinting in mammals. Nature Reviews. Genetics, 6(5), 403–410.PubMedCrossRef
14.
Zurück zum Zitat Paulsen, M., & Ferguson-Smith, A. C. (2001). DNA methylation in genomic imprinting, development, and disease. The Journal of Pathology, 195(1), 97–110.PubMedCrossRef Paulsen, M., & Ferguson-Smith, A. C. (2001). DNA methylation in genomic imprinting, development, and disease. The Journal of Pathology, 195(1), 97–110.PubMedCrossRef
15.
Zurück zum Zitat Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362–365.PubMedCrossRef Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362–365.PubMedCrossRef
16.
Zurück zum Zitat Du, M., Zhou, W., Beatty, L. G., Weksberg, R., & Sadowski, P. D. (2004). The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics, 84(2), 288–300.PubMedCrossRef Du, M., Zhou, W., Beatty, L. G., Weksberg, R., & Sadowski, P. D. (2004). The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics, 84(2), 288–300.PubMedCrossRef
17.
Zurück zum Zitat Peschansky, V. J., & Wahlestedt, C. (2014). Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 9(1), 3–12.PubMedCrossRef Peschansky, V. J., & Wahlestedt, C. (2014). Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 9(1), 3–12.PubMedCrossRef
19.
Zurück zum Zitat Morris, K. V., Chan, S. W., Jacobsen, S. E., & Looney, D. J. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 305(5688), 1289–1292.PubMedCrossRef Morris, K. V., Chan, S. W., Jacobsen, S. E., & Looney, D. J. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 305(5688), 1289–1292.PubMedCrossRef
20.
Zurück zum Zitat Mendell, J. T. (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle, 4(9), 1179–1184.PubMedCrossRef Mendell, J. T. (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle, 4(9), 1179–1184.PubMedCrossRef
21.
Zurück zum Zitat Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12(12), 861–874.PubMedCrossRef Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12(12), 861–874.PubMedCrossRef
22.
Zurück zum Zitat Liz, J., & Esteller, M. (2016). lncRNAs and microRNAs with a role in cancer development. Biochimica et Biophysica Acta, 1859(1), 169–176.PubMedCrossRef Liz, J., & Esteller, M. (2016). lncRNAs and microRNAs with a role in cancer development. Biochimica et Biophysica Acta, 1859(1), 169–176.PubMedCrossRef
23.
Zurück zum Zitat Askarian-Amiri, M. E., Crawford, J., French, J. D., Smart, C. E., Smith, M. A., Clark, M. B., Ru, K., Mercer, T. R., Thompson, E. R., Lakhani, S. R., Vargas, A. C., Campbell, I. G., Brown, M. A., Dinger, M. E., & Mattick, J. S. (2011). SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA, 17(5), 878–891.PubMedPubMedCentralCrossRef Askarian-Amiri, M. E., Crawford, J., French, J. D., Smart, C. E., Smith, M. A., Clark, M. B., Ru, K., Mercer, T. R., Thompson, E. R., Lakhani, S. R., Vargas, A. C., Campbell, I. G., Brown, M. A., Dinger, M. E., & Mattick, J. S. (2011). SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA, 17(5), 878–891.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ronnau, C. G., Verhaegh, G. W., Luna-Velez, M. V., & Schalken, J. A. (2014). Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Research International, 2014, 591703.PubMedPubMedCentralCrossRef Ronnau, C. G., Verhaegh, G. W., Luna-Velez, M. V., & Schalken, J. A. (2014). Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Research International, 2014, 591703.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Fatima, R., Akhade, V. S., Pal, D., & Rao, S. M. (2015). Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther, 3, 5.PubMedPubMedCentralCrossRef Fatima, R., Akhade, V. S., Pal, D., & Rao, S. M. (2015). Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther, 3, 5.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Hayes, J., Peruzzi, P. P., & Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 20(8), 460–469.PubMedCrossRef Hayes, J., Peruzzi, P. P., & Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 20(8), 460–469.PubMedCrossRef
27.
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.PubMedCrossRef Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.PubMedCrossRef
28.
Zurück zum Zitat Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.PubMedPubMedCentralCrossRef Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589), 2053–2056.PubMedCrossRef Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589), 2053–2056.PubMedCrossRef
30.
Zurück zum Zitat Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20(5), 515–524.CrossRef Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20(5), 515–524.CrossRef
31.
Zurück zum Zitat Zeng, Y., Yi, R., & Cullen, B. R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 9779–9784.PubMedPubMedCentralCrossRef Zeng, Y., Yi, R., & Cullen, B. R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 9779–9784.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., & Zamore, P. D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313(5785), 320–324.PubMedCrossRef Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., & Zamore, P. D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313(5785), 320–324.PubMedCrossRef
33.
Zurück zum Zitat Huang, X. A., Yin, H., Sweeney, S., Raha, D., Snyder, M., & Lin, H. (2013). A major epigenetic programming mechanism guided by piRNAs. Developmental Cell, 24(5), 502–516.PubMedPubMedCentralCrossRef Huang, X. A., Yin, H., Sweeney, S., Raha, D., Snyder, M., & Lin, H. (2013). A major epigenetic programming mechanism guided by piRNAs. Developmental Cell, 24(5), 502–516.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Yin, H., & Lin, H. (2007). An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature, 450(7167), 304–308.PubMedCrossRef Yin, H., & Lin, H. (2007). An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature, 450(7167), 304–308.PubMedCrossRef
35.
Zurück zum Zitat Faulkner, G. J., Kimura, Y., Daub, C. O., Wani, S., Plessy, C., Irvine, K. M., Schroder, K., Cloonan, N., Steptoe, A. L., Lassmann, T., Waki, K., Hornig, N., Arakawa, T., Takahashi, H., Kawai, J., Forrest, A. R., Suzuki, H., Hayashizaki, Y., Hume, D. A., Orlando, V., Grimmond, S. M., & Carninci, P. (2009). The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 41(5), 563–571.PubMedCrossRef Faulkner, G. J., Kimura, Y., Daub, C. O., Wani, S., Plessy, C., Irvine, K. M., Schroder, K., Cloonan, N., Steptoe, A. L., Lassmann, T., Waki, K., Hornig, N., Arakawa, T., Takahashi, H., Kawai, J., Forrest, A. R., Suzuki, H., Hayashizaki, Y., Hume, D. A., Orlando, V., Grimmond, S. M., & Carninci, P. (2009). The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 41(5), 563–571.PubMedCrossRef
36.
Zurück zum Zitat Lim, A. K., Lorthongpanich, C., Chew, T. G., Tan, C. W., Shue, Y. T., Balu, S., Gounko, N., Kuramochi-Miyagawa, S., Matzuk, M. M., Chuma, S., Messerschmidt, D. M., Solter, D., & Knowles, B. B. (2013). The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development, 140(18), 3819–3825.PubMedPubMedCentralCrossRef Lim, A. K., Lorthongpanich, C., Chew, T. G., Tan, C. W., Shue, Y. T., Balu, S., Gounko, N., Kuramochi-Miyagawa, S., Matzuk, M. M., Chuma, S., Messerschmidt, D. M., Solter, D., & Knowles, B. B. (2013). The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development, 140(18), 3819–3825.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Martinez, V. D., Vucic, E. A., Thu, K. L., Hubaux, R., Enfield, K. S., Pikor, L. A., Becker-Santos, D. D., Brown, C. J., Lam, S., & Lam, W. L. (2015). Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Scientific Reports, 5, 10423.PubMedPubMedCentralCrossRef Martinez, V. D., Vucic, E. A., Thu, K. L., Hubaux, R., Enfield, K. S., Pikor, L. A., Becker-Santos, D. D., Brown, C. J., Lam, S., & Lam, W. L. (2015). Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Scientific Reports, 5, 10423.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kiss-Laszlo, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell, 85(7), 1077–1088.PubMedCrossRef Kiss-Laszlo, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell, 85(7), 1077–1088.PubMedCrossRef
39.
Zurück zum Zitat Cavaille, J., Nicoloso, M., & Bachellerie, J. P. (1996). Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature, 383(6602), 732–735.PubMedCrossRef Cavaille, J., Nicoloso, M., & Bachellerie, J. P. (1996). Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature, 383(6602), 732–735.PubMedCrossRef
40.
Zurück zum Zitat Ganot, P., Bortolin, M. L., & Kiss, T. (1997). Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell, 89(5), 799–809.PubMedCrossRef Ganot, P., Bortolin, M. L., & Kiss, T. (1997). Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell, 89(5), 799–809.PubMedCrossRef
41.
Zurück zum Zitat Decatur, W. A., & Fournier, M. J. (2002). rRNA modifications and ribosome function. Trends in Biochemical Sciences, 27(7), 344–351.PubMedCrossRef Decatur, W. A., & Fournier, M. J. (2002). rRNA modifications and ribosome function. Trends in Biochemical Sciences, 27(7), 344–351.PubMedCrossRef
42.
Zurück zum Zitat Huang, C., Shi, J., Guo, Y., Huang, W., Huang, S., Ming, S., Wu, X., Zhang, R., Ding, J., Zhao, W., Jia, J., Huang, X., Xiang, A. P., Shi, Y., & Yao, C. (2017). A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Research, 45(15), 8647–8660.PubMedPubMedCentralCrossRef Huang, C., Shi, J., Guo, Y., Huang, W., Huang, S., Ming, S., Wu, X., Zhang, R., Ding, J., Zhao, W., Jia, J., Huang, X., Xiang, A. P., Shi, Y., & Yao, C. (2017). A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Research, 45(15), 8647–8660.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Gerbi, S. A. (1995). Small nucleolar RNA. Biochemistry and Cell Biology, 73(11–12), 845–858.PubMedCrossRef Gerbi, S. A. (1995). Small nucleolar RNA. Biochemistry and Cell Biology, 73(11–12), 845–858.PubMedCrossRef
44.
45.
Zurück zum Zitat Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews. Genetics, 15(1), 7–21.PubMedCrossRef Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews. Genetics, 15(1), 7–21.PubMedCrossRef
46.
Zurück zum Zitat Hu, W., Alvarez-Dominguez, J. R., & Lodish, H. F. (2012). Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Reports, 13(11), 971–983.PubMedPubMedCentralCrossRef Hu, W., Alvarez-Dominguez, J. R., & Lodish, H. F. (2012). Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Reports, 13(11), 971–983.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D. G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J. B., Lipovich, L., Gonzalez, J. M., Thomas, M., Davis, C. A., Shiekhattar, R., Gingeras, T. R., Hubbard, T. J., Notredame, C., Harrow, J., & Guigo, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.PubMedPubMedCentralCrossRef Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D. G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J. B., Lipovich, L., Gonzalez, J. M., Thomas, M., Davis, C. A., Shiekhattar, R., Gingeras, T. R., Hubbard, T. J., Notredame, C., Harrow, J., & Guigo, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G., & Greenberg, M. E. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187.PubMedPubMedCentralCrossRef Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G., & Greenberg, M. E. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., Ntini, E., Arner, E., Valen, E., Li, K., Schwarzfischer, L., Glatz, D., Raithel, J., Lilje, B., Rapin, N., Bagger, F. O., Jorgensen, M., Andersen, P. R., Bertin, N., Rackham, O., Burroughs, A. M., Baillie, J. K., Ishizu, Y., Shimizu, Y., Furuhata, E., Maeda, S., Negishi, Y., Mungall, C. J., Meehan, T. F., Lassmann, T., Itoh, M., Kawaji, H., Kondo, N., Kawai, J., Lennartsson, A., Daub, C. O., Heutink, P., Hume, D. A., Jensen, T. H., Suzuki, H., Hayashizaki, Y., Muller, F., Forrest, A. R. R., Carninci, P., Rehli, M., & Sandelin, A. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507(7493), 455–461.PubMedPubMedCentralCrossRef Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., Ntini, E., Arner, E., Valen, E., Li, K., Schwarzfischer, L., Glatz, D., Raithel, J., Lilje, B., Rapin, N., Bagger, F. O., Jorgensen, M., Andersen, P. R., Bertin, N., Rackham, O., Burroughs, A. M., Baillie, J. K., Ishizu, Y., Shimizu, Y., Furuhata, E., Maeda, S., Negishi, Y., Mungall, C. J., Meehan, T. F., Lassmann, T., Itoh, M., Kawaji, H., Kondo, N., Kawai, J., Lennartsson, A., Daub, C. O., Heutink, P., Hume, D. A., Jensen, T. H., Suzuki, H., Hayashizaki, Y., Muller, F., Forrest, A. R. R., Carninci, P., Rehli, M., & Sandelin, A. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507(7493), 455–461.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55–66.PubMedCrossRef Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55–66.PubMedCrossRef
51.
Zurück zum Zitat Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P., & Bailleul, B. (1992). Splicing with inverted order of exons occurs proximal to large introns. The EMBO Journal, 11(3), 1095–1098.PubMedPubMedCentral Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P., & Bailleul, B. (1992). Splicing with inverted order of exons occurs proximal to large introns. The EMBO Journal, 11(3), 1095–1098.PubMedPubMedCentral
52.
Zurück zum Zitat Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157.PubMedPubMedCentralCrossRef Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Guo, J. U., Agarwal, V., Guo, H., & Bartel, D. P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biology, 15(7), 409.PubMedPubMedCentralCrossRef Guo, J. U., Agarwal, V., Guo, H., & Bartel, D. P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biology, 15(7), 409.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.PubMedCrossRef Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.PubMedCrossRef
55.
Zurück zum Zitat Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genetics, 9(9), e1003777.PubMedPubMedCentralCrossRef Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genetics, 9(9), e1003777.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.PubMedCrossRef Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.PubMedCrossRef
57.
Zurück zum Zitat Hansen, T. B., Wiklund, E. D., Bramsen, J. B., Villadsen, S. B., Statham, A. L., Clark, S. J., & Kjems, J. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal, 30(21), 4414–4422.PubMedPubMedCentralCrossRef Hansen, T. B., Wiklund, E. D., Bramsen, J. B., Villadsen, S. B., Statham, A. L., Clark, S. J., & Kjems, J. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal, 30(21), 4414–4422.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D., Gu, J., He, X., & Huang, S. (2015). Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984.PubMedPubMedCentralCrossRef Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D., Gu, J., He, X., & Huang, S. (2015). Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B. R., Protacio, A., Flynn, R. A., Gupta, R. A., Wysocka, J., Lei, M., Dekker, J., Helms, J. A., & Chang, H. Y. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341), 120–124.PubMedPubMedCentralCrossRef Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B. R., Protacio, A., Flynn, R. A., Gupta, R. A., Wysocka, J., Lei, M., Dekker, J., Helms, J. A., & Chang, H. Y. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341), 120–124.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Boros, J., Arnoult, N., Stroobant, V., Collet, J. F., & Decottignies, A. (2014). Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Molecular and Cellular Biology, 34(19), 3662–3674.PubMedPubMedCentralCrossRef Boros, J., Arnoult, N., Stroobant, V., Collet, J. F., & Decottignies, A. (2014). Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Molecular and Cellular Biology, 34(19), 3662–3674.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., Goodnough, L. H., Helms, J. A., Farnham, P. J., Segal, E., & Chang, H. Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.PubMedPubMedCentralCrossRef Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., Goodnough, L. H., Helms, J. A., Farnham, P. J., Segal, E., & Chang, H. Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., Shi, Y., Segal, E., & Chang, H. Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992), 689–693.PubMedPubMedCentralCrossRef Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., Shi, Y., Segal, E., & Chang, H. Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992), 689–693.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M., Tonlorenzi, R., & Willard, H. F. (1991). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 349(6304), 38–44.PubMedCrossRef Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M., Tonlorenzi, R., & Willard, H. F. (1991). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 349(6304), 38–44.PubMedCrossRef
65.
Zurück zum Zitat Csankovszki, G., Nagy, A., & Jaenisch, R. (2001). Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. The Journal of Cell Biology, 153(4), 773–784.PubMedPubMedCentralCrossRef Csankovszki, G., Nagy, A., & Jaenisch, R. (2001). Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. The Journal of Cell Biology, 153(4), 773–784.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Navarro, P., Page, D. R., Avner, P., & Rougeulle, C. (2006). Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes & Development, 20(20), 2787–2792.CrossRef Navarro, P., Page, D. R., Avner, P., & Rougeulle, C. (2006). Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes & Development, 20(20), 2787–2792.CrossRef
67.
Zurück zum Zitat Chureau, C., Chantalat, S., Romito, A., Galvani, A., Duret, L., Avner, P., & Rougeulle, C. (2011). Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Human Molecular Genetics, 20(4), 705–718.PubMedCrossRef Chureau, C., Chantalat, S., Romito, A., Galvani, A., Duret, L., Avner, P., & Rougeulle, C. (2011). Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Human Molecular Genetics, 20(4), 705–718.PubMedCrossRef
68.
Zurück zum Zitat Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333–339.PubMedPubMedCentralCrossRef Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333–339.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M., & Dryja, T. P. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323(6089), 643–646.PubMedCrossRef Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M., & Dryja, T. P. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323(6089), 643–646.PubMedCrossRef
70.
Zurück zum Zitat Collins, S., & Groudine, M. (1982). Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature, 298(5875), 679–681.PubMedCrossRef Collins, S., & Groudine, M. (1982). Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature, 298(5875), 679–681.PubMedCrossRef
71.
Zurück zum Zitat Meyer, C., Schneider, B., Jakob, S., Strehl, S., Attarbaschi, A., Schnittger, S., Schoch, C., Jansen, M. W., van Dongen, J. J., den Boer, M. L., Pieters, R., Ennas, M. G., Angelucci, E., Koehl, U., Greil, J., Griesinger, F., Zur Stadt, U., Eckert, C., Szczepanski, T., Niggli, F. K., Schafer, B. W., Kempski, H., Brady, H. J., Zuna, J., Trka, J., Nigro, L. L., Biondi, A., Delabesse, E., Macintyre, E., Stanulla, M., Schrappe, M., Haas, O. A., Burmeister, T., Dingermann, T., Klingebiel, T., & Marschalek, R. (2006). The MLL recombinome of acute leukemias. Leukemia, 20(5), 777–784.PubMedCrossRef Meyer, C., Schneider, B., Jakob, S., Strehl, S., Attarbaschi, A., Schnittger, S., Schoch, C., Jansen, M. W., van Dongen, J. J., den Boer, M. L., Pieters, R., Ennas, M. G., Angelucci, E., Koehl, U., Greil, J., Griesinger, F., Zur Stadt, U., Eckert, C., Szczepanski, T., Niggli, F. K., Schafer, B. W., Kempski, H., Brady, H. J., Zuna, J., Trka, J., Nigro, L. L., Biondi, A., Delabesse, E., Macintyre, E., Stanulla, M., Schrappe, M., Haas, O. A., Burmeister, T., Dingermann, T., Klingebiel, T., & Marschalek, R. (2006). The MLL recombinome of acute leukemias. Leukemia, 20(5), 777–784.PubMedCrossRef
72.
Zurück zum Zitat Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., & Croce, C. M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.PubMedPubMedCentralCrossRef Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., & Croce, C. M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., & Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedPubMedCentralCrossRef Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., & Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67(18), 8433–8438.PubMedCrossRef Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67(18), 8433–8438.PubMedCrossRef
75.
Zurück zum Zitat Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y., & Seto, M. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Research, 64(9), 3087–3095.PubMedCrossRef Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y., & Seto, M. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Research, 64(9), 3087–3095.PubMedCrossRef
76.
Zurück zum Zitat Tagawa, H., Karube, K., Tsuzuki, S., Ohshima, K., & Seto, M. (2007). Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Science, 98(9), 1482–1490.PubMedCrossRef Tagawa, H., Karube, K., Tsuzuki, S., Ohshima, K., & Seto, M. (2007). Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Science, 98(9), 1482–1490.PubMedCrossRef
77.
Zurück zum Zitat Rao, E., Jiang, C., Ji, M., Huang, X., Iqbal, J., Lenz, G., Wright, G., Staudt, L. M., Zhao, Y., McKeithan, T. W., Chan, W. C., & Fu, K. (2012). The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia, 26(5), 1064–1072.PubMedCrossRef Rao, E., Jiang, C., Ji, M., Huang, X., Iqbal, J., Lenz, G., Wright, G., Staudt, L. M., Zhao, Y., McKeithan, T. W., Chan, W. C., & Fu, K. (2012). The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia, 26(5), 1064–1072.PubMedCrossRef
78.
Zurück zum Zitat Jiang, P., Rao, E. Y., Meng, N., Zhao, Y., & Wang, J. J. (2010). MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiation Oncology, 5, 100.PubMedPubMedCentralCrossRef Jiang, P., Rao, E. Y., Meng, N., Zhao, Y., & Wang, J. J. (2010). MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiation Oncology, 5, 100.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Czubak, K., Lewandowska, M. A., Klonowska, K., Roszkowski, K., Kowalewski, J., Figlerowicz, M., & Kozlowski, P. (2015). High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget, 6(27), 23399–23416.PubMedPubMedCentralCrossRef Czubak, K., Lewandowska, M. A., Klonowska, K., Roszkowski, K., Kowalewski, J., Figlerowicz, M., & Kozlowski, P. (2015). High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget, 6(27), 23399–23416.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedPubMedCentralCrossRef Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Paranjape, T., Heneghan, H., Lindner, R., Keane, F. K., Hoffman, A., Hollestelle, A., Dorairaj, J., Geyda, K., Pelletier, C., Nallur, S., Martens, J. W., Hooning, M. J., Kerin, M., Zelterman, D., Zhu, Y., Tuck, D., Harris, L., Miller, N., Slack, F., & Weidhaas, J. (2011). A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. The Lancet Oncology, 12(4), 377–386.PubMedPubMedCentralCrossRef Paranjape, T., Heneghan, H., Lindner, R., Keane, F. K., Hoffman, A., Hollestelle, A., Dorairaj, J., Geyda, K., Pelletier, C., Nallur, S., Martens, J. W., Hooning, M. J., Kerin, M., Zelterman, D., Zhu, Y., Tuck, D., Harris, L., Miller, N., Slack, F., & Weidhaas, J. (2011). A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. The Lancet Oncology, 12(4), 377–386.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Kim, M., Chen, X., Chin, L. J., Paranjape, T., Speed, W. C., Kidd, K. K., Zhao, H., Weidhaas, J. B., & Slack, F. J. (2014). Extensive sequence variation in the 3′ untranslated region of the KRAS gene in lung and ovarian cancer cases. Cell Cycle, 13(6), 1030–1040.PubMedPubMedCentralCrossRef Kim, M., Chen, X., Chin, L. J., Paranjape, T., Speed, W. C., Kidd, K. K., Zhao, H., Weidhaas, J. B., & Slack, F. J. (2014). Extensive sequence variation in the 3′ untranslated region of the KRAS gene in lung and ovarian cancer cases. Cell Cycle, 13(6), 1030–1040.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Siprashvili, Z., Webster, D. E., Johnston, D., Shenoy, R. M., Ungewickell, A. J., Bhaduri, A., Flockhart, R., Zarnegar, B. J., Che, Y., Meschi, F., Puglisi, J. D., & Khavari, P. A. (2016). The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nature Genetics, 48(1), 53–58.PubMedCrossRef Siprashvili, Z., Webster, D. E., Johnston, D., Shenoy, R. M., Ungewickell, A. J., Bhaduri, A., Flockhart, R., Zarnegar, B. J., Che, Y., Meschi, F., Puglisi, J. D., & Khavari, P. A. (2016). The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nature Genetics, 48(1), 53–58.PubMedCrossRef
84.
Zurück zum Zitat Dong, X. Y., Guo, P., Boyd, J., Sun, X., Li, Q., Zhou, W., & Dong, J. T. (2009). Implication of snoRNA U50 in human breast cancer. Journal of Genetics and Genomics, 36(8), 447–454.PubMedPubMedCentralCrossRef Dong, X. Y., Guo, P., Boyd, J., Sun, X., Li, Q., Zhou, W., & Dong, J. T. (2009). Implication of snoRNA U50 in human breast cancer. Journal of Genetics and Genomics, 36(8), 447–454.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Dong, X. Y., Rodriguez, C., Guo, P., Sun, X., Talbot, J. T., Zhou, W., Petros, J., Li, Q., Vessella, R. L., Kibel, A. S., Stevens, V. L., Calle, E. E., & Dong, J. T. (2008). SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Human Molecular Genetics, 17(7), 1031–1042.PubMedPubMedCentralCrossRef Dong, X. Y., Rodriguez, C., Guo, P., Sun, X., Talbot, J. T., Zhou, W., Petros, J., Li, Q., Vessella, R. L., Kibel, A. S., Stevens, V. L., Calle, E. E., & Dong, J. T. (2008). SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Human Molecular Genetics, 17(7), 1031–1042.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Tanaka, R., Satoh, H., Moriyama, M., Satoh, K., Morishita, Y., Yoshida, S., Watanabe, T., Nakamura, Y., & Mori, S. (2000). Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes to Cells, 5(4), 277–287.PubMedCrossRef Tanaka, R., Satoh, H., Moriyama, M., Satoh, K., Morishita, Y., Yoshida, S., Watanabe, T., Nakamura, Y., & Mori, S. (2000). Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes to Cells, 5(4), 277–287.PubMedCrossRef
87.
Zurück zum Zitat Mei, Y. P., Liao, J. P., Shen, J., Yu, L., Liu, B. L., Liu, L., Li, R. Y., Ji, L., Dorsey, S. G., Jiang, Z. R., Katz, R. L., Wang, J. Y., & Jiang, F. (2012). Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene, 31(22), 2794–2804.PubMedCrossRef Mei, Y. P., Liao, J. P., Shen, J., Yu, L., Liu, B. L., Liu, L., Li, R. Y., Ji, L., Dorsey, S. G., Jiang, Z. R., Katz, R. L., Wang, J. Y., & Jiang, F. (2012). Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene, 31(22), 2794–2804.PubMedCrossRef
89.
90.
Zurück zum Zitat Shiue, C. N., Berkson, R. G., & Wright, A. P. (2009). c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene, 28(16), 1833–1842.PubMedCrossRef Shiue, C. N., Berkson, R. G., & Wright, A. P. (2009). c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene, 28(16), 1833–1842.PubMedCrossRef
91.
Zurück zum Zitat Jiang, Z., Zhou, Y., Devarajan, K., Slater, C. M., Daly, M. B., & Chen, X. (2012). Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis. Frontiers in Genetics, 3, 299.PubMedPubMedCentral Jiang, Z., Zhou, Y., Devarajan, K., Slater, C. M., Daly, M. B., & Chen, X. (2012). Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis. Frontiers in Genetics, 3, 299.PubMedPubMedCentral
92.
Zurück zum Zitat Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S. D., Zhang, Y., Yang, L., Shan, W., He, Q., Fan, L., Kandalaft, L. E., Tanyi, J. L., Li, C., Yuan, C. X., Zhang, D., Yuan, H., Hua, K., Lu, Y., Katsaros, D., Huang, Q., Montone, K., Fan, Y., Coukos, G., Boyd, J., Sood, A. K., Rebbeck, T., Mills, G. B., Dang, C. V., & Zhang, L. (2015). Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell, 28(4), 529–540.PubMedPubMedCentralCrossRef Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S. D., Zhang, Y., Yang, L., Shan, W., He, Q., Fan, L., Kandalaft, L. E., Tanyi, J. L., Li, C., Yuan, C. X., Zhang, D., Yuan, H., Hua, K., Lu, Y., Katsaros, D., Huang, Q., Montone, K., Fan, Y., Coukos, G., Boyd, J., Sood, A. K., Rebbeck, T., Mills, G. B., Dang, C. V., & Zhang, L. (2015). Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell, 28(4), 529–540.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Hu, X., Feng, Y., Zhang, D., Zhao, S. D., Hu, Z., Greshock, J., Zhang, Y., Yang, L., Zhong, X., Wang, L. P., Jean, S., Li, C., Huang, Q., Katsaros, D., Montone, K. T., Tanyi, J. L., Lu, Y., Boyd, J., Nathanson, K. L., Li, H., Mills, G. B., & Zhang, L. (2014). A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26(3), 344–357.PubMedPubMedCentralCrossRef Hu, X., Feng, Y., Zhang, D., Zhao, S. D., Hu, Z., Greshock, J., Zhang, Y., Yang, L., Zhong, X., Wang, L. P., Jean, S., Li, C., Huang, Q., Katsaros, D., Montone, K. T., Tanyi, J. L., Lu, Y., Boyd, J., Nathanson, K. L., Li, H., Mills, G. B., & Zhang, L. (2014). A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26(3), 344–357.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Du, Z., Fei, T., Verhaak, R. G., Su, Z., Zhang, Y., Brown, M., Chen, Y., & Liu, X. S. (2013). Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural & Molecular Biology, 20(7), 908–913.CrossRef Du, Z., Fei, T., Verhaak, R. G., Su, Z., Zhang, Y., Brown, M., Chen, Y., & Liu, X. S. (2013). Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural & Molecular Biology, 20(7), 908–913.CrossRef
95.
Zurück zum Zitat Pandey, G. K., Mitra, S., Subhash, S., Hertwig, F., Kanduri, M., Mishra, K., Fransson, S., Ganeshram, A., Mondal, T., Bandaru, S., Ostensson, M., Akyurek, L. M., Abrahamsson, J., Pfeifer, S., Larsson, E., Shi, L., Peng, Z., Fischer, M., Martinsson, T., Hedborg, F., Kogner, P., & Kanduri, C. (2014). The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 26(5), 722–737.PubMedCrossRef Pandey, G. K., Mitra, S., Subhash, S., Hertwig, F., Kanduri, M., Mishra, K., Fransson, S., Ganeshram, A., Mondal, T., Bandaru, S., Ostensson, M., Akyurek, L. M., Abrahamsson, J., Pfeifer, S., Larsson, E., Shi, L., Peng, Z., Fischer, M., Martinsson, T., Hedborg, F., Kogner, P., & Kanduri, C. (2014). The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 26(5), 722–737.PubMedCrossRef
96.
Zurück zum Zitat Oey, H., & Whitelaw, E. (2014). On the meaning of the word ‘epimutation’. Trends in Genetics, 30(12), 519–520.PubMedCrossRef Oey, H., & Whitelaw, E. (2014). On the meaning of the word ‘epimutation’. Trends in Genetics, 30(12), 519–520.PubMedCrossRef
97.
Zurück zum Zitat Hanada, M., Delia, D., Aiello, A., Stadtmauer, E., & Reed, J. C. (1993). bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood, 82(6), 1820–1828.PubMed Hanada, M., Delia, D., Aiello, A., Stadtmauer, E., & Reed, J. C. (1993). bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood, 82(6), 1820–1828.PubMed
98.
Zurück zum Zitat Esteller, M., Silva, J. M., Dominguez, G., Bonilla, F., Matias-Guiu, X., Lerma, E., Bussaglia, E., Prat, J., Harkes, I. C., Repasky, E. A., Gabrielson, E., Schutte, M., Baylin, S. B., & Herman, J. G. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute, 92(7), 564–569.PubMedCrossRef Esteller, M., Silva, J. M., Dominguez, G., Bonilla, F., Matias-Guiu, X., Lerma, E., Bussaglia, E., Prat, J., Harkes, I. C., Repasky, E. A., Gabrielson, E., Schutte, M., Baylin, S. B., & Herman, J. G. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute, 92(7), 564–569.PubMedCrossRef
99.
Zurück zum Zitat Heyn, H., Vidal, E., Ferreira, H. J., Vizoso, M., Sayols, S., Gomez, A., Moran, S., Boque-Sastre, R., Guil, S., Martinez-Cardus, A., Lin, C. Y., Royo, R., Sanchez-Mut, J. V., Martinez, R., Gut, M., Torrents, D., Orozco, M., Gut, I., Young, R. A., & Esteller, M. (2016). Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biology, 17, 11.PubMedPubMedCentralCrossRef Heyn, H., Vidal, E., Ferreira, H. J., Vizoso, M., Sayols, S., Gomez, A., Moran, S., Boque-Sastre, R., Guil, S., Martinez-Cardus, A., Lin, C. Y., Royo, R., Sanchez-Mut, J. V., Martinez, R., Gut, M., Torrents, D., Orozco, M., Gut, I., Young, R. A., & Esteller, M. (2016). Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biology, 17, 11.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Datta, J., Kutay, H., Nasser, M. W., Nuovo, G. J., Wang, B., Majumder, S., Liu, C. G., Volinia, S., Croce, C. M., Schmittgen, T. D., Ghoshal, K., & Jacob, S. T. (2008). Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Research, 68(13), 5049–5058.PubMedPubMedCentralCrossRef Datta, J., Kutay, H., Nasser, M. W., Nuovo, G. J., Wang, B., Majumder, S., Liu, C. G., Volinia, S., Croce, C. M., Schmittgen, T. D., Ghoshal, K., & Jacob, S. T. (2008). Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Research, 68(13), 5049–5058.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Suzuki, H., Takatsuka, S., Akashi, H., Yamamoto, E., Nojima, M., Maruyama, R., Kai, M., Yamano, H. O., Sasaki, Y., Tokino, T., Shinomura, Y., Imai, K., & Toyota, M. (2011). Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Research, 71(17), 5646–5658.PubMedCrossRef Suzuki, H., Takatsuka, S., Akashi, H., Yamamoto, E., Nojima, M., Maruyama, R., Kai, M., Yamano, H. O., Sasaki, Y., Tokino, T., Shinomura, Y., Imai, K., & Toyota, M. (2011). Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Research, 71(17), 5646–5658.PubMedCrossRef
102.
Zurück zum Zitat Chen, W. S., Leung, C. M., Pan, H. W., Hu, L. Y., Li, S. C., Ho, M. R., & Tsai, K. W. (2012). Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncology Reports, 28(3), 1069–1076.PubMedCrossRef Chen, W. S., Leung, C. M., Pan, H. W., Hu, L. Y., Li, S. C., Ho, M. R., & Tsai, K. W. (2012). Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncology Reports, 28(3), 1069–1076.PubMedCrossRef
103.
Zurück zum Zitat He, X. X., Kuang, S. Z., Liao, J. Z., Xu, C. R., Chang, Y., Wu, Y. L., Gong, J., Tian, D. A., Guo, A. Y., & Lin, J. S. (2015). The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Molecular BioSystems, 11(2), 532–539.PubMedCrossRef He, X. X., Kuang, S. Z., Liao, J. Z., Xu, C. R., Chang, Y., Wu, Y. L., Gong, J., Tian, D. A., Guo, A. Y., & Lin, J. S. (2015). The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Molecular BioSystems, 11(2), 532–539.PubMedCrossRef
104.
Zurück zum Zitat Dudziec, E., Miah, S., Choudhry, H. M., Owen, H. C., Blizard, S., Glover, M., Hamdy, F. C., & Catto, J. W. (2011). Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clinical Cancer Research, 17(6), 1287–1296.PubMedCrossRef Dudziec, E., Miah, S., Choudhry, H. M., Owen, H. C., Blizard, S., Glover, M., Hamdy, F. C., & Catto, J. W. (2011). Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clinical Cancer Research, 17(6), 1287–1296.PubMedCrossRef
105.
Zurück zum Zitat Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., Casado, S., Suarez-Gauthier, A., Sanchez-Cespedes, M., Git, A., Spiteri, I., Das, P. P., Caldas, C., Miska, E., & Esteller, M. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424–1429.PubMedCrossRef Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., Casado, S., Suarez-Gauthier, A., Sanchez-Cespedes, M., Git, A., Spiteri, I., Das, P. P., Caldas, C., Miska, E., & Esteller, M. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424–1429.PubMedCrossRef
106.
Zurück zum Zitat Furuta, M., Kozaki, K. I., Tanaka, S., Arii, S., Imoto, I., & Inazawa, J. (2010). miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis, 31(5), 766–776.PubMedCrossRef Furuta, M., Kozaki, K. I., Tanaka, S., Arii, S., Imoto, I., & Inazawa, J. (2010). miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis, 31(5), 766–776.PubMedCrossRef
107.
Zurück zum Zitat Wilting, S. M., van Boerdonk, R. A., Henken, F. E., Meijer, C. J., Diosdado, B., Meijer, G. A., le Sage, C., Agami, R., Snijders, P. J., & Steenbergen, R. D. (2010). Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Molecular Cancer, 9, 167.PubMedPubMedCentralCrossRef Wilting, S. M., van Boerdonk, R. A., Henken, F. E., Meijer, C. J., Diosdado, B., Meijer, G. A., le Sage, C., Agami, R., Snijders, P. J., & Steenbergen, R. D. (2010). Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Molecular Cancer, 9, 167.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Lv, X. B., Jiao, Y., Qing, Y., Hu, H., Cui, X., Lin, T., Song, E., & Yu, F. (2011). miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chinese Journal of Cancer, 30(12), 821–830.PubMedPubMedCentralCrossRef Lv, X. B., Jiao, Y., Qing, Y., Hu, H., Cui, X., Lin, T., Song, E., & Yu, F. (2011). miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chinese Journal of Cancer, 30(12), 821–830.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Wang, P., Chen, L., Zhang, J., Chen, H., Fan, J., Wang, K., Luo, J., Chen, Z., Meng, Z., & Liu, L. (2014). Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene, 33(4), 514–524.PubMedCrossRef Wang, P., Chen, L., Zhang, J., Chen, H., Fan, J., Wang, K., Luo, J., Chen, Z., Meng, Z., & Liu, L. (2014). Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene, 33(4), 514–524.PubMedCrossRef
110.
Zurück zum Zitat Chen, X., He, D., Dong, X. D., Dong, F., Wang, J., Wang, L., Tang, J., Hu, D. N., Yan, D., & Tu, L. (2013). MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Investigative Ophthalmology & Visual Science, 54(3), 2248–2256.CrossRef Chen, X., He, D., Dong, X. D., Dong, F., Wang, J., Wang, L., Tang, J., Hu, D. N., Yan, D., & Tu, L. (2013). MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Investigative Ophthalmology & Visual Science, 54(3), 2248–2256.CrossRef
111.
Zurück zum Zitat Tivnan, A., Zhao, J., Johns, T. G., Day, B. W., Stringer, B. W., Boyd, A. W., Tiwari, S., Giles, K. M., Teo, C., & McDonald, K. L. (2014). The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma. Tumour Biology, 35(2), 1459–1465.PubMedCrossRef Tivnan, A., Zhao, J., Johns, T. G., Day, B. W., Stringer, B. W., Boyd, A. W., Tiwari, S., Giles, K. M., Teo, C., & McDonald, K. L. (2014). The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma. Tumour Biology, 35(2), 1459–1465.PubMedCrossRef
112.
Zurück zum Zitat Formosa, A., Lena, A. M., Markert, E. K., Cortelli, S., Miano, R., Mauriello, A., Croce, N., Vandesompele, J., Mestdagh, P., Finazzi-Agro, E., Levine, A. J., Melino, G., Bernardini, S., & Candi, E. (2013). DNA methylation silences miR-132 in prostate cancer. Oncogene, 32(1), 127–134.PubMedCrossRef Formosa, A., Lena, A. M., Markert, E. K., Cortelli, S., Miano, R., Mauriello, A., Croce, N., Vandesompele, J., Mestdagh, P., Finazzi-Agro, E., Levine, A. J., Melino, G., Bernardini, S., & Candi, E. (2013). DNA methylation silences miR-132 in prostate cancer. Oncogene, 32(1), 127–134.PubMedCrossRef
113.
Zurück zum Zitat Qin, J., Ke, J., Xu, J., Wang, F., Zhou, Y., Jiang, Y., & Wang, Z. (2015). Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. Onco Targets Ther, 8, 3639–3648.PubMedPubMedCentral Qin, J., Ke, J., Xu, J., Wang, F., Zhou, Y., Jiang, Y., & Wang, Z. (2015). Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. Onco Targets Ther, 8, 3639–3648.PubMedPubMedCentral
114.
Zurück zum Zitat Zhang, S., Hao, J., Xie, F., Hu, X., Liu, C., Tong, J., Zhou, J., Wu, J., & Shao, C. (2011). Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis, 32(8), 1183–1189.PubMedCrossRef Zhang, S., Hao, J., Xie, F., Hu, X., Liu, C., Tong, J., Zhou, J., Wu, J., & Shao, C. (2011). Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis, 32(8), 1183–1189.PubMedCrossRef
115.
Zurück zum Zitat Lin L, Wang Z, Jin H, Shi H, Lu Z, Qi Z (2016) MiR-212/132 is epigenetically downregulated by SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Tumour Biol. 37(12), 15719–15727.CrossRef Lin L, Wang Z, Jin H, Shi H, Lu Z, Qi Z (2016) MiR-212/132 is epigenetically downregulated by SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Tumour Biol. 37(12), 15719–15727.CrossRef
116.
Zurück zum Zitat Rani, S. B., Rathod, S. S., Karthik, S., Kaur, N., Muzumdar, D., & Shiras, A. S. (2013). MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-Oncology, 15(10), 1302–1316.PubMedPubMedCentralCrossRef Rani, S. B., Rathod, S. S., Karthik, S., Kaur, N., Muzumdar, D., & Shiras, A. S. (2013). MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-Oncology, 15(10), 1302–1316.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat He, Y., Cui, Y., Wang, W., Gu, J., Guo, S., Ma, K., & Luo, X. (2011). Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia, 13(9), 841–853.PubMedPubMedCentralCrossRef He, Y., Cui, Y., Wang, W., Gu, J., Guo, S., Ma, K., & Luo, X. (2011). Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia, 13(9), 841–853.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Davalos, V., Moutinho, C., Villanueva, A., Boque, R., Silva, P., Carneiro, F., & Esteller, M. (2012). Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene, 31(16), 2062–2074.PubMedCrossRef Davalos, V., Moutinho, C., Villanueva, A., Boque, R., Silva, P., Carneiro, F., & Esteller, M. (2012). Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene, 31(16), 2062–2074.PubMedCrossRef
119.
Zurück zum Zitat Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y., & Tokino, T. (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Research, 68(11), 4123–4132.PubMedCrossRef Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y., & Tokino, T. (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Research, 68(11), 4123–4132.PubMedCrossRef
120.
Zurück zum Zitat Xie, K., Liu, J., Chen, J., Dong, J., Ma, H., Liu, Y., & Hu, Z. (2014). Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene, 543(1), 101–107.PubMedCrossRef Xie, K., Liu, J., Chen, J., Dong, J., Ma, H., Liu, Y., & Hu, Z. (2014). Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene, 543(1), 101–107.PubMedCrossRef
121.
Zurück zum Zitat Daugaard, I., Knudsen, A., Kjeldsen, T. E., Hager, H., & Hansen, L. L. (2017). The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Experimental and Molecular Pathology, 102(3), 484–491.PubMedCrossRef Daugaard, I., Knudsen, A., Kjeldsen, T. E., Hager, H., & Hansen, L. L. (2017). The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Experimental and Molecular Pathology, 102(3), 484–491.PubMedCrossRef
122.
Zurück zum Zitat Zhang, X., Gejman, R., Mahta, A., Zhong, Y., Rice, K. A., Zhou, Y., Cheunsuchon, P., Louis, D. N., & Klibanski, A. (2010). Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Research, 70(6), 2350–2358.PubMedPubMedCentralCrossRef Zhang, X., Gejman, R., Mahta, A., Zhong, Y., Rice, K. A., Zhou, Y., Cheunsuchon, P., Louis, D. N., & Klibanski, A. (2010). Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Research, 70(6), 2350–2358.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Wu, Y., Lyu, H., Liu, H., Shi, X., Song, Y., & Liu, B. (2016). Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Scientific Reports, 6, 31093.PubMedPubMedCentralCrossRef Wu, Y., Lyu, H., Liu, H., Shi, X., Song, Y., & Liu, B. (2016). Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Scientific Reports, 6, 31093.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Diaz-Lagares, A., Crujeiras, A. B., Lopez-Serra, P., Soler, M., Setien, F., Goyal, A., Sandoval, J., Hashimoto, Y., Martinez-Cardus, A., Gomez, A., Heyn, H., Moutinho, C., Espada, J., Vidal, A., Paules, M., Galan, M., Sala, N., Akiyama, Y., Martinez-Iniesta, M., Farre, L., Villanueva, A., Gross, M., Diederichs, S., Guil, S., & Esteller, M. (2016). Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(47), E7535–E7544.PubMedPubMedCentralCrossRef Diaz-Lagares, A., Crujeiras, A. B., Lopez-Serra, P., Soler, M., Setien, F., Goyal, A., Sandoval, J., Hashimoto, Y., Martinez-Cardus, A., Gomez, A., Heyn, H., Moutinho, C., Espada, J., Vidal, A., Paules, M., Galan, M., Sala, N., Akiyama, Y., Martinez-Iniesta, M., Farre, L., Villanueva, A., Gross, M., Diederichs, S., Guil, S., & Esteller, M. (2016). Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(47), E7535–E7544.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Boque-Sastre, R., Soler, M., Oliveira-Mateos, C., Portela, A., Moutinho, C., Sayols, S., Villanueva, A., Esteller, M., & Guil, S. (2015). Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5785–5790.PubMedPubMedCentralCrossRef Boque-Sastre, R., Soler, M., Oliveira-Mateos, C., Portela, A., Moutinho, C., Sayols, S., Villanueva, A., Esteller, M., & Guil, S. (2015). Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5785–5790.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Ferreira, H. J., Heyn, H., Moutinho, C., & Esteller, M. (2012). CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biology, 9(6), 881–890.PubMedPubMedCentralCrossRef Ferreira, H. J., Heyn, H., Moutinho, C., & Esteller, M. (2012). CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biology, 9(6), 881–890.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Lujambio, A., Portela, A., Liz, J., Melo, S. A., Rossi, S., Spizzo, R., Croce, C. M., Calin, G. A., & Esteller, M. (2010). CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 29(48), 6390–6401.PubMedPubMedCentralCrossRef Lujambio, A., Portela, A., Liz, J., Melo, S. A., Rossi, S., Spizzo, R., Croce, C. M., Calin, G. A., & Esteller, M. (2010). CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 29(48), 6390–6401.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Suzuki, H., Maruyama, R., Yamamoto, E., & Kai, M. (2012). DNA methylation and microRNA dysregulation in cancer. Molecular Oncology, 6(6), 567–578.PubMedPubMedCentralCrossRef Suzuki, H., Maruyama, R., Yamamoto, E., & Kai, M. (2012). DNA methylation and microRNA dysregulation in cancer. Molecular Oncology, 6(6), 567–578.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Lopez-Serra, P., & Esteller, M. (2012). DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 31(13), 1609–1622.PubMedCrossRef Lopez-Serra, P., & Esteller, M. (2012). DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 31(13), 1609–1622.PubMedCrossRef
132.
Zurück zum Zitat Urdinguio, R. G., Fernandez, A. F., Lopez-Nieva, P., Rossi, S., Huertas, D., Kulis, M., Liu, C. G., Croce, C. M., Calin, G. A., & Esteller, M. (2010). Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics, 5(7), 656–663.PubMedPubMedCentralCrossRef Urdinguio, R. G., Fernandez, A. F., Lopez-Nieva, P., Rossi, S., Huertas, D., Kulis, M., Liu, C. G., Croce, C. M., Calin, G. A., & Esteller, M. (2010). Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics, 5(7), 656–663.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Qu, W., Ding, S. M., Cao, G., Wang, S. J., Zheng, X. H., & Li, G. H. (2016). miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio, 6(7), 735–741.PubMedPubMedCentralCrossRef Qu, W., Ding, S. M., Cao, G., Wang, S. J., Zheng, X. H., & Li, G. H. (2016). miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio, 6(7), 735–741.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I., & Young, R. A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153(2), 307–319.PubMedPubMedCentralCrossRef Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I., & Young, R. A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153(2), 307–319.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-Andre, V., Sigova, A. A., Hoke, H. A., & Young, R. A. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155(4), 934–947.PubMedCrossRef Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-Andre, V., Sigova, A. A., Hoke, H. A., & Young, R. A. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155(4), 934–947.PubMedCrossRef
136.
Zurück zum Zitat Loven, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I., & Young, R. A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153(2), 320–334.PubMedPubMedCentralCrossRef Loven, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I., & Young, R. A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153(2), 320–334.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
138.
139.
Zurück zum Zitat Wu, Q., Ma, Q., Shehadeh, L. A., Wilson, A., Xia, L., Yu, H., & Webster, K. A. (2010). Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells. Biochemical and Biophysical Research Communications, 396(4), 915–920.PubMedPubMedCentralCrossRef Wu, Q., Ma, Q., Shehadeh, L. A., Wilson, A., Xia, L., Yu, H., & Webster, K. A. (2010). Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells. Biochemical and Biophysical Research Communications, 396(4), 915–920.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Iliev, R., Stanik, M., Fedorko, M., Poprach, A., Vychytilova-Faltejskova, P., Slaba, K., Svoboda, M., Fabian, P., Pacik, D., Dolezel, J., & Slaby, O. (2016). Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. Onco Targets Ther, 9, 217–222.PubMedPubMedCentral Iliev, R., Stanik, M., Fedorko, M., Poprach, A., Vychytilova-Faltejskova, P., Slaba, K., Svoboda, M., Fabian, P., Pacik, D., Dolezel, J., & Slaby, O. (2016). Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. Onco Targets Ther, 9, 217–222.PubMedPubMedCentral
141.
Zurück zum Zitat Greither, T., Koser, F., Kappler, M., Bache, M., Lautenschlager, C., Gobel, S., Holzhausen, H. J., Wach, S., Wurl, P., & Taubert, H. (2012). Expression of human Piwi-like genes is associated with prognosis for soft tissue sarcoma patients. BMC Cancer, 12, 272.PubMedPubMedCentralCrossRef Greither, T., Koser, F., Kappler, M., Bache, M., Lautenschlager, C., Gobel, S., Holzhausen, H. J., Wach, S., Wurl, P., & Taubert, H. (2012). Expression of human Piwi-like genes is associated with prognosis for soft tissue sarcoma patients. BMC Cancer, 12, 272.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Navarro, A., Tejero, R., Vinolas, N., Cordeiro, A., Marrades, R. M., Fuster, D., Caritg, O., Moises, J., Munoz, C., Molins, L., Ramirez, J., & Monzo, M. (2015). The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer. Oncotarget, 6(31), 31544–31556.PubMedPubMedCentralCrossRef Navarro, A., Tejero, R., Vinolas, N., Cordeiro, A., Marrades, R. M., Fuster, D., Caritg, O., Moises, J., Munoz, C., Molins, L., Ramirez, J., & Monzo, M. (2015). The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer. Oncotarget, 6(31), 31544–31556.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Bamezai, S., Rawat, V. P., & Buske, C. (2012). Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells, 30(12), 2603–2611.PubMedCrossRef Bamezai, S., Rawat, V. P., & Buske, C. (2012). Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells, 30(12), 2603–2611.PubMedCrossRef
144.
Zurück zum Zitat Ferreira, H. J., Heyn, H., Garcia del Muro, X., Vidal, A., Larriba, S., Munoz, C., Villanueva, A., & Esteller, M. (2014). Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics, 9(1), 113–118.PubMedCrossRef Ferreira, H. J., Heyn, H., Garcia del Muro, X., Vidal, A., Larriba, S., Munoz, C., Villanueva, A., & Esteller, M. (2014). Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics, 9(1), 113–118.PubMedCrossRef
145.
Zurück zum Zitat Rounge, T. B., Furu, K., Skotheim, R. I., Haugen, T. B., Grotmol, T., & Enerly, E. (2015). Profiling of the small RNA populations in human testicular germ cell tumors shows global loss of piRNAs. Molecular Cancer, 14, 153.PubMedPubMedCentralCrossRef Rounge, T. B., Furu, K., Skotheim, R. I., Haugen, T. B., Grotmol, T., & Enerly, E. (2015). Profiling of the small RNA populations in human testicular germ cell tumors shows global loss of piRNAs. Molecular Cancer, 14, 153.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Ushida, H., Kawakami, T., Minami, K., Chano, T., Okabe, H., Okada, Y., & Okamoto, K. (2012). Methylation profile of DNA repetitive elements in human testicular germ cell tumor. Molecular Carcinogenesis, 51(9), 711–722.PubMedCrossRef Ushida, H., Kawakami, T., Minami, K., Chano, T., Okabe, H., Okada, Y., & Okamoto, K. (2012). Methylation profile of DNA repetitive elements in human testicular germ cell tumor. Molecular Carcinogenesis, 51(9), 711–722.PubMedCrossRef
147.
Zurück zum Zitat Heyn, H., Ferreira, H. J., Bassas, L., Bonache, S., Sayols, S., Sandoval, J., Esteller, M., & Larriba, S. (2012). Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS One, 7(10), e47892.PubMedPubMedCentralCrossRef Heyn, H., Ferreira, H. J., Bassas, L., Bonache, S., Sayols, S., Sandoval, J., Esteller, M., & Larriba, S. (2012). Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS One, 7(10), e47892.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Hotaling, J. M., & Walsh, T. J. (2009). Male infertility: a risk factor for testicular cancer. Nature Reviews. Urology, 6(10), 550–556.PubMedCrossRef Hotaling, J. M., & Walsh, T. J. (2009). Male infertility: a risk factor for testicular cancer. Nature Reviews. Urology, 6(10), 550–556.PubMedCrossRef
149.
Zurück zum Zitat Peng, X., Zeng, X., Peng, S., Deng, D., & Zhang, J. (2009). The association risk of male subfertility and testicular cancer: a systematic review. PLoS One, 4(5), e5591.PubMedPubMedCentralCrossRef Peng, X., Zeng, X., Peng, S., Deng, D., & Zhang, J. (2009). The association risk of male subfertility and testicular cancer: a systematic review. PLoS One, 4(5), e5591.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Liz, J., Portela, A., Soler, M., Gomez, A., Ling, H., Michlewski, G., Calin, G. A., Guil, S., & Esteller, M. (2014). Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Molecular Cell, 55(1), 138–147.PubMedCrossRef Liz, J., Portela, A., Soler, M., Gomez, A., Ling, H., Michlewski, G., Calin, G. A., Guil, S., & Esteller, M. (2014). Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Molecular Cell, 55(1), 138–147.PubMedCrossRef
151.
Zurück zum Zitat Ronchetti, D., Mosca, L., Cutrona, G., Tuana, G., Gentile, M., Fabris, S., Agnelli, L., Ciceri, G., Matis, S., Massucco, C., Colombo, M., Reverberi, D., Recchia, A. G., Bossio, S., Negrini, M., Tassone, P., Morabito, F., Ferrarini, M., & Neri, A. (2013). Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC Medical Genomics, 6, 27.PubMedPubMedCentralCrossRef Ronchetti, D., Mosca, L., Cutrona, G., Tuana, G., Gentile, M., Fabris, S., Agnelli, L., Ciceri, G., Matis, S., Massucco, C., Colombo, M., Reverberi, D., Recchia, A. G., Bossio, S., Negrini, M., Tassone, P., Morabito, F., Ferrarini, M., & Neri, A. (2013). Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC Medical Genomics, 6, 27.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Bellodi, C., McMahon, M., Contreras, A., Juliano, D., Kopmar, N., Nakamura, T., Maltby, D., Burlingame, A., Savage, S. A., Shimamura, A., & Ruggero, D. (2013). H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Reports, 3(5), 1493–1502.PubMedCrossRef Bellodi, C., McMahon, M., Contreras, A., Juliano, D., Kopmar, N., Nakamura, T., Maltby, D., Burlingame, A., Savage, S. A., Shimamura, A., & Ruggero, D. (2013). H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Reports, 3(5), 1493–1502.PubMedCrossRef
153.
Zurück zum Zitat McMahon, M., Ayllon, V., Panov, K. I., & O'Connor, R. (2010). Ribosomal 18 S RNA processing by the IGF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. The Journal of Biological Chemistry, 285(24), 18309–18318.PubMedPubMedCentralCrossRef McMahon, M., Ayllon, V., Panov, K. I., & O'Connor, R. (2010). Ribosomal 18 S RNA processing by the IGF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. The Journal of Biological Chemistry, 285(24), 18309–18318.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Peng, Q., Wu, J., Zhang, Y., Liu, Y., Kong, R., Hu, L., Du, X., & Ke, Y. (2010). 1A6/DRIM, a novel t-UTP, activates RNA polymerase I transcription and promotes cell proliferation. PLoS One, 5(12), e14244.PubMedPubMedCentralCrossRef Peng, Q., Wu, J., Zhang, Y., Liu, Y., Kong, R., Hu, L., Du, X., & Ke, Y. (2010). 1A6/DRIM, a novel t-UTP, activates RNA polymerase I transcription and promotes cell proliferation. PLoS One, 5(12), e14244.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Uemura, M., Zheng, Q., Koh, C. M., Nelson, W. G., Yegnasubramanian, S., & De Marzo, A. M. (2012). Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene, 31(10), 1254–1263.PubMedCrossRef Uemura, M., Zheng, Q., Koh, C. M., Nelson, W. G., Yegnasubramanian, S., & De Marzo, A. M. (2012). Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene, 31(10), 1254–1263.PubMedCrossRef
156.
Zurück zum Zitat Valleron, W., Laprevotte, E., Gautier, E. F., Quelen, C., Demur, C., Delabesse, E., Agirre, X., Prosper, F., Kiss, T., & Brousset, P. (2012). Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia, 26(9), 2052–2060.PubMedCrossRef Valleron, W., Laprevotte, E., Gautier, E. F., Quelen, C., Demur, C., Delabesse, E., Agirre, X., Prosper, F., Kiss, T., & Brousset, P. (2012). Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia, 26(9), 2052–2060.PubMedCrossRef
157.
Zurück zum Zitat Ono, M., Yamada, K., Avolio, F., Scott, M. S., van Koningsbruggen, S., Barton, G. J., & Lamond, A. I. (2010). Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors. Molecular Biology of the Cell, 21(9), 1569–1584.PubMedPubMedCentralCrossRef Ono, M., Yamada, K., Avolio, F., Scott, M. S., van Koningsbruggen, S., Barton, G. J., & Lamond, A. I. (2010). Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors. Molecular Biology of the Cell, 21(9), 1569–1584.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Ono, M., Scott, M. S., Yamada, K., Avolio, F., Barton, G. J., & Lamond, A. I. (2011). Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Research, 39(9), 3879–3891.PubMedPubMedCentralCrossRef Ono, M., Scott, M. S., Yamada, K., Avolio, F., Barton, G. J., & Lamond, A. I. (2011). Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Research, 39(9), 3879–3891.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F., & Williams, G. T. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28(2), 195–208.PubMedCrossRef Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F., & Williams, G. T. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28(2), 195–208.PubMedCrossRef
160.
Zurück zum Zitat Pickard, M. R., Mourtada-Maarabouni, M., & Williams, G. T. (2013). Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochimica et Biophysica Acta, 1832(10), 1613–1623.PubMedCrossRef Pickard, M. R., Mourtada-Maarabouni, M., & Williams, G. T. (2013). Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochimica et Biophysica Acta, 1832(10), 1613–1623.PubMedCrossRef
161.
Zurück zum Zitat Qiao, H. P., Gao, W. S., Huo, J. X., & Yang, Z. S. (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pacific Journal of Cancer Prevention, 14(2), 1077–1082.PubMedCrossRef Qiao, H. P., Gao, W. S., Huo, J. X., & Yang, Z. S. (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pacific Journal of Cancer Prevention, 14(2), 1077–1082.PubMedCrossRef
162.
Zurück zum Zitat Lu, X., Fang, Y., Wang, Z., Xie, J., Zhan, Q., Deng, X., Chen, H., Jin, J., Peng, C., Li, H., & Shen, B. (2013). Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell and Tissue Research, 354(3), 891–896.PubMedCrossRef Lu, X., Fang, Y., Wang, Z., Xie, J., Zhan, Q., Deng, X., Chen, H., Jin, J., Peng, C., Li, H., & Shen, B. (2013). Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell and Tissue Research, 354(3), 891–896.PubMedCrossRef
163.
Zurück zum Zitat Liu, Z., Wang, W., Jiang, J., Bao, E., Xu, D., Zeng, Y., Tao, L., & Qiu, J. (2013). Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One, 8(9), e73991.PubMedPubMedCentralCrossRef Liu, Z., Wang, W., Jiang, J., Bao, E., Xu, D., Zeng, Y., Tao, L., & Qiu, J. (2013). Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One, 8(9), e73991.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F., & Song, Y. (2015). A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Molecular Carcinogenesis, 54(Suppl 1), E1–E12.PubMedCrossRef Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F., & Song, Y. (2015). A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Molecular Carcinogenesis, 54(Suppl 1), E1–E12.PubMedCrossRef
165.
Zurück zum Zitat Sun, M., Jin, F. Y., Xia, R., Kong, R., Li, J. H., Xu, T. P., Liu, Y. W., Zhang, E. B., Liu, X. H., & De, W. (2014). Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 14, 319.PubMedPubMedCentralCrossRef Sun, M., Jin, F. Y., Xia, R., Kong, R., Li, J. H., Xu, T. P., Liu, Y. W., Zhang, E. B., Liu, X. H., & De, W. (2014). Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 14, 319.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Yin, D., He, X., Zhang, E., Kong, R., De, W., & Zhang, Z. (2014). Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Medical Oncology, 31(11), 253.PubMedCrossRef Yin, D., He, X., Zhang, E., Kong, R., De, W., & Zhang, Z. (2014). Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Medical Oncology, 31(11), 253.PubMedCrossRef
167.
Zurück zum Zitat Cao, S., Liu, W., Li, F., Zhao, W., & Qin, C. (2014). Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. International Journal of Clinical and Experimental Pathology, 7(10), 6776–6783.PubMedPubMedCentral Cao, S., Liu, W., Li, F., Zhao, W., & Qin, C. (2014). Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. International Journal of Clinical and Experimental Pathology, 7(10), 6776–6783.PubMedPubMedCentral
168.
Zurück zum Zitat Yu, F., Zheng, J., Mao, Y., Dong, P., Lu, Z., Li, G., Guo, C., Liu, Z., & Fan, X. (2015). Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. The Journal of Biological Chemistry, 290(47), 28286–28298.PubMedPubMedCentralCrossRef Yu, F., Zheng, J., Mao, Y., Dong, P., Lu, Z., Li, G., Guo, C., Liu, Z., & Fan, X. (2015). Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. The Journal of Biological Chemistry, 290(47), 28286–28298.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Luo, G., Liu, D., Huang, C., Wang, M., Xiao, X., Zeng, F., Wang, L., & Jiang, G. (2017). LncRNA GAS5 inhibits cellular proliferation by targeting P27Kip1. Molecular Cancer Research, 15(7), 789–799.PubMedCrossRef Luo, G., Liu, D., Huang, C., Wang, M., Xiao, X., Zeng, F., Wang, L., & Jiang, G. (2017). LncRNA GAS5 inhibits cellular proliferation by targeting P27Kip1. Molecular Cancer Research, 15(7), 789–799.PubMedCrossRef
170.
Zurück zum Zitat Zhang, Z., Zhu, Z., Watabe, K., Zhang, X., Bai, C., Xu, M., Wu, F., & Mo, Y. Y. (2013). Negative regulation of lncRNA GAS5 by miR-21. Cell Death and Differentiation, 20(11), 1558–1568.PubMedPubMedCentralCrossRef Zhang, Z., Zhu, Z., Watabe, K., Zhang, X., Bai, C., Xu, M., Wu, F., & Mo, Y. Y. (2013). Negative regulation of lncRNA GAS5 by miR-21. Cell Death and Differentiation, 20(11), 1558–1568.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Jelinic, P., & Shaw, P. (2007). Loss of imprinting and cancer. The Journal of Pathology, 211(3), 261–268.PubMedCrossRef Jelinic, P., & Shaw, P. (2007). Loss of imprinting and cancer. The Journal of Pathology, 211(3), 261–268.PubMedCrossRef
172.
Zurück zum Zitat da Rocha, S. T., Edwards, C. A., Ito, M., Ogata, T., & Ferguson-Smith, A. C. (2008). Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends in Genetics, 24(6), 306–316.PubMedCrossRef da Rocha, S. T., Edwards, C. A., Ito, M., Ogata, T., & Ferguson-Smith, A. C. (2008). Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends in Genetics, 24(6), 306–316.PubMedCrossRef
173.
Zurück zum Zitat Molina-Pinelo S SA, Moreno-Mata N, Ferrer I, Suarez R, Andres-Leon E, Rodriguez-Paredes M, Gutekunst J, Jantus-Lewintre E, Camps C, Carnero A, Paz-Ares L (2016) Impact of DLK1–DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget https://doi.org/10.18632/oncotarget.10611. Molina-Pinelo S SA, Moreno-Mata N, Ferrer I, Suarez R, Andres-Leon E, Rodriguez-Paredes M, Gutekunst J, Jantus-Lewintre E, Camps C, Carnero A, Paz-Ares L (2016) Impact of DLK1–DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget https://​doi.​org/​10.​18632/​oncotarget.​10611.
174.
Zurück zum Zitat Nadal, E., Zhong, J., Lin, J., Reddy, R. M., Ramnath, N., Orringer, M. B., Chang, A. C., Beer, D. G., & Chen, G. (2014). A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clinical Cancer Research, 20(12), 3107–3117.PubMedCrossRef Nadal, E., Zhong, J., Lin, J., Reddy, R. M., Ramnath, N., Orringer, M. B., Chang, A. C., Beer, D. G., & Chen, G. (2014). A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clinical Cancer Research, 20(12), 3107–3117.PubMedCrossRef
175.
Zurück zum Zitat Luk, J. M., Burchard, J., Zhang, C., Liu, A. M., Wong, K. F., Shek, F. H., Lee, N. P., Fan, S. T., Poon, R. T., Ivanovska, I., Philippar, U., Cleary, M. A., Buser, C. A., Shaw, P. M., Lee, C. N., Tenen, D. G., Dai, H., & Mao, M. (2011). DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. The Journal of Biological Chemistry, 286(35), 30706–30713.PubMedPubMedCentralCrossRef Luk, J. M., Burchard, J., Zhang, C., Liu, A. M., Wong, K. F., Shek, F. H., Lee, N. P., Fan, S. T., Poon, R. T., Ivanovska, I., Philippar, U., Cleary, M. A., Buser, C. A., Shaw, P. M., Lee, C. N., Tenen, D. G., Dai, H., & Mao, M. (2011). DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. The Journal of Biological Chemistry, 286(35), 30706–30713.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Devor, E. J., JN, D. E. M., Ramachandran, S., Goodheart, M. J., & Leslie, K. K. (2012). Global dysregulation of the chromosome 14q32 imprinted region in uterine carcinosarcoma. Experimental and Therapeutic Medicine, 3(4), 677–682.PubMedPubMedCentralCrossRef Devor, E. J., JN, D. E. M., Ramachandran, S., Goodheart, M. J., & Leslie, K. K. (2012). Global dysregulation of the chromosome 14q32 imprinted region in uterine carcinosarcoma. Experimental and Therapeutic Medicine, 3(4), 677–682.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat El-Daly, S. M., Abba, M. L., Patil, N., & Allgayer, H. (2016). miRs-134 and -370 function as tumor suppressors in colorectal cancer by independently suppressing EGFR and PI3K signalling. Scientific Reports, 6, 24720.PubMedPubMedCentralCrossRef El-Daly, S. M., Abba, M. L., Patil, N., & Allgayer, H. (2016). miRs-134 and -370 function as tumor suppressors in colorectal cancer by independently suppressing EGFR and PI3K signalling. Scientific Reports, 6, 24720.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Azarbarzin, S., Hosseinpour Feizi, M. A., Safaralizadeh, R., Ravanbakhsh, R., Kazemzadeh, M., Fateh, A., Karimi, N., & Moaddab, Y. (2016). The value of miR-299-5p in diagnosis and prognosis of intestinal-type gastric adenocarcinoma. Biochemical Genetics, 54(4), 413–420.PubMedCrossRef Azarbarzin, S., Hosseinpour Feizi, M. A., Safaralizadeh, R., Ravanbakhsh, R., Kazemzadeh, M., Fateh, A., Karimi, N., & Moaddab, Y. (2016). The value of miR-299-5p in diagnosis and prognosis of intestinal-type gastric adenocarcinoma. Biochemical Genetics, 54(4), 413–420.PubMedCrossRef
179.
Zurück zum Zitat Lucon, D. R., Rocha Cde, S., Craveiro, R. B., Dilloo, D., Cardinalli, I. A., Cavalcanti, D. P., Aguiar Sdos, S., Maurer-Morelli, C., & Yunes, J. A. (2013). Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Frontiers in Oncology, 3, 254.PubMedPubMedCentralCrossRef Lucon, D. R., Rocha Cde, S., Craveiro, R. B., Dilloo, D., Cardinalli, I. A., Cavalcanti, D. P., Aguiar Sdos, S., Maurer-Morelli, C., & Yunes, J. A. (2013). Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Frontiers in Oncology, 3, 254.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Geraldo, M. V., Nakaya, H. I., & Kimura, E. T. (2017). Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget, 8(6), 9597–9607.PubMedCrossRef Geraldo, M. V., Nakaya, H. I., & Kimura, E. T. (2017). Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget, 8(6), 9597–9607.PubMedCrossRef
181.
Zurück zum Zitat Laddha, S. V., Nayak, S., Paul, D., Reddy, R., Sharma, C., Jha, P., Hariharan, M., Agrawal, A., Chowdhury, S., Sarkar, C., & Mukhopadhyay, A. (2013). Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biology Direct, 8, 10.PubMedPubMedCentralCrossRef Laddha, S. V., Nayak, S., Paul, D., Reddy, R., Sharma, C., Jha, P., Hariharan, M., Agrawal, A., Chowdhury, S., Sarkar, C., & Mukhopadhyay, A. (2013). Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biology Direct, 8, 10.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Tsang, E. K., Abell, N. S., Li, X., Anaya, V., Karczewski, K. J., Knowles, D. A., Sierra, R. G., Smith, K. S., & Montgomery, S. B. (2017). Small RNA sequencing in cells and exosomes identifies eQTLs and 14q32 as a region of active export. G3 (Bethesda), 7(1), 31–39.CrossRef Tsang, E. K., Abell, N. S., Li, X., Anaya, V., Karczewski, K. J., Knowles, D. A., Sierra, R. G., Smith, K. S., & Montgomery, S. B. (2017). Small RNA sequencing in cells and exosomes identifies eQTLs and 14q32 as a region of active export. G3 (Bethesda), 7(1), 31–39.CrossRef
183.
Zurück zum Zitat Enfield, K. S., Martinez, V. D., Marshall, E. A., Stewart, G. L., Kung, S. H., Enterina, J. R., & Lam, W. L. (2016). Deregulation of small non-coding RNAs at the DLK1-DIO3 imprinted locus predicts lung cancer patient outcome. Oncotarget, 7(49), 80957–80966.PubMedPubMedCentralCrossRef Enfield, K. S., Martinez, V. D., Marshall, E. A., Stewart, G. L., Kung, S. H., Enterina, J. R., & Lam, W. L. (2016). Deregulation of small non-coding RNAs at the DLK1-DIO3 imprinted locus predicts lung cancer patient outcome. Oncotarget, 7(49), 80957–80966.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Hajjari, M., & Salavaty, A. (2015). HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med, 12(1), 1–9.PubMedPubMedCentral Hajjari, M., & Salavaty, A. (2015). HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med, 12(1), 1–9.PubMedPubMedCentral
185.
Zurück zum Zitat Amente, S., Bertoni, A., Morano, A., Lania, L., Avvedimento, E. V., & Majello, B. (2010). LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene, 29(25), 3691–3702.PubMedCrossRef Amente, S., Bertoni, A., Morano, A., Lania, L., Avvedimento, E. V., & Majello, B. (2010). LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene, 29(25), 3691–3702.PubMedCrossRef
186.
Zurück zum Zitat Li, Y., Wang, Z., Shi, H., Li, H., Li, L., Fang, R., Cai, X., Liu, B., Zhang, X., & Ye, L. (2016). HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Research, 76(2), 293–304.PubMedCrossRef Li, Y., Wang, Z., Shi, H., Li, H., Li, L., Fang, R., Cai, X., Liu, B., Zhang, X., & Ye, L. (2016). HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Research, 76(2), 293–304.PubMedCrossRef
187.
Zurück zum Zitat Ge, X. S., Ma, H. J., Zheng, X. H., Ruan, H. L., Liao, X. Y., Xue, W. Q., Chen, Y. B., Zhang, Y., & Jia, W. H. (2013). HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Science, 104(12), 1675–1682.PubMedCrossRef Ge, X. S., Ma, H. J., Zheng, X. H., Ruan, H. L., Liao, X. Y., Xue, W. Q., Chen, Y. B., Zhang, Y., & Jia, W. H. (2013). HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Science, 104(12), 1675–1682.PubMedCrossRef
188.
Zurück zum Zitat Liu, X. H., Sun, M., Nie, F. Q., Ge, Y. B., Zhang, E. B., Yin, D. D., Kong, R., Xia, R., Lu, K. H., Li, J. H., De, W., Wang, K. M., & Wang, Z. X. (2014). Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Molecular Cancer, 13, 92.PubMedPubMedCentralCrossRef Liu, X. H., Sun, M., Nie, F. Q., Ge, Y. B., Zhang, E. B., Yin, D. D., Kong, R., Xia, R., Lu, K. H., Li, J. H., De, W., Wang, K. M., & Wang, Z. X. (2014). Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Molecular Cancer, 13, 92.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Bian, E. B., Ma, C. C., He, X. J., Wang, C., Zong, G., Wang, H. L., & Zhao, B. (2016). Epigenetic modification of miR-141 regulates SKA2 by an endogenous ‘sponge’ HOTAIR in glioma. Oncotarget, 7(21), 30610–30625.PubMedPubMedCentralCrossRef Bian, E. B., Ma, C. C., He, X. J., Wang, C., Zong, G., Wang, H. L., & Zhao, B. (2016). Epigenetic modification of miR-141 regulates SKA2 by an endogenous ‘sponge’ HOTAIR in glioma. Oncotarget, 7(21), 30610–30625.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Song, B., Guan, Z., Liu, F., Sun, D., Wang, K., & Qu, H. (2015). Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells. Biochemical and Biophysical Research Communications, 464(3), 807–813.PubMedCrossRef Song, B., Guan, Z., Liu, F., Sun, D., Wang, K., & Qu, H. (2015). Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells. Biochemical and Biophysical Research Communications, 464(3), 807–813.PubMedCrossRef
191.
Zurück zum Zitat Xu, F., & Zhang, J. (2017). Long non-coding RNA HOTAIR functions as miRNA sponge to promote the epithelial to mesenchymal transition in esophageal cancer. Biomedicine & Pharmacotherapy, 90, 888–896.CrossRef Xu, F., & Zhang, J. (2017). Long non-coding RNA HOTAIR functions as miRNA sponge to promote the epithelial to mesenchymal transition in esophageal cancer. Biomedicine & Pharmacotherapy, 90, 888–896.CrossRef
192.
Zurück zum Zitat Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., Schwind, S., Pang, J., Yu, J., Muthusamy, N., Havelange, V., Volinia, S., Blum, W., Rush, L. J., Perrotti, D., Andreeff, M., Bloomfield, C. D., Byrd, J. C., Chan, K., Wu, L. C., Croce, C. M., & Marcucci, G. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedPubMedCentralCrossRef Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., Schwind, S., Pang, J., Yu, J., Muthusamy, N., Havelange, V., Volinia, S., Blum, W., Rush, L. J., Perrotti, D., Andreeff, M., Bloomfield, C. D., Byrd, J. C., Chan, K., Wu, L. C., Croce, C. M., & Marcucci, G. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Cheng, J., Guo, S., Chen, S., Mastriano, S. J., Liu, C., D'Alessio, A. C., Hysolli, E., Guo, Y., Yao, H., Megyola, C. M., Li, D., Liu, J., Pan, W., Roden, C. A., Zhou, X. L., Heydari, K., Chen, J., Park, I. H., Ding, Y., Zhang, Y., & Lu, J. (2013). An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Reports, 5(2), 471–481.PubMedCrossRef Cheng, J., Guo, S., Chen, S., Mastriano, S. J., Liu, C., D'Alessio, A. C., Hysolli, E., Guo, Y., Yao, H., Megyola, C. M., Li, D., Liu, J., Pan, W., Roden, C. A., Zhou, X. L., Heydari, K., Chen, J., Park, I. H., Ding, Y., Zhang, Y., & Lu, J. (2013). An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Reports, 5(2), 471–481.PubMedCrossRef
194.
Zurück zum Zitat Garzon, R., Volinia, S., Liu, C. G., Fernandez-Cymering, C., Palumbo, T., Pichiorri, F., Fabbri, M., Coombes, K., Alder, H., Nakamura, T., Flomenberg, N., Marcucci, G., Calin, G. A., Kornblau, S. M., Kantarjian, H., Bloomfield, C. D., Andreeff, M., & Croce, C. M. (2008). MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood, 111(6), 3183–3189.PubMedPubMedCentralCrossRef Garzon, R., Volinia, S., Liu, C. G., Fernandez-Cymering, C., Palumbo, T., Pichiorri, F., Fabbri, M., Coombes, K., Alder, H., Nakamura, T., Flomenberg, N., Marcucci, G., Calin, G. A., Kornblau, S. M., Kantarjian, H., Bloomfield, C. D., Andreeff, M., & Croce, C. M. (2008). MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood, 111(6), 3183–3189.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R. B., van de Vijver, M. J., Sukumar, S., & Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMedPubMedCentralCrossRef Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R. B., van de Vijver, M. J., Sukumar, S., & Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., Tanaka, F., Shibata, K., Suzuki, A., Komune, S., Miyano, S., & Mori, M. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71(20), 6320–6326.PubMedCrossRef Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., Tanaka, F., Shibata, K., Suzuki, A., Komune, S., Miyano, S., & Mori, M. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71(20), 6320–6326.PubMedCrossRef
197.
Zurück zum Zitat Wu, Z. H., Wang, X. L., Tang, H. M., Jiang, T., Chen, J., Lu, S., Qiu, G. Q., Peng, Z. H., & Yan, D. W. (2014). Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncology Reports, 32(1), 395–402.PubMedCrossRef Wu, Z. H., Wang, X. L., Tang, H. M., Jiang, T., Chen, J., Lu, S., Qiu, G. Q., Peng, Z. H., & Yan, D. W. (2014). Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncology Reports, 32(1), 395–402.PubMedCrossRef
198.
Zurück zum Zitat Pistoia, V., Morandi, F., Wang, X., & Ferrone, S. (2007). Soluble HLA-G: are they clinically relevant? Seminars in Cancer Biology, 17(6), 469–479.PubMedPubMedCentralCrossRef Pistoia, V., Morandi, F., Wang, X., & Ferrone, S. (2007). Soluble HLA-G: are they clinically relevant? Seminars in Cancer Biology, 17(6), 469–479.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Guil, S., Soler, M., Portela, A., Carrere, J., Fonalleras, E., Gomez, A., Villanueva, A., & Esteller, M. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural & Molecular Biology, 19(7), 664–670.CrossRef Guil, S., Soler, M., Portela, A., Carrere, J., Fonalleras, E., Gomez, A., Villanueva, A., & Esteller, M. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural & Molecular Biology, 19(7), 664–670.CrossRef
200.
Zurück zum Zitat Zhang, Z., Weaver, D. L., Olsen, D., deKay, J., Peng, Z., Ashikaga, T., & Evans, M. F. (2016). Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. Journal of Clinical Pathology, 69(1), 76–81.PubMedCrossRef Zhang, Z., Weaver, D. L., Olsen, D., deKay, J., Peng, Z., Ashikaga, T., & Evans, M. F. (2016). Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. Journal of Clinical Pathology, 69(1), 76–81.PubMedCrossRef
201.
Zurück zum Zitat Thorenoor, N., Faltejskova-Vychytilova, P., Hombach, S., Mlcochova, J., Kretz, M., Svoboda, M., & Slaby, O. (2016). Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget, 7(1), 622–637.PubMedCrossRef Thorenoor, N., Faltejskova-Vychytilova, P., Hombach, S., Mlcochova, J., Kretz, M., Svoboda, M., & Slaby, O. (2016). Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget, 7(1), 622–637.PubMedCrossRef
202.
Zurück zum Zitat Li, T., Xie, J., Shen, C., Cheng, D., Shi, Y., Wu, Z., Deng, X., Chen, H., Shen, B., Peng, C., Li, H., Zhan, Q., & Zhu, Z. (2015). Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Research, 75(15), 3181–3191.PubMedCrossRef Li, T., Xie, J., Shen, C., Cheng, D., Shi, Y., Wu, Z., Deng, X., Chen, H., Shen, B., Peng, C., Li, H., Zhan, Q., & Zhu, Z. (2015). Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Research, 75(15), 3181–3191.PubMedCrossRef
203.
Zurück zum Zitat Wang, T., Ma, S., Qi, X., Tang, X., Cui, D., Wang, Z., Chi, J., Li, P., & Zhai, B. (2016). Long noncoding RNA ZNFX1-AS1 suppresses growth of hepatocellular carcinoma cells by regulating the methylation of miR-9. Onco Targets Ther, 9, 5005–5014.PubMedPubMedCentralCrossRef Wang, T., Ma, S., Qi, X., Tang, X., Cui, D., Wang, Z., Chi, J., Li, P., & Zhai, B. (2016). Long noncoding RNA ZNFX1-AS1 suppresses growth of hepatocellular carcinoma cells by regulating the methylation of miR-9. Onco Targets Ther, 9, 5005–5014.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Cai, L., & Cai, X. (2014). Up-regulation of miR-9 expression predicate advanced clinicopathological features and poor prognosis in patients with hepatocellular carcinoma. Diagnostic Pathology, 9, 1000.PubMedPubMedCentralCrossRef Cai, L., & Cai, X. (2014). Up-regulation of miR-9 expression predicate advanced clinicopathological features and poor prognosis in patients with hepatocellular carcinoma. Diagnostic Pathology, 9, 1000.PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T. T., Valastyan, S., Westermann, F., Speleman, F., Vandesompele, J., & Weinberg, R. A. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMedPubMedCentral Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T. T., Valastyan, S., Westermann, F., Speleman, F., Vandesompele, J., & Weinberg, R. A. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMedPubMedCentral
206.
Zurück zum Zitat Kishore, S., Gruber, A. R., Jedlinski, D. J., Syed, A. P., Jorjani, H., & Zavolan, M. (2013). Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biology, 14(5), R45.PubMedPubMedCentralCrossRef Kishore, S., Gruber, A. R., Jedlinski, D. J., Syed, A. P., Jorjani, H., & Zavolan, M. (2013). Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biology, 14(5), R45.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Choi, M. S., Shim, Y. H., Hwa, J. Y., Lee, S. K., Ro, J. Y., Kim, J. S., & Yu, E. (2003). Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Human Pathology, 34(1), 11–17.PubMedCrossRef Choi, M. S., Shim, Y. H., Hwa, J. Y., Lee, S. K., Ro, J. Y., Kim, J. S., & Yu, E. (2003). Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Human Pathology, 34(1), 11–17.PubMedCrossRef
208.
Zurück zum Zitat Simo-Riudalbas, L., Perez-Salvia, M., Setien, F., Villanueva, A., Moutinho, C., Martinez-Cardus, A., Moran, S., Berdasco, M., Gomez, A., Vidal, E., Soler, M., Heyn, H., Vaquero, A., de la Torre, C., Barcelo-Batllori, S., Vidal, A., Roz, L., Pastorino, U., Szakszon, K., Borck, G., Moura, C. S., Carneiro, F., Zondervan, I., Savola, S., Iwakawa, R., Kohno, T., Yokota, J., & Esteller, M. (2015). KAT6B is a tumor suppressor histone H3 lysine 23 acetyltransferase undergoing genomic loss in small cell lung cancer. Cancer Research, 75(18), 3936–3945.PubMedCrossRef Simo-Riudalbas, L., Perez-Salvia, M., Setien, F., Villanueva, A., Moutinho, C., Martinez-Cardus, A., Moran, S., Berdasco, M., Gomez, A., Vidal, E., Soler, M., Heyn, H., Vaquero, A., de la Torre, C., Barcelo-Batllori, S., Vidal, A., Roz, L., Pastorino, U., Szakszon, K., Borck, G., Moura, C. S., Carneiro, F., Zondervan, I., Savola, S., Iwakawa, R., Kohno, T., Yokota, J., & Esteller, M. (2015). KAT6B is a tumor suppressor histone H3 lysine 23 acetyltransferase undergoing genomic loss in small cell lung cancer. Cancer Research, 75(18), 3936–3945.PubMedCrossRef
209.
Zurück zum Zitat Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., Wu, M., D'Alo, F., Melnick, A., Leone, G., Ebralidze, K. K., Pradhan, S., Rinn, J. L., & Tenen, D. G. (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476), 371–376.PubMedPubMedCentralCrossRef Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., Wu, M., D'Alo, F., Melnick, A., Leone, G., Ebralidze, K. K., Pradhan, S., Rinn, J. L., & Tenen, D. G. (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476), 371–376.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Wu, Y., Liu, H., Shi, X., Yao, Y., Yang, W., & Song, Y. (2015). The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget, 6(11), 9160–9172.PubMedPubMedCentralCrossRef Wu, Y., Liu, H., Shi, X., Yao, Y., Yang, W., & Song, Y. (2015). The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget, 6(11), 9160–9172.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Zhan Y, Li Y, Guan B, Wang Z, Peng D, Chen Z, He A, He S, Gong Y, Li X, Zhou L (2017) Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 8(44), 76656–76665.PubMedPubMedCentralCrossRef Zhan Y, Li Y, Guan B, Wang Z, Peng D, Chen Z, He A, He S, Gong Y, Li X, Zhou L (2017) Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 8(44), 76656–76665.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Liu, Z., Wei, X., Zhang, A., Li, C., Bai, J., & Dong, J. (2016). Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochemical and Biophysical Research Communications, 473(4), 1268–1275.PubMedCrossRef Liu, Z., Wei, X., Zhang, A., Li, C., Bai, J., & Dong, J. (2016). Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochemical and Biophysical Research Communications, 473(4), 1268–1275.PubMedCrossRef
213.
Zurück zum Zitat Fang C, Qiu S, Sun F, Li W, Wang Z, Yue B, Wu X, Yan D (2017) Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Cancer Lett, 410, 50–62.PubMedCrossRef Fang C, Qiu S, Sun F, Li W, Wang Z, Yue B, Wu X, Yan D (2017) Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Cancer Lett, 410, 50–62.PubMedCrossRef
214.
Zurück zum Zitat Fu, A., Jacobs, D. I., & Zhu, Y. (2014). Epigenome-wide analysis of piRNAs in gene-specific DNA methylation. RNA Biology, 11(10), 1301–1312.PubMedCrossRef Fu, A., Jacobs, D. I., & Zhu, Y. (2014). Epigenome-wide analysis of piRNAs in gene-specific DNA methylation. RNA Biology, 11(10), 1301–1312.PubMedCrossRef
215.
Zurück zum Zitat Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., & Kandel, E. R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 149(3), 693–707.PubMedPubMedCentralCrossRef Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., & Kandel, E. R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 149(3), 693–707.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Fu, A., Jacobs, D. I., Hoffman, A. E., Zheng, T., & Zhu, Y. (2015). PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 36(10), 1094–1102.PubMedPubMedCentralCrossRef Fu, A., Jacobs, D. I., Hoffman, A. E., Zheng, T., & Zhu, Y. (2015). PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 36(10), 1094–1102.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Ghoshal, K., & Bai, S. (2007). DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc), 43(6), 395–422.CrossRef Ghoshal, K., & Bai, S. (2007). DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc), 43(6), 395–422.CrossRef
218.
Zurück zum Zitat Liu, X. Q., Song, W. J., Sun, T. M., Zhang, P. Z., & Wang, J. (2011). Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Molecular Pharmaceutics, 8(1), 250–259.PubMedCrossRef Liu, X. Q., Song, W. J., Sun, T. M., Zhang, P. Z., & Wang, J. (2011). Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Molecular Pharmaceutics, 8(1), 250–259.PubMedCrossRef
219.
Zurück zum Zitat Love, T. M., Moffett, H. F., & Novina, C. D. (2008). Not miR-ly small RNAs: big potential for microRNAs in therapy. The Journal of Allergy and Clinical Immunology, 121(2), 309–319.PubMedCrossRef Love, T. M., Moffett, H. F., & Novina, C. D. (2008). Not miR-ly small RNAs: big potential for microRNAs in therapy. The Journal of Allergy and Clinical Immunology, 121(2), 309–319.PubMedCrossRef
220.
Zurück zum Zitat Novina, C. D., & Chabner, B. A. (2008). RNA-directed therapy: the next step in the miRNA revolution. The Oncologist, 13(1), 1–3.PubMedCrossRef Novina, C. D., & Chabner, B. A. (2008). RNA-directed therapy: the next step in the miRNA revolution. The Oncologist, 13(1), 1–3.PubMedCrossRef
221.
Zurück zum Zitat Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., Kauppinen, S., & Orum, H. (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 327(5962), 198–201.PubMedCrossRef Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., Kauppinen, S., & Orum, H. (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 327(5962), 198–201.PubMedCrossRef
222.
Zurück zum Zitat Burnett, J. C., & Rossi, J. J. (2012). RNA-based therapeutics: current progress and future prospects. Chemistry & Biology, 19(1), 60–71.CrossRef Burnett, J. C., & Rossi, J. J. (2012). RNA-based therapeutics: current progress and future prospects. Chemistry & Biology, 19(1), 60–71.CrossRef
223.
Zurück zum Zitat Adams, B. D., Parsons, C., & Slack, F. J. (2016). The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opinion on Therapeutic Targets, 20(6), 737–753.PubMedCrossRef Adams, B. D., Parsons, C., & Slack, F. J. (2016). The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opinion on Therapeutic Targets, 20(6), 737–753.PubMedCrossRef
Metadaten
Titel
Non-coding RNAs, epigenetics, and cancer: tying it all together
verfasst von
Humberto J. Ferreira
Manel Esteller
Publikationsdatum
26.01.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9715-8

Weitere Artikel der Ausgabe 1/2018

Cancer and Metastasis Reviews 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.