Skip to main content

Open Access 06.12.2024 | Review Article

Non-malignant features of cancer predisposition syndromes manifesting in childhood and adolescence: a guide for the general pediatrician

verfasst von: Michaela Kuhlen, Andreas B. Weins, Nicole Stadler, Daniela Angelova-Toshkina, Michael C. Frühwald

Erschienen in: World Journal of Pediatrics

Abstract

Purpose

Cancer predisposition syndromes are genetic disorders that significantly raise the risk of developing malignancies. Although the malignant manifestations of cancer predisposition syndromes are well-studied, recognizing their non-malignant features is crucial for early diagnosis, especially in children and adolescents.

Methods

A comprehensive literature search was conducted using the PubMed database, focusing on non-malignant manifestations of cancer predisposition syndromes in children and adolescents. Key sources included the Clinical Cancer Research pediatric oncology series and ORPHANET. Studies that described clinical signs and symptoms affecting specific organ systems were included.

Results

Non-malignant dermatological features often serve as early indicators of cancer predisposition syndromes, including café-au-lait spots in Neurofibromatosis Type 1 and facial angiofibromas in Tuberous Sclerosis Complex. Neurological and developmental anomalies such as cerebellar ataxia in ataxia-telangiectasia and intellectual disabilities in neurofibromatosis type 1 and tuberous sclerosis complex are significant indicators. Growth and metabolic anomalies are also notable, including overgrowth in Beckwith–Wiedemann syndrome and growth hormone deficiency in neurofibromatosis Type 1. In addition, facial anomalies, ocular manifestations, hearing issues, and thyroid anomalies are prevalent across various cancer predisposition syndromes. For instance, hearing loss may be significant in neurofibromatosis Type 2, while thyroid nodules are common in PTEN hamartoma tumor syndrome and DICER1 syndrome. Cardiovascular, abdominal, musculoskeletal, pulmonary, genitourinary manifestations, and prenatal deviations further complicate the clinical picture.

Conclusions

Recognizing non-malignant features of cancer predisposition syndromes is essential for early diagnosis and management. This organ-specific overview furthers awareness among healthcare providers, facilitating timely genetic counseling, surveillance programs, and preventive measures, ultimately improving patient outcomes.

Graphical abstract

Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s12519-024-00853-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Cancer predisposition syndromes (CPS) are a heterogeneous group of genetic disorders that significantly increase the lifetime risk of developing various malignancies [13]. These syndromes, often inherited in an autosomal dominant or recessive pattern, are characterized by germline variants among others in genes responsible for maintaining genomic stability, cell cycle control, DNA repair, and apoptosis [1, 46]. While malignant manifestations of CPS are well-documented and remain a primary focus of oncology research and clinical management [713], non-malignant signs and symptoms are crucial for early recognition and diagnosis [1417].
Non-malignant manifestations encompass a wide range of clinical presentations affecting multiple organ systems, often preceding the development of malignancies or causing disabilities [14, 15, 1719]. Pediatricians and other healthcare providers must maintain a high index of suspicion for CPS when encountering specific phenotypic anomalies, developmental delays, and other systemic manifestations in children and adolescents. Early identification of CPS through recognition of these non-malignant features facilitates timely genetic counseling, initiation of surveillance programs, and implementation of preventive measures, ultimately improving patient well-being and outcomes [1, 20].
In 2016, a workshop sponsored by the American Association for Cancer Research was held to develop consensus recommendations for cancer surveillance in children and adolescents with CPS. Experts including (co)directors of cancer predisposition programs (pediatric oncologists or medical geneticists), genetic counselors, radiologists, directors of adult cancer predisposition programs, and one pediatric endocrinologist were present. The resulting Clinical Cancer Research (CCR) pediatric oncology series provides a comprehensive overview and recommendations for surveillance of the 50 most common CPS, each carrying a 5% or greater cancer risk within the first 20 years of life [1, 2033]. These recommendations were recently updated [3436]. Building upon this fundamental work, the present review aims to provide an organ-specific overview of non-malignant signs and symptoms associated with CPS, offering a practical guide for daily practice (Fig. 1). This detailed exploration includes skin anomalies, neurological and developmental symptoms, growth and metabolic disorders, craniofacial dysmorphisms, ocular signs, head, neck, and thyroid anomalies, abdominal and gastrointestinal manifestations, musculoskeletal anomalies, pulmonary manifestations, cardiovascular signs, genitourinary issues, tumor development in a non-cancerous context, and prenatal deviations.
By augmenting awareness of these diverse clinical presentations, this review seeks to guide pediatricians and other healthcare providers in the early detection and multidisciplinary management of children and adolescents at risk for CPS.

Methods

We conducted a comprehensive literature search to identify relevant publications on CPS and their respective non-malignant manifestations in children and adolescents. The primary sources of data were the CCR pediatric oncology series published in 2017, covering the 50 most common CPS with ≥ 5% cancer risk (Supplemental Table 1), as well as ORPHANET and GeneReviews ® [Internet] for information on non-malignant features of these CPS. Additionally, the PubMed database was searched using combinations of the following keywords: "cancer predisposition syndromes", "non-malignant symptoms", "non-neoplastic symptoms", "phenotypic manifestations", and specific syndrome names [e.g., neurofibromatosis type 1 (NF1), Beckwith–Wiedemann syndrome (BWS)]. CPS without non-malignant manifestations, e.g. Li-Fraumeni syndrome, were excluded from this analysis.
Table 1
Dermatological manifestations and associated cancer predisposition syndromes
Dermatological manifestations
Cancer predisposition syndrome
Acrochordons
Birt-Hogg-Dubé syndrome
Adenomas, sebaceous
Muir-Torre syndrome
Adipose tissue, subcutaneous sparse
Bloom syndrome
Alopecia
Dyskeratosis congenita
Angiofibromas, facial
Tuberous sclerosis complex
Ankle ulceration
Werner syndrome
Atrophy, (sub)cutaneous
Rothmund-Thomson syndrome, Werner syndrome
Café-au-lait macules
Bloom syndrome, cardiofaciocutaneous syndrome, constitutional mismatch repair deficiency, Fanconi anemia, NF1, Nijmegen-Breakage syndrome
Eczematous lesions
Cardiofaciocutaneous syndrome, Shwachman-Diamond syndrome
Epitheliomas, sebaceous
Muir-Torre syndrome
Erythema (cheeks, extremities, buttocks)
Rothmund-Thomson syndrome
Erythema, telangiectatic
Bloom syndrome
Fibrofolliculomas
Birt-Hogg-Dubé syndrome
Fibromas, ungual
Tuberous sclerosis complex
Freckling
Constitutional mismatch repair deficiency, NF1, xeroderma pigmentosum
Granulomas, cutaneous
Ataxia-Telangiectasia
Hair, curly
Cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome,
Hamartomas, mucocutaneous
PTEN hamartoma tumor syndrome
Hemangioma
Cardiofaciocutaneous syndrome
Hyperkeratosis
Noonan syndrome, Rothmund-Thomson syndrome, Werner syndrome
Hyperpigmentation
Peutz-Jeghers syndrome, Rothmund-Thomson syndrome
Hypertrichosis
Schinzel-Giedion syndrome
Hypopigmentation
Rothmund-Thomson syndrome
Ichthyosis
Cardiofaciocutaneous syndrome, Shwachman-Diamond syndrome
Keloid formation
Rubinstein-Taybi syndrome
Keratoacanthomas
Muir-Torre syndrome
Keratoderma
Cardiofaciocutaneous syndrome
Leiomyomatosis, cutaenous
Hereditary leiomyomatosis and renal cell cancer
Lentiginosis, penis/vulva
Bannayan-Riley-Ruvalcaba syndrome
Leukoplakia, oral
Dyskeratosis congenita
Lichen amyloidosis, cutaneous
MEN2A
Lipomatosis, subcutaneous
Bannayan-Riley-Ruvalcaba syndrome
Lymphedema
Cardiofaciocutaneous syndrome, Noonan syndrome
Macules, dark blue to brown (mouth, eyes, nares, perianal, mucosal)
Peutz-Jeghers syndrome
Macules, hypomelanotic
Tuberous sclerosis complex
Nail, dystrophy
Rothmund-Thomson syndrome
Nails, dysplastic
Dyskeratosis congenita
Nail, hypoplasia
Simpson-Golabi-Behmel syndrome
Nails, hypoplastic/hyperconvex
Schinzel-Giedion syndrome
Neurofibromas
Constitutional mismatch repair deficiency, NF1
Neuromas, mucosal (lips, tongue)
MEN2B
Nevus flammeus
Beckwith-wiedemann syndrome, bohring-opitz syndrome, mulibrey nanism
Nevi
Cardiofaciocutaneous syndrome
Nevi, pigmented
Nijmegen-Breakage syndrome
Nipples, supernumerary
Simpson-Golabi-Behmel syndrome
Nodular tumors, subcutaneous
NF2
Palmar creases, single
Schinzel-Giedion syndrome
Papillomata
Costello syndrome
Pigmentation, reticular
Dyskeratosis congenita
Pits, palmar/plantar
Gorlin syndrome
Plaque-like lesions
NF2
Plaques, fibrous
Tuberous sclerosis complex
Skin, dry
Noonan syndrome, xeroderma pigmentosum
Skin, hyperkeratotic/hyperelastic
Cardiofaciocutaneous syndrome
Skin, loose/soft
Costello syndrome, Weaver syndrome
Skin lesions, “confetti”
Tuberous sclerosis complex
Skin lesion, hyperpigmented
Xeroderma pigmentosum
Skin lesions, hypopigmented
Bloom syndrome, xeroderma pigmentosum
Skin, tight
Werner syndrome
Telangiectasias
Ataxia-telangiectasia, Rothmund-Thomson syndrome
Trichodiscomas
Birt-Hogg-Dubé syndrome
Vascular malformations
Bannayan-Riley-Ruvalcaba syndrome, Beckwith-Wiedemann syndrome
Vitiligo spots
Nijmegen-Breakage syndrome
NF1 neurofibromatosis type 1, MEN2A Multiple Endocrine Neoplasia Type 2A, NF2 neurofibromatosis type 2

Inclusion and exclusion criteria

Studies were included whenever they met the following criteria:
1.
Published in English.
 
2.
Focused on non-malignant manifestations of CPS in childhood and adolescence.
 
3.
Provided detailed descriptions of clinical signs and symptoms affecting specific organ systems.
 
Studies were excluded if they:
1.
Focused solely on adult populations.
 
2.
Did not differentiate between malignant and non-malignant symptoms.
 
3.
Focused on CPS without non-malignant manifestations, e.g. Li-Fraumeni syndrome.
 

Data extraction and synthesis

Extracted data included syndrome names, affected organ systems, specific non-malignant signs and symptoms, frequency of signs and symptoms, and age at first occurrence, if applicable (Supplemental Table 2). No further exploration of hematological manifestations was performed. A structured approach was used to categorize the findings by organ system (Fig. 2), ensuring a comprehensive overview relevant to daily clinical practice.
Table 2
Neurological, developmental, growth, metabolic, and endocrinological manifestations and associated cancer predisposition syndromes
Manifestations
Cancer predisposition syndrome
Neurological/developmental
 
 Apraxia, oculomotoric
Ataxia-telangiectasia
 Arachnoid cyst
Nijmegen-breakage syndrome
 Arnold-Chiari malformation
Costello syndrome
 Ataxia
Ataxia-telangiectasia, xeroderma pigmentosum
 Attention deficit/hyperactivity disorder
Noonan syndrome, tuberous sclerosis complex
 Autism spectrum disorder
Bannayan-Riley-Ruvalcaba syndrome, tuberous sclerosis complex
 Balance disorders
Ataxia-telangiectasia
 Behavioral disorders
Sotos syndrome, WAGR syndrome
 Choreoathetosis
Ataxia-telangiectasia
 Choroid plexus hemangioma
Perlman syndrome
 Cognitive deficits/impairments
NF1, xeroderma pigmentosum
 Coordination, poor
Weaver syndrome
 Corpus callosum, agenesis
Perlman syndrome
 Corpus callosum defect
Bohring-Opitz syndrome
 Cortical dysplasia
Tuberous sclerosis complex
 Developmental delay
Alagille syndrome, Bannayan-Riley-Ruvalcaba syndrome, cardiofaciocutaneous syndrome, CBL syndrome, Costello syndrome, dyskeratosis congenita, Schinzel-Giedion syndrome, Sotos syndrome
 Drooling
Ataxia-telangiectasia
 Dyspraxia
Noonan syndrome
 Epilepsy/seizures
Bohring-Opitz syndrome, cardiofaciocutaneous syndrome, Costello syndrome, NF1, Schinzel-Giedion syndrome, Sotos syndrome, tuberous sclerosis complex, xeroderma pigmentosum
 Hydrocephalus
Costello syndrome, NF1, Nijmegen-Breakage syndrome
 Hypertonia/Spasticity
Weaver syndrome, xeroderma pigmentosum
 Hypotonia
Schinzel-Giedion syndrome, Sotos syndrome, Weaver syndrome
 Intellectual decline
Nijmegen-Breakage syndrome
 Intellectual disability
Costello syndrome, Noonan syndrome, Shwachman-Diamond syndrome, Simpson-Golabi-Behmel syndrome, Seckel syndrome, Sotos syndrome, tuberous sclerosis complex, WAGR syndrome, Weaver syndrome
 Learning difficulties
Cardiofaciocutaneous syndrome, NF1, Noonan syndrome
 Motor development, delayed
Noonan syndrome, Simpson-Golabi-Behmel syndrome
 Neuropsychological deficits
Tuberous sclerosis complex
 Psychiatric disorders
Tuberous sclerosis complex
 Psychomotor retardation
Shwachman-Diamond syndrome
 Schizencephaly
Nijmegen-Breakage syndrome
 Slurred speech
Ataxia-telangiectasia
 Speech, delayed
Noonan syndrome, Simpson-Golabi-Behmel syndrome
 Subependymal nodules
Tuberous sclerosis complex
 Syringomyelia
Costello syndrome
 Tethered spinal cord
Costello syndrome
Growth, metabolic and endocrinological
 ACTH, excessive production
MEN2A
 Bone age, advanced
Sotos syndrome
 Bone age, delayed
Shwachman-Diamond syndrome
 Endocrinopathy
Fanconi anemia
 Failure to thrive
Costello syndrome, Noonan syndrome, Shwachman-Diamond syndrome
 Glucose intolerance/insulin resistance
Ataxia-telangiectasia, Mulibrey nanism
 Growth delay/deficiency/retardation
Alagille syndrome, ataxia-telangiectasia, Bloom syndrome, juvenile polyposis syndrome, Nijmegen-Breakage syndrome, Noonan syndrome, Shwachman-Diamond syndrome
 Growth, excessive
Sotos syndrome
 Growth failure
Cardiofaciocutaneous syndrome
 Growth hormone deficiency
Cardiofaciocutaneous syndrome
 Hemihyperplasia
Beckwith-Wiedemann syndrome
 Hyperparathyroidism
MEN1, MEN2A
 Hypoglycemia
Beckwith-Wiedemann syndrome
 Hypogonadism
Mulibrey nanism
 Hyperinsulinism
Perlman syndrome
 Ovarian insufficiency
Nijmegen-Breakage syndrome
 Parathyroid hyperplasia/hypercalcemia
Hyperparathyroid-jaw tumor syndrome
 Puberty, delayed/disordered
Costello syndrome, Frasier syndrome, Noonan syndrome
 Short stature
Costello syndrome, Diamond-Blackfan anemia, dyskeratosis congenita, Fanconi anemia, NF1, Noonan syndrome, Shwachman-Diamond syndrome, Werner syndrome
 Tall stature
Weaver Syndrome
NF1 neurofibromatosis type 1, WAGR Wilms tumor, aniridia, genitorurinary abnormalities, and range of developmental delays syndrome, MEN2A Multiple Endocrine Neoplasia Type 2A, ATCTH Adrenocorticotropic hormone

Results

Dermatological manifestations

Non-malignant dermatological features (Table 1) are often among the earliest and most apparent indicators of CPS. Café-au-lait spots, frequently associated with NF1 [3739] and constitutional mismatch repair deficiency (CMMRD) [15, 40, 41], are light brown skin lesions that vary in size and number (Fig. 3a, b). Patients with NF1 typically have six or more spots, which are crucial for diagnosis [37, 39]. These spots often appear in early childhood and may be accompanied by axillary or inguinal freckling. Facial angiofibromas, common to tuberous sclerosis complex (TSC) [4245], present as red or flesh-colored papules primarily on the nose and cheeks (Fig. 3e). Other notable dermatological features include hyperpigmentation and telangiectasias in Bloom syndrome (BS) [46, 47] due to increased sun sensitivity, sebaceous adenomas in Muir–Torre syndrome (MTS) [48, 49], palmar or plantar pits in Gorlin syndrome (GS) [5053], and mucocutaneous perioral pigmentation in Peutz–Jeghers syndrome (PJS) [5456] (Fig. 3f). Conditions such as xeroderma pigmentosum (XP) [57, 58] and Rothmund–Thomson syndrome [59, 60] are characterized by severe photosensitivity, poikiloderma, and cutaneous atrophy, necessitating strict photoprotection to prevent skin damage and malignancy. Additionally, Birt–Hogg–Dubé syndrome (BHDS) [61] often presents with fibrofolliculomas, trichodiscomas, and acrochordons. Rubinstein–Taybi syndrome (RTS) [62] features keloid formation, while Cowden syndrome, part of PTEN hamartoma tumor syndrome (PHTS) [54, 63, 64], features pigmentation anomalies such as trichilemmomas and papillomatous papules.

Neurological and developmental features

Neurological and developmental anomalies (Table 2) are significant indicators of CPS. Cerebellar ataxia, a hallmark of ataxia-telangiectasia (A-T) [6567], manifests as a progressive loss of coordination and balance. Patients exhibit oculomotor apraxia, making eye movements difficult. Intellectual and learning disabilities are prevalent in NF1 [3739, 68], TSC [4245], and PHTS [54, 63, 64], posing substantial challenges during cognitive development. Seizures and autism spectrum disorder are primarily associated with TSC [4245], with seizures often being refractory and difficult to manage. Macrocephaly is a common feature in both NF1 [3739, 68] and PHTS [54, 63, 64], and in the context of CPS, it often coexists with other dysmorphic features or neurological anomalies. Furthermore, developmental delay, hypotonia, and speech difficulties are common to several syndromes, such as Costello syndrome (CS) [69, 70] and cardiofaciocutaneous (CFC) syndrome [71]. Patients with BS [46, 47] may demonstrate normal intelligence but suffer from speech and drooling issues that can be misinterpreted as intellectual deficiency.

Growth and metabolic anomalies

CPS can profoundly affect growth and metabolism (Table 2). BWS [72, 73] is characterized by both prenatal and postnatal overgrowth, as well as associated features such as macroglossia, which can lead to difficulties in feeding and speech. Hyperinsulinism, leading to hypoglycemia, is a common metabolic issue in BWS [72, 73]. BS [46, 47] often presents with failure to thrive due to growth difficulties, proportionate growth deficiency of prenatal onset, and continued growth deficiency throughout life. Growth hormone deficiency, often seen in NF1 [3739] and Fanconi anemia (FA) [67, 74, 75], results in short stature and other related complications. Additionally, conditions such as Simpson–Golabi–Behmel syndrome [7678] feature prenatal and postnatal overgrowth, macrocephaly, and macroglossia. Patients with CS [69, 70] exhibit severe postnatal feeding difficulties, failure to thrive, and short stature.

Craniofacial dysmorphism

Facial anomalies (Supplemental Table 3) are common non-malignant indicators of many CPS and can serve as important diagnostic clues. Proteus syndrome (PS) [54, 79, 80] can result in asymmetric overgrowth of facial features, contributing to a distinctive facial appearance. In multiple endocrine neoplasia type 2B (MEN2B) [17, 81, 82], mucosal neuromas (Fig. 3d) cause bumpy, often enlarged lips and tongue.
Table 3
Organ-specific manifestations including ocular manifestations, hearing issues, dental issues, thyroid, pulmonary, cardiovascular, abdominal/gastrointestinal, and genitourinary manifestations and associated cancer predisposition syndromes
Manifestations
Cancer predisposition syndrome
Ocular manifestations
 
 Alacrima
MEN2B
 Aniridia
WAGR syndrome
 Axenfeld anomaly
Alagille syndrome
 Blepharitis
Dyskeratosis congenita
 Cataract
Gorlin syndrome, NF2, WAGR syndrome, Werner syndrome
 Coloboma
Gorlin syndrome
 Corneal nerve, prominent
MEN2B
 Corneal opacification/vascularization
WAGR syndrome
 Embryotoxon, posterior
Alagille syndrome
 Epiphora
Dyskeratosis congenita
 Glaucoma (congenital)
Rubinstein-Taybi syndrome, WAGR syndrome
 Iris hamartomas
NF1
 Keratitis
Xeroderma pigmentosum
 Microphthalmus
Fanconi anemia, Gorlin syndrome
 Myopia
Bohring-Opitz syndrome
 Nasolacrimal duct obstruction
Rubinstein-Taybi syndrome
 Nystagmus
Cardiofaciocutaneous syndrome
 Optic nerve hypoplasia
WAGR syndrome
 Photophobia
Xeroderma pigmentosum
 Retinal hamartoma
Tuberous sclerosis complex
 Retinal hemangioblastoma
Von-Hippel-Lindau syndrome
 Retinal/optic nerve anomalies
Bohring-Opitz syndrome, cardiofaciocutaneous syndrome
 Retinal mid-peripheral region, yellowish dots
Mulibrey nanism
 Retinal pigment epithelium, hypertrophy
Familial adenomatous polyposis
 Retinopathy, pigmentary
Alagille syndrome
 Papillary and optic disc anomalies
Alagille syndrome
 Strabismus
Cardiofaciocutaneous syndrome, Noonan syndrome
 Telangiectasias, retinal
Ataxia-telangiectasia
 Visual impairment
Schinzel-Giedion syndrome
Hearing issues
 
 Deafness
NF2
 Endolymphatic sac tumor
Von-Hippel-Lindau syndrome
 Hearing loss
Fanconi anemia, NF2, Noonan syndrome, Sotos syndrome, xeroderma pigmentosum
 Hearing impairment
Schinzel-Giedion syndrome
Dental issues
 
 Dental anomalies
Rothmund-Thomson syndrome, Shwachman-Diamond syndrome
 Dental crowding
Noonan syndrome
 Dental enamel pitting
Tuberous sclerosis complex
 Dental eruption, premature
Sotos syndrome
 Dental malocclusion
Simpson-Golabi-Behmel syndrome
 Dentigerous cysts
Familial adenomatous polyposis
 Jaw fibromas, ossifying
Hyperparathyroid-jaw tumor syndrome
 Keratocysts, mandibular odontogenic
Gorlin syndrome
 Periodontal disease
Dyskeratosis congenita
 Taurodontism
Dyskeratosis congenita
 Teeth/root ratio, decreased
Dyskeratosis congenita
 Teeth, supernumerary
Familial adenomatous polyposis
 Teeth, unerupted
Familial adenomatous polyposis
Thyroid manifestations
 
 Hashimoto thyroiditis
Bannayan-Riley-Ruvalcaba syndrome, PTEN hamartoma tumor syndrome
 Hypothyroidism
Alagille syndrome
 Thyroid dysfunction
Noonan syndrome
 Thyroid dysplasia
DICER1 syndrome
 Thyroid nodules
DICER1 syndrome, PTEN hamartoma tumor syndrome
Pulmonary manifestations
 
 Airway infections, recurrent
Ataxia-telangiectasia, Nijmegen-Breakage syndrome, Rubinstein-Taybi syndrome
 Bronchiectasis
Ataxia-telangiectasia
 Chylothorax
Tuberous sclerosis complex
 Cysts, (sub)pleural
Birt-Hogg-Dubé syndrome
 Diaphragmatic hernia
Perlman syndrome, Simpson-Golabi-Behmel syndrome
 Lymphangioleiomyomatosis
Tuberous sclerosis complex
 Pneumocyte hyperplasia, multifocal micronodular
Tuberous sclerosis complex
 Pneumothorax
Birt-Hogg-Dubé syndrome, tuberous sclerosis complex
 Pulmonary arteriovenous malformations
Dyskeratosis congenita
 Pulmonary cyst
DICER1 syndrome, tuberous sclerosis complex
 Pulmonary fibrosis
Dyskeratosis congenita
 Sleep apnea, Obstructive
Bohring-Opitz syndrome
Cardiovascular anomalies
 
 Aortic arch, interrupted
Perlman syndrome
 Arrhythmia
Costello syndrome, Simpson-Golabi-Behmel syndrome
 Cardiac malformations
Beckwith-Wiedemann syndrome, Simpson-Golabi-Behmel syndrome, Sotos syndrome
 Cardiomyopathy, hypertrophic
Cardiofaciocutaneous syndrome,
 Coronary arteries, dilatation
Noonan syndrome
 Dextroposition, heart
Perlman syndrome
 Ductus arteriosus, patent
Alagille syndrome, Rubinstein-Taybi syndrome, Schinzel-Giedion syndrome
 Hypertension
NF1
 Moyamoya disease
NF1, Noonan syndrome
 Perimyocardial heart disease, restrictive
Mulibrey nanism
 Pulmonary artery stenosis or atresia
Alagille syndrome
 Septal defects, atrial and/or ventricular
Alagille syndrome, Bohring-Opitz syndrome, Noonan syndrome, Rubinstein-Taybi syndrome, Schinzel-Giedion syndrome
 Tetralogy of Fallot
Alagille syndrome
 Valvular dysplasia
Schinzel-Giedion syndrome
 Valvular pulmonary stenosis
Cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome
 Vascular malformation
PTEN hamartoma tumor syndrome
 Ventricles, hypoplastic
Schinzel-Giedion syndrome
Abdominal/gastrointestinal manifestations
 Anorectal malformations
Fanconi anemia
 Cholestasis, chronic
Alagille syndrome
 Constipation, chronic
Cardiofaciocutaneous syndrome, MEN2B, Rubinstein-Taybi syndrome
 Diarrhea
MEN2A, MEN2B
 Diastasis recti
Beckwith-Wiedemann syndrome
 Duodenal atresia
Fanconi anemia
 Esophageal atresia
Fanconi anemia
 Esophageal stenosis
Dyskeratosis congenita
 Ganglioneuromatosis, generalized
MEN2B
 Hepatic fibrosis
Perlman syndrome
 Hepatomegaly
Mulibrey nanism
 Hernia, umbilical
Beckwith-Wiedemann syndrome, Simpson-Golabi-Behmel syndrome, Weaver syndrome
 Hirschsprung disease
MEN2A
 Ileal atresia, distal
Perlman syndrome
 Liver disease
Dyskeratosis congenita
 Liver, fatty
Mulibrey nanism
 Megacolon
MEN2B
 Pancreatic cysts
Von-Hippel-Lindau syndrome
 Pancreatic insufficiency, exocrine
Shwachman-Diamond syndrome
 Steatohepatitis
Ataxia-telangiectasia
 Telangiectasias, gastrointestinal
Dyskeratosis congenita
 Visceromegaly
Beckwith-Wiedemann syndrome, Perlman syndrome, Simpson-Golabi-Behmel syndrome
Genitourinary anomalies
 
 Anus, anteriorly displaced
Schinzel-Giedion syndrome
 Azo-/oligospermia
Bloom syndrome
 Cryptorchidism
Nijmegen-Breakage syndrome, Noonan syndrome, Perlman syndrome, Schinzel-Giedion syndrome, Simpson-Golabi-Behmel syndrome
 Epididymal cysts/cystadenomas
Von-Hippel-Lindau syndrome
 Genitalia, ambiguous external
Denys-Drash syndrome
 Gonadal dysgenesis
Frasier syndrome
 Hydronephrosis
Schinzel-Giedion syndrome
 Hypoplastic labia majora/minora
Schinzel-Giedion syndrome
 Hypoplastic uterus
Schinzel-Giedion syndrome
 Hypospadias
Nijmegen-Breakage syndrome, Schinzel-Giedion syndrome, Simpson-Golabi-Behmel syndrome
 Impaired fertility/infertility
Ataxia-telangiectasia, Fanconi anemia, Frasier syndrome, Mulibrey nanism, Noonan syndrome
 Labial sulcus, deep
Schinzel-Giedion syndrome
 Kidney, ectopic/dystopic
Nijmegen-Breakage syndrome
 Kidney, Horseshoe
Nijmegen-Breakage syndrome
 Kidneys, small/dysplastic
Alagille syndrome, Simpson-Golabi-Behmel syndrome
 Kidney-related anomalies
Beckwith-Wiedemann syndrome, Denys-Drash syndrome
 Micropenis
Schinzel-Giedion syndrome
 Nephroma, cystic
DICER1 syndrome
 Nephropathy
Frasier syndrome
 Nephrotic syndrome
Denys-Drash syndrome, Frasier syndrome
 Ovary hypoplasia
Nijmegen-Breakage syndrome
 Renal cysts
Hyperparathyroid-jaw tumor syndrome, Von-Hippel-Lindau syndrome
 Renal disease, end-stage
Frasier syndrome, Hyperparathyroid-jaw tumor syndrome, WAGR syndrome
 Testicular development, disorder
Denys-Drash syndrome
 Urethral stenosis
Dyskeratosis congenita
 Urogenital anomalies
Diamond-Blackfan anemia, Sotos syndrome, WAGR Syndrome
 Urolithiasis
Hyperparathyroid-jaw tumor syndrome
NF1 neurofibromatosis type 1, NF2 neurofibromatosis type 2, MEN2A Multiple Endocrine Neoplasia Type 2A, MEN2B Multiple Endocrine Neoplasia Type 2B
A broad or prominent forehead is observed in several CPS. For instance, patients with Noonan syndrome (NS) [83, 84] typically present with a broad forehead, while those with CFC syndrome [71] exhibit a large forehead. Bohring–Opitz syndrome (BOS) [85] also includes a prominent forehead with glabellar nevus flammeus. RTS [62] is characterized by highly arched eyebrows and long eyelashes. Patients with NS [83, 84] may present with hypertelorism and ptosis, as well as downslanting palpebral fissures. In CS [69, 70], ptosis and full cheeks are common, while BOS [85] features synophrys, proptosis, and hypertelorism. A convex nasal ridge is typical in RTS [62], whereas patients with CFC syndrome [71] often present with a short nose with a depressed nasal bridge. BOS [85] can feature a depressed, wide nasal bridge and anteverted nares. NS [83, 84] patients frequently have a short nose with a depressed nasal bridge as well. Patients with CS [69, 70] often have a large mouth with prominent lips and thickened ear helices. Ear anomalies are also notable in several CPS; low-set, posteriorly rotated ears are common in NS [83, 84], while patients with CFC syndrome [71] may exhibit low-set ears as well.

Ocular manifestations

Non-malignant ocular symptoms (Table 3) include retinal hamartomas in TSC [4245] and Lisch nodules, which are pigmented iris hamartomas, in NF1 [3739]. Patients with Wilms tumor-aniridia-genitourinary anomalies-intellectual disability (WAGR) syndrome [86, 87] frequently exhibit aniridia, which can be associated with other eye anomalies such as cataract, glaucoma, and optic nerve hypoplasia. Additionally, conditions like BOS [85] can present with retinal and optic nerve anomalies, high myopia, and other vision issues.

Hearing issues

Hearing loss (Table 3), both sensorineural and conductive, is associated with neurofibromatosis type 2 (NF2) [8890]. Patients with NF2 often develop bilateral vestibular schwannomas, leading to progressive hearing loss.

Thyroid manifestations

Thyroid anomalies (Table 3) are prevalent in several CPS. For example, PHTS [54, 63, 64] often presents with thyroid nodules and a predisposition to thyroid cancer. DICER1 syndrome [64, 91, 92] is associated with multinodular goiter and differentiated thyroid cancer.

Pulmonary manifestations

Pulmonary cysts leading to spontaneous pneumothorax are characteristic of BHDS [61]. In DICER1 syndrome [64, 91, 92], cystic lesions in terms of pleuropulmonary blastoma (PPB) type I may precede the more aggressive malignant types II and III. Chronic respiratory infections due to immunodeficiency are common in A-T [6567], and pulmonary fibrosis is a significant concern in dyskeratosis congenita [93, 94]. Patients with TSC [4245] may develop lymphangioleiomyomatosis and multifocal micronodular pneumocyte hyperplasia.

Cardiovascular anomalies

Congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy are associated with NS [83, 84] and CS [69, 70]. Patients with CFC syndrome [71] often present with valvular pulmonary stenosis and hypertrophic cardiomyopathy. Vascular anomalies, including arterial stenosis and aneurysms, are notable in NF1 [3739, 68] and BS [46, 47], whereas cardiac fibromas are typical in GS [5053]. Vascular malformations are also significant, with conditions like Bannayan–Riley–Ruvalcaba syndrome [54, 63, 95] presenting with hemangiomas and vascular anomalies, and PS [54, 79, 80] featuring vascular malformations, which may be capillary, venous, or lymphatic in nature.

Abdominal and gastrointestinal manifestations

Hepatomegaly and nephromegaly are frequent findings in BWS [72, 73], while splenomegaly is common in FA [67, 74, 75]. Additionally, gastrointestinal anomalies such as esophageal and duodenal atresia may occur in individuals with FA, contributing to feeding difficulties and requiring surgical interventions early in life. Cystic nephromas, which are benign kidney tumors, are often seen in DICER1 syndrome [64, 91, 92]. PJS [5456] presents with gastrointestinal polyps, which may be detected at any site within the GI tract, most frequently in the small intestine, and may lead to complications such as intussusception.

Genitourinary anomalies

Renal cysts and tumors are prevalent in Von Hippel-Lindau (VHL) disease [9698] and BHDS [61]. Ambiguous genitalia and disorders of sex development are indicative of WAGR syndrome [86, 87]. Denys–Drash syndrome [99] features nephropathy that progresses to end-stage renal disease, along with genital anomalies such as ambiguous genitalia.

Musculoskeletal anomalies

Musculoskeletal anomalies (Table 4) include scoliosis and bone dysplasia in NF1 [3739], and jaw cysts along with bifid ribs in GS [5053]. MEN2B [17, 81, 82] is characterized by marfanoid habitus, pes cavus, pectus excavatum, and joint hyperextensibility. RTS [62] features joint hypermobility and skeletal dysplasia.
Table 4
Musculoskeletal anomalies, benign tumors, and prenatal deviations and associated cancer predisposition syndromes
Manifestations
Cancer predisposition syndrome
Musculoskeletal anomalies
 Achilles tendons, tight
Costello syndrome
 Bones, slender long with thick cortex, narrow medullary channel
Mulibrey nanism
 Brachydactyly
Simpson-Golabi-Behmel syndrome
 Brachymelia, mesomelic
Schinzel-Giedion syndrome
 Camptodactylia
Weaver syndrome
 Clinodactylia
Weaver syndrome
 Contractures
Bohring-Opitz syndrome
 Elbows, flexion
Bohring-Opitz syndrome
 Elbow, radial head dislocation
Bohring-Opitz syndrome
 Extremities, hypertonic
Bohring-Opitz syndrome
 Femoral epiphysis, slipped capital
MEN2B
 Fibrous dysplasia
Mulibrey nanism
 Foot deformity
Schinzel-Giedion syndrome
 Hip dislocation/dysplasia
Bohring-Opitz syndrome, Costello syndrome
 Hypotonia
Bohring-Opitz syndrome, cardiofaciocutaneous syndrome, CBL syndrome
 Joints, hyperextensible/hypermobile
MEN2B, Rubinstein-Taybi syndrome
 Joint laxity
Costello syndrome, Weaver syndrome
 Limbs, short
Schinzel-Giedion syndrome
 Marfanoid habitus
MEN2B
 Metaphyseal dysplasia
Shwachman-Diamond syndrome
 Muscular hypoplasia, abdominal
Perlman syndrome
 Myopathy
Bannayan-Riley-Ruvalcaba syndrome
 Osteoporosis/osteopenia
Costello syndrome, dyskeratosis congenita, NF1, Shwachman-Diamond syndrome, Werner syndrome
 Pectus carinatum
Shwachman-Diamond syndrome
 Pectus excavatum
Bannayan-Riley-Ruvalcaba syndrome, MEN2B, Weaver syndrome
 Pectus deformity
Gorlin syndrome
 Pes cavus
MEN2B
 Polydactyly
Gorlin syndrome, Simpson-Golabi-Behmel syndrome
 Pseudoarthrosis
NF1
 Radial/thumb anomalies
Diamond-Blackfan anemia, Fanconi anemia
 Rib anomalies
Gorlin syndrome
 Skeletal dysplasia
Tuberous sclerosis complex
 Scoliosis
Costello syndrome, Gorlin syndrome, MEN2B, NF1, Noonan syndrome, Sotos syndrome, Weaver syndrome
 Sella turcica, J-shaped
Mulibrey nanism
 Shoulders, internal rotation
Bohring-Opitz syndrome
 Sphenoid wing
NF1
 Sprengel deformity
Gorlin syndrome
 Sternal deformity
Noonan syndrome
 Syndactyly
Gorlin syndrome, Simpson-Golabi-Behmel syndrome
 Talipes equinovarus
Noonan syndrome
 Thoracic cage, small
Mulibrey nanism
 Ulnar deviation of wrist, fingers
Bohring-Opitz syndrome, Costello syndrome
 Vertebral anomalies
Alagille syndrome, Gorlin syndrome, NF1, Simpson-Golabi-Behmel syndrome
Benign tumors
 
 Adenoma
Constitutional mismatch repair deficiency
 Adenoma, parathyroid
Hyperparathyroid-jaw tumor syndrome
 Angiomyolipomas, renal
Tuberous sclerosis complex
 Desmoid tumor
Familial adenomatous polyposis
 Fibroelastoma, heart
Gorlin syndrome
 Fibroma, intraoral
Tuberous sclerosis complex
 Fibroma, ovarian
Gorlin syndrome
 Giant cell astrocytoma, subependymal
Tuberous sclerosis complex
 Hamartoma
Hyperparathyroid-jaw tumor syndrome, tuberous sclerosis complex
 Hemangioblastoma
Von-Hippel-Lindau syndrome
 Leiomyoma, cutaneous/uterine
Hereditary leiomyomatosis and renal cell cancer
 Melanoma, ocular
Xeroderma pigmentosum
 Meningeoma
Gorlin syndrome, NF2
 Neurofibromas, plexiform
NF1
 Neuroendocrine tumors
MEN1, tuberous sclerosis complex, Von-Hippel-Lindau syndrome
 Oncocytoma, renal
Birt-Hogg-Dubé syndrome
 Optic pathway glioma
NF1
 Osteoma
Familial adenomatous polyposis
 Pituitary tumors
MEN1
 Polyposis, gastrointestinal hamartomatous
Bannayan-Riley-Ruvalcaba syndrome
 Polyp
Constitutional mismatch repair deficiency, familial adenomatous polyposis, Hyperparathyroid-Jaw tumor syndrome, juvenile polyposis syndrome, PTEN hamartoma tumor syndrome
 Polyps, hamartomatous
Peutz-Jeghers syndrome
 Rhabdomyomas, cardiac
Tuberous sclerosis complex
 Schwannomas
NF2
 Sex cord tumors with annular tubules
Peutz-Jeghers syndrome
Perinatal deviations
 
 Birth length, high
Weaver syndrome
 Birth length, low
Fanconi anemia
 Birth weight, high
Costello syndrome, Weaver syndrome
 Birth weight, low
Fanconi anemia
 Dwarfism, prenatal onset
Seckel syndrome
 Fetal adrenocortical cytomegaly
Beckwith-Wiedemann syndrome
 Growth, excessive, intrauterine
Sotos syndrome
 Growth restriction, intrauterine
Bohring-Opitz syndrome, Mulibrey nanism
 Hydrops
Costello syndrome
 Omphalocele
Beckwith-Wiedemann syndrome
 Polyhydramnios
Cardiofaciocutaneous syndrome
NF1 neurofibromatosis type 1, NF2 neurofibromatosis type 2, MEN1 Multiple Endocrine Neoplasia Type 1, MEN2B Multiple Endocrine Neoplasia Type 2B, CBL Casitas B-lineage lymphoma syndrome

Benign tumors

Benign tumors (Table 4), including lipomas, hamartomas, and adenomas, are commonly observed in MEN syndromes and PJS [5456]. MTS [48, 49] features sebaceous adenomas and epitheliomas, while PHTS [54, 63, 64] presents with mucocutaneous hamartomas and thyroid pathology.

Prenatal deviations

Polyhydramnios and preterm birth represent obstetric complications associated with BWS [72, 73] and TSC [4245]. BWS [72, 73] may be associated with abdominal wall defects.

Discussion

CPS present a multifaceted clinical challenge due to their broad spectrum of non-malignant and malignant manifestations. These syndromes, which include conditions such as NF1, TSC, and BWS, among others, often require a high index of suspicion and an interdisciplinary approach to care.

Complexity of non-malignant manifestations

The non-malignant features of CPS affect nearly every organ system, necessitating comprehensive and continued evaluation (Fig. 2). For instance, dermatological manifestations such as café-au-lait spots, facial angiofibromas, and sebaceous adenomas serve as critical early indicators that should prompt further genetic evaluation (Fig. 1) [16, 19, 37, 44, 45, 49, 100]. These features are not merely cosmetic concerns but are pivotal in the early diagnosis of CPS, facilitating timely intervention and management [68, 101].
Neurological and developmental symptoms, such as intellectual disabilities, learning challenges, and cerebellar ataxia, significantly impact the quality of life and developmental trajectory of affected individuals. For instance, cerebellar ataxia in A-T leads to progressive loss of coordination and balance, severely affecting daily functioning [65, 66]. Intellectual disabilities in NF1 and TSC result in substantial cognitive challenges, highlighting the need for continuous monitoring and specialized educational support [45, 68, 100].
Growth and metabolic anomalies, including prenatal and postnatal overgrowth seen in BWS and growth hormone deficiency in various CPS, require close collaboration between endocrinologists, geneticists, and nutritionists [73, 102]. Effective management of these conditions has the potential to prevent severe complications and improve overall outcomes. For instance, hyperinsulinism in BWS can lead to life-threatening hypoglycemia, highlighting the need for vigilant metabolic monitoring and management.

Importance of interdisciplinary care

The multi-system involvement characteristic of CPS underscores the necessity for interdisciplinary care [37, 96, 103, 104]. This approach ensures comprehensive management of both the non-malignant and malignant aspects of these syndromes. Pediatricians, dermatologists, neurologists, endocrinologists, cardiologists, geneticists, and other specialists must collaborate closely to provide holistic care tailored to the individual needs of each patient.
For instance, the management of NF1 requires regular assessments to monitor neurofibroma, alongside neurological evaluations to address cognitive and developmental issues [37, 39, 68, 100]. Similarly, patients with A-T benefit from coordinated care involving immunologists for immunodeficiency management and infection prophylaxis, neurologists for monitoring neurological symptoms, and oncologists for ongoing tumor surveillance [6567].
Moreover, genetic counseling plays a crucial role in the care of families affected by CPS [20]. It helps in understanding the hereditary nature of these syndromes, provides risk assessments for family members, and informs reproductive decisions. Genetic counselors help navigate families through the complexities of genetic testing and the implications of the results.

Surveillance and preventive measures

Early identification and regular surveillance are essential in managing CPS [105107]. These measures enable the early detection of complications and help prevent the progression of symptoms. For example, regular MRI scans are essential for detecting and monitoring brain tumors in patients with SUFU-associated GS, while ultrasound screenings are vital for identifying abdominal tumors in BWS [23, 51, 73].
Preventive measures, including strict photoprotection in conditions like BS and XP, are vital in reducing the risk of skin cancers [67]. Additionally, prophylactic interventions such as thyroidectomy in MEN2 to prevent medullary thyroid carcinoma, exemplify proactive management strategies necessary in CPS care [14, 33].

Psychosocial support

The psychosocial impact of CPS on patients and their families is significant [108]. Chronic conditions and the potential for malignancies pose substantial emotional and psychological challenges [109, 110]. Providing comprehensive psychosocial support, including counseling and access to support groups, is crucial in helping patients and their families cope with the stress and uncertainties associated with CPS [110, 111].

Transition aspects for children and adolescents with cancer predisposition syndromes

Transitioning from pediatric to adult care is a critical period for children and adolescents with CPS [112, 113]. This transition must be meticulously planned and managed to ensure continuity of care, adherence to surveillance protocols, and psychosocial support. Adolescents with CPS often face unique challenges due to the lifelong nature of their conditions, the complexity of their medical needs, and the potential for both malignant and non-malignant manifestations. Effective transition planning should start early, involving a multidisciplinary team that includes pediatricians, oncologists, and adult care providers. This ensures that all aspects of the patient’s health are considered and addressed. Education about the genetic nature of CPS, potential health risks, and the importance of continued surveillance empowers patients to understand their condition better, promoting self-management and adherence to medical recommendations. A well-structured transition program can significantly improve health outcomes and quality of life for adolescents with CPS, fostering a smooth and effective shift from pediatric to adult healthcare systems.
In conclusion, this comprehensive overview highlights the diverse range of non-malignant manifestations associated with CPS, emphasizing the critical importance of early detection and multidisciplinary management. By recognizing these features, pediatricians and other healthcare providers facilitate timely diagnosis, genetic counselling, and appropriate surveillance. This proactive approach ultimately improves medical outcomes and the well-being of affected children, adolescents, and those at risk of CPS.

Declaration

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Ethical approval

Informed consent was obtained from the patients for scientific usage of the material.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G Knudson Jr. Clin Cancer Res. 2017;23:e1-5.PubMedPubMedCentralCrossRef Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G Knudson Jr. Clin Cancer Res. 2017;23:e1-5.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-a concise review and recommendations by the cancer predisposition working group of the society for pediatric oncology and hematology. Am J Med Genet A. 2017;173:1017–37.PubMedCrossRef Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-a concise review and recommendations by the cancer predisposition working group of the society for pediatric oncology and hematology. Am J Med Genet A. 2017;173:1017–37.PubMedCrossRef
3.
Zurück zum Zitat Schiffman JD, Geller JI, Mundt E, Means A, Means L, Means V. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer. 2013;60:1247–52.PubMedCrossRef Schiffman JD, Geller JI, Mundt E, Means A, Means L, Means V. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer. 2013;60:1247–52.PubMedCrossRef
4.
Zurück zum Zitat Kratz CP, Jongmans MC, Cave H, Wimmer K, Behjati S, Guerrini-Rousseau L, et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc Health. 2021;5:142–54.PubMedCrossRef Kratz CP, Jongmans MC, Cave H, Wimmer K, Behjati S, Guerrini-Rousseau L, et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc Health. 2021;5:142–54.PubMedCrossRef
5.
Zurück zum Zitat Nakano Y, Rabinowicz R, Malkin D. Genetic predisposition to cancers in children and adolescents. Curr Opin Pediatr. 2023;35:55–62.PubMedCrossRef Nakano Y, Rabinowicz R, Malkin D. Genetic predisposition to cancers in children and adolescents. Curr Opin Pediatr. 2023;35:55–62.PubMedCrossRef
6.
Zurück zum Zitat Kuhlen M, Hofmann TG, Golas MM. Puzzling phenomenon: adult-onset cancer predisposition and pediatric cancer. Trends Cancer. 2024;10:481–5.PubMedCrossRef Kuhlen M, Hofmann TG, Golas MM. Puzzling phenomenon: adult-onset cancer predisposition and pediatric cancer. Trends Cancer. 2024;10:481–5.PubMedCrossRef
7.
Zurück zum Zitat Bakhuizen JJ, Hopman SMJ, Bosscha MI, Dommering CJ, van den Heuvel-Eibrink MM, Hol JA, et al. Assessment of cancer predisposition syndromes in a national cohort of children with a neoplasm. JAMA Netw Open. 2023;6:e2254157.PubMedPubMedCentralCrossRef Bakhuizen JJ, Hopman SMJ, Bosscha MI, Dommering CJ, van den Heuvel-Eibrink MM, Hol JA, et al. Assessment of cancer predisposition syndromes in a national cohort of children with a neoplasm. JAMA Netw Open. 2023;6:e2254157.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Byrjalsen A, Hansen TVO, Stoltze UK, Mehrjouy MM, Barnkob NM, Hjalgrim LL, et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 2020;16:e1009231.PubMedPubMedCentralCrossRef Byrjalsen A, Hansen TVO, Stoltze UK, Mehrjouy MM, Barnkob NM, Hjalgrim LL, et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 2020;16:e1009231.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373:2336–46.PubMedPubMedCentralCrossRef Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373:2336–46.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Diets IJ, Waanders E, Ligtenberg MJ, van Bladel DAG, Kamping EJ, Hoogerbrugge PM, et al. High yield of pathogenic germline mutations causative or likely causative of the cancer phenotype in selected children with cancer. Clin Cancer Res. 2018;24:1594–603.PubMedCrossRef Diets IJ, Waanders E, Ligtenberg MJ, van Bladel DAG, Kamping EJ, Hoogerbrugge PM, et al. High yield of pathogenic germline mutations causative or likely causative of the cancer phenotype in selected children with cancer. Clin Cancer Res. 2018;24:1594–603.PubMedCrossRef
11.
Zurück zum Zitat Wagener R, Taeubner J, Walter C, Yasin L, Alzoubi D, Bartenhagen C, et al. Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet. 2021;29:1301–11.PubMedPubMedCentralCrossRef Wagener R, Taeubner J, Walter C, Yasin L, Alzoubi D, Bartenhagen C, et al. Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet. 2021;29:1301–11.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Alba-Pavon P, Alana L, Gutierrez-Jimeno M, Garcia-Obregon S, Imizcoz T, Panizo E, et al. Identification of germline cancer predisposition variants in pediatric sarcoma patients from somatic tumor testing. Sci Rep. 2023;13:2959.PubMedPubMedCentralCrossRef Alba-Pavon P, Alana L, Gutierrez-Jimeno M, Garcia-Obregon S, Imizcoz T, Panizo E, et al. Identification of germline cancer predisposition variants in pediatric sarcoma patients from somatic tumor testing. Sci Rep. 2023;13:2959.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Goudie C, Coltin H, Witkowski L, Mourad S, Malkin D, Foulkes WD. The McGill Interactive Pediatric OncoGenetic Guidelines: an approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation. Pediatr Blood Cancer. 2017;64. Goudie C, Coltin H, Witkowski L, Mourad S, Malkin D, Foulkes WD. The McGill Interactive Pediatric OncoGenetic Guidelines: an approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation. Pediatr Blood Cancer. 2017;64.
14.
Zurück zum Zitat Kuhlen M, Fruhwald MC, Dunstheimer DPA, Vorwerk P, Redlich A. Revisiting the genotype-phenotype correlation in children with medullary thyroid carcinoma: a report from the GPOH-MET registry. Pediatr Blood Cancer. 2020;67:e28171.PubMedCrossRef Kuhlen M, Fruhwald MC, Dunstheimer DPA, Vorwerk P, Redlich A. Revisiting the genotype-phenotype correlation in children with medullary thyroid carcinoma: a report from the GPOH-MET registry. Pediatr Blood Cancer. 2020;67:e28171.PubMedCrossRef
15.
Zurück zum Zitat Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium “care for CMMRD” (C4CMMRD). J Med Genet. 2014;51:355–65.PubMedCrossRef Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium “care for CMMRD” (C4CMMRD). J Med Genet. 2014;51:355–65.PubMedCrossRef
16.
Zurück zum Zitat Winship IM, Dudding TE. Lessons from the skin–cutaneous features of familial cancer. Lancet Oncol. 2008;9:462–72.PubMedCrossRef Winship IM, Dudding TE. Lessons from the skin–cutaneous features of familial cancer. Lancet Oncol. 2008;9:462–72.PubMedCrossRef
17.
Zurück zum Zitat Redlich A, Lessel L, Petrou A, Mier P, Vorwerk P. Multiple endocrine neoplasia type 2B: frequency of physical stigmata-results of the GPOH-MET registry. Pediatr Blood Cancer. 2020;67:e28056.PubMedCrossRef Redlich A, Lessel L, Petrou A, Mier P, Vorwerk P. Multiple endocrine neoplasia type 2B: frequency of physical stigmata-results of the GPOH-MET registry. Pediatr Blood Cancer. 2020;67:e28056.PubMedCrossRef
18.
Zurück zum Zitat Plamper M, Gohlke B, Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr. 2022;9:3.PubMedPubMedCentralCrossRef Plamper M, Gohlke B, Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr. 2022;9:3.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021;23:1506–13.PubMedPubMedCentralCrossRef Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021;23:1506–13.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Druker H, Zelley K, McGee RB, Scollon SR, Kohlmann WK, Schneider KA, et al. Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res. 2017;23:e91–7.PubMedCrossRef Druker H, Zelley K, McGee RB, Scollon SR, Kohlmann WK, Schneider KA, et al. Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res. 2017;23:e91–7.PubMedCrossRef
21.
Zurück zum Zitat Achatz MI, Porter CC, Brugieres L, Druker H, Frebourg T, Foulkes WD, et al. Cancer screening recommendations and clinical management of inherited gastrointestinal cancer syndromes in childhood. Clin Cancer Res. 2017;23:e107–14.PubMedCrossRef Achatz MI, Porter CC, Brugieres L, Druker H, Frebourg T, Foulkes WD, et al. Cancer screening recommendations and clinical management of inherited gastrointestinal cancer syndromes in childhood. Clin Cancer Res. 2017;23:e107–14.PubMedCrossRef
22.
Zurück zum Zitat Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Druker H, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res. 2017;23:e54–61.PubMedCrossRef Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Druker H, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res. 2017;23:e54–61.PubMedCrossRef
23.
Zurück zum Zitat Foulkes WD, Kamihara J, Evans DGR, Brugieres L, Bourdeaut F, Molenaar JJ, et al. Cancer surveillance in gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res. 2017;23:e62–7.PubMedPubMedCentralCrossRef Foulkes WD, Kamihara J, Evans DGR, Brugieres L, Bourdeaut F, Molenaar JJ, et al. Cancer surveillance in gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res. 2017;23:e62–7.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Greer MC, Voss SD, States LJ. Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res. 2017;23:e6–13.PubMedCrossRef Greer MC, Voss SD, States LJ. Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res. 2017;23:e6–13.PubMedCrossRef
25.
Zurück zum Zitat Kalish JM, Doros L, Helman LJ, Hennekam RC, Kuiper RP, Maas SM, et al. Surveillance recommendations for children with overgrowth syndromes and predisposition to wilms tumors and hepatoblastoma. Clin Cancer Res. 2017;23:e115–22.PubMedPubMedCentralCrossRef Kalish JM, Doros L, Helman LJ, Hennekam RC, Kuiper RP, Maas SM, et al. Surveillance recommendations for children with overgrowth syndromes and predisposition to wilms tumors and hepatoblastoma. Clin Cancer Res. 2017;23:e115–22.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mosse YP, Nakagawara A, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 2017;23:e98–106.PubMedPubMedCentralCrossRef Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mosse YP, Nakagawara A, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 2017;23:e98–106.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Kratz CP, Achatz MI, Brugieres L, Frebourg T, Garber JE, Greer MC, et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res. 2017;23:e38–45.PubMedCrossRef Kratz CP, Achatz MI, Brugieres L, Frebourg T, Garber JE, Greer MC, et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res. 2017;23:e38–45.PubMedCrossRef
28.
Zurück zum Zitat Malkin D, Nichols KE, Schiffman JD, Plon SE, Brodeur GM. The future of surveillance in the context of cancer predisposition: through the Murky looking glass. Clin Cancer Res. 2017;23:e133–7.PubMedPubMedCentralCrossRef Malkin D, Nichols KE, Schiffman JD, Plon SE, Brodeur GM. The future of surveillance in the context of cancer predisposition: through the Murky looking glass. Clin Cancer Res. 2017;23:e133–7.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Porter CC, Druley TE, Erez A, Kuiper RP, Onel K, Schiffman JD, et al. Recommendations for surveillance for children with Leukemia-predisposing conditions. Clin Cancer Res. 2017;23:e14–22.PubMedCrossRef Porter CC, Druley TE, Erez A, Kuiper RP, Onel K, Schiffman JD, et al. Recommendations for surveillance for children with Leukemia-predisposing conditions. Clin Cancer Res. 2017;23:e14–22.PubMedCrossRef
30.
Zurück zum Zitat Rednam SP, Erez A, Druker H, Janeway KA, Kamihara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e68–75.PubMedCrossRef Rednam SP, Erez A, Druker H, Janeway KA, Kamihara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e68–75.PubMedCrossRef
31.
Zurück zum Zitat Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23:e32–7.PubMedCrossRef Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23:e32–7.PubMedCrossRef
32.
Zurück zum Zitat Villani A, Greer MC, Kalish JM, Nakagawara A, Nathanson KL, Pajtler KW, et al. Recommendations for cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clin Cancer Res. 2017;23:e83–90.PubMedCrossRef Villani A, Greer MC, Kalish JM, Nakagawara A, Nathanson KL, Pajtler KW, et al. Recommendations for cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clin Cancer Res. 2017;23:e83–90.PubMedCrossRef
33.
Zurück zum Zitat Wasserman JD, Tomlinson GE, Druker H, Kamihara J, Kohlmann WK, Kratz CP, et al. Multiple endocrine neoplasia and hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e123–32.PubMedPubMedCentralCrossRef Wasserman JD, Tomlinson GE, Druker H, Kamihara J, Kohlmann WK, Kratz CP, et al. Multiple endocrine neoplasia and hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e123–32.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Hansford JR, Das A, McGee RB, Nakano Y, Brzezinski J, Scollon SR, et al. Update on cancer predisposition syndromes and surveillance guidelines for childhood brain tumors. Clin Cancer Res. 2024;30:2342–50.PubMedPubMedCentralCrossRef Hansford JR, Das A, McGee RB, Nakano Y, Brzezinski J, Scollon SR, et al. Update on cancer predisposition syndromes and surveillance guidelines for childhood brain tumors. Clin Cancer Res. 2024;30:2342–50.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kamihara J, Diller LR, Foulkes WD, Michaeli O, Nakano Y, Pajtler KW, et al. Neuroblastoma Predisposition and Surveillance-An Update from the 2023 AACR Childhood Cancer Predisposition Workshop. Clin Cancer Res. 2024:OF1-OF7. Kamihara J, Diller LR, Foulkes WD, Michaeli O, Nakano Y, Pajtler KW, et al. Neuroblastoma Predisposition and Surveillance-An Update from the 2023 AACR Childhood Cancer Predisposition Workshop. Clin Cancer Res. 2024:OF1-OF7.
36.
Zurück zum Zitat Das A, MacFarland SP, Meade J, Hansford JR, Schneider KW, Kuiper RP, et al. Clinical updates and surveillance recommendations for DNA replication-repair deficiency syndromes in children and young adults. Clin Cancer Res. 2024;30:3378–87.PubMedCrossRef Das A, MacFarland SP, Meade J, Hansford JR, Schneider KW, Kuiper RP, et al. Clinical updates and surveillance recommendations for DNA replication-repair deficiency syndromes in children and young adults. Clin Cancer Res. 2024;30:3378–87.PubMedCrossRef
37.
Zurück zum Zitat Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol. 2014;13:834–43.PubMedCrossRef Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol. 2014;13:834–43.PubMedCrossRef
38.
Zurück zum Zitat Friedman J. Neurofibromatosis 1. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1998 [Updated 2022 Apr 21]. Friedman J. Neurofibromatosis 1. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1998 [Updated 2022 Apr 21].
39.
Zurück zum Zitat Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, et al. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine. 2023;56:101818.PubMedPubMedCentralCrossRef Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, et al. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine. 2023;56:101818.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ercan AB, Aronson M, Fernandez NR, Chang Y, Levine A, Liu ZA, et al. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study. Lancet Oncol. 2024;25:668–82.PubMedCrossRef Ercan AB, Aronson M, Fernandez NR, Chang Y, Levine A, Liu ZA, et al. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study. Lancet Oncol. 2024;25:668–82.PubMedCrossRef
41.
Zurück zum Zitat Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52:770–8.PubMedCrossRef Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52:770–8.PubMedCrossRef
42.
Zurück zum Zitat Northrup H, Koenig M, Pearson D. Tuberous sclerosis complex. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2021 Dec 9]. Northrup H, Koenig M, Pearson D. Tuberous sclerosis complex. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2021 Dec 9].
43.
44.
Zurück zum Zitat Peron A, Northrup H. Tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:274–7.PubMedCrossRef Peron A, Northrup H. Tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:274–7.PubMedCrossRef
46.
Zurück zum Zitat Langer K, Cunniff C, Kucine N. Bloom syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [updated 2023 Oct 12]. Langer K, Cunniff C, Kucine N. Bloom syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [updated 2023 Oct 12].
47.
Zurück zum Zitat Hafsi W, Badri T, Rice AS. Bloom syndrome. Treasure Island (FL): StatPearls; 2024. Hafsi W, Badri T, Rice AS. Bloom syndrome. Treasure Island (FL): StatPearls; 2024.
49.
Zurück zum Zitat Gay JT, Troxell T, Gross GP. Muir-Torre syndrome. Treasure Island (FL): StatPearls; 2024. Gay JT, Troxell T, Gross GP. Muir-Torre syndrome. Treasure Island (FL): StatPearls; 2024.
50.
Zurück zum Zitat Lo ML. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 2008;3:32.CrossRef Lo ML. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 2008;3:32.CrossRef
51.
Zurück zum Zitat Bree AF, Shah MR, Group BC. Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A. 2011;155A:2091–7.PubMedCrossRef Bree AF, Shah MR, Group BC. Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A. 2011;155A:2091–7.PubMedCrossRef
52.
53.
Zurück zum Zitat Evans D. Nevoid basal cell carcinoma syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2002 [Updated 2024 Feb 22]. Evans D. Nevoid basal cell carcinoma syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2002 [Updated 2024 Feb 22].
54.
Zurück zum Zitat Jelsig AM, Qvist N, Brusgaard K, Nielsen CB, Hansen TP, Ousager LB. Hamartomatous polyposis syndromes: a review. Orphanet J Rare Dis. 2014;9:101.PubMedPubMedCentralCrossRef Jelsig AM, Qvist N, Brusgaard K, Nielsen CB, Hansen TP, Ousager LB. Hamartomatous polyposis syndromes: a review. Orphanet J Rare Dis. 2014;9:101.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat McGarrity T, Amos C, Baker M. Peutz-Jeghers syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2021 Sep 2]. McGarrity T, Amos C, Baker M. Peutz-Jeghers syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2021 Sep 2].
56.
Zurück zum Zitat Yamamoto H, Sakamoto H, Kumagai H, Abe T, Ishiguro S, Uchida K, et al. Clinical guidelines for diagnosis and management of Peutz-Jeghers syndrome in children and adults. Digestion. 2023;104:335–47.PubMedCrossRef Yamamoto H, Sakamoto H, Kumagai H, Abe T, Ishiguro S, Uchida K, et al. Clinical guidelines for diagnosis and management of Peutz-Jeghers syndrome in children and adults. Digestion. 2023;104:335–47.PubMedCrossRef
58.
Zurück zum Zitat Kraemer K, DiGiovanna J, Tamura D. Xeroderma pigmentosum. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2003 [Updated 2022 Mar 24]. Kraemer K, DiGiovanna J, Tamura D. Xeroderma pigmentosum. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2003 [Updated 2022 Mar 24].
60.
Zurück zum Zitat Wang L, Plon S. Rothmund-Thomson syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2020 Jun 4]. Wang L, Plon S. Rothmund-Thomson syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2020 Jun 4].
61.
Zurück zum Zitat Sattler E, Steinlein O. Birt-Hogg-Dubé syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2020 Jan 30]. Sattler E, Steinlein O. Birt-Hogg-Dubé syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2020 Jan 30].
62.
Zurück zum Zitat Stevens C. Rubinstein-Taybi syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2002 [Updated 2023 Nov 9]. Stevens C. Rubinstein-Taybi syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2002 [Updated 2023 Nov 9].
63.
Zurück zum Zitat Yehia L, Eng C. PTEN hamartoma tumor syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2021 Feb 11]. Yehia L, Eng C. PTEN hamartoma tumor syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2021 Feb 11].
64.
Zurück zum Zitat Schultz KAP, Rednam SP, Kamihara J, Doros L, Achatz MI, Wasserman JD, et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: Clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e76–82.PubMedCrossRef Schultz KAP, Rednam SP, Kamihara J, Doros L, Achatz MI, Wasserman JD, et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: Clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e76–82.PubMedCrossRef
65.
Zurück zum Zitat Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.PubMedPubMedCentralCrossRef Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Veenhuis S, van Os N, Weemaes C. Ataxia-telangiectasia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2023 Oct 5]. Veenhuis S, van Os N, Weemaes C. Ataxia-telangiectasia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2023 Oct 5].
67.
Zurück zum Zitat Walsh MF, Chang VY, Kohlmann WK, Scott HS, Cunniff C, Bourdeaut F, et al. Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders. Clin Cancer Res. 2017;23:e23–31.PubMedPubMedCentralCrossRef Walsh MF, Chang VY, Kohlmann WK, Scott HS, Cunniff C, Bourdeaut F, et al. Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders. Clin Cancer Res. 2017;23:e23–31.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Angelova-Toshkina D, Decker JA, Traunwieser T, Holzapfel J, Bette S, Huber S, et al. Comprehensive neurological evaluation of a cohort of patients with neurofibromatosis type 1 from a single institution. Eur J Paediatr Neurol. 2023;43:52–61.PubMedCrossRef Angelova-Toshkina D, Decker JA, Traunwieser T, Holzapfel J, Bette S, Huber S, et al. Comprehensive neurological evaluation of a cohort of patients with neurofibromatosis type 1 from a single institution. Eur J Paediatr Neurol. 2023;43:52–61.PubMedCrossRef
69.
Zurück zum Zitat Gripp K, Weaver K. HRAS-Related costello syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2023 Dec 21]. Gripp K, Weaver K. HRAS-Related costello syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2023 Dec 21].
70.
Zurück zum Zitat Gripp KW, Morse LA, Axelrad M, Chatfield KC, Chidekel A, Dobyns W, et al. Costello syndrome: clinical phenotype, genotype, and management guidelines. Am J Med Genet A. 2019;179:1725–44.PubMedPubMedCentralCrossRef Gripp KW, Morse LA, Axelrad M, Chatfield KC, Chidekel A, Dobyns W, et al. Costello syndrome: clinical phenotype, genotype, and management guidelines. Am J Med Genet A. 2019;179:1725–44.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Rauen K. Cardiofaciocutaneous syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2007 [Updated 2023 Feb 9]. Rauen K. Cardiofaciocutaneous syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2007 [Updated 2023 Feb 9].
72.
Zurück zum Zitat Shuman C, Kalish J, Weksberg R. Beckwith-Wiedemann syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2000 [Updated 2023 Sep 21]. Shuman C, Kalish J, Weksberg R. Beckwith-Wiedemann syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2000 [Updated 2023 Sep 21].
73.
Zurück zum Zitat Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14:229–49.PubMedPubMedCentralCrossRef Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14:229–49.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Mehta P, Ebens C. Fanconi anemia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2021. Mehta P, Ebens C. Fanconi anemia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2021.
75.
76.
Zurück zum Zitat Tenorio J, Arias P, Martinez-Glez V, Santos F, Garcia-Minaur S, Nevado J, et al. Simpson-Golabi-Behmel syndrome types I and II. Orphanet J Rare Dis. 2014;9:138.PubMedPubMedCentralCrossRef Tenorio J, Arias P, Martinez-Glez V, Santos F, Garcia-Minaur S, Nevado J, et al. Simpson-Golabi-Behmel syndrome types I and II. Orphanet J Rare Dis. 2014;9:138.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Klein S, Nisbet A, Hathaway E. Simpson-Golabi-Behmel syndrome type 1. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2023 Dec 7]. Klein S, Nisbet A, Hathaway E. Simpson-Golabi-Behmel syndrome type 1. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2006 [Updated 2023 Dec 7].
78.
Zurück zum Zitat Vaisfeld A, Neri G. Simpson-Golabi-Behmel syndrome. Am J Med Genet C Semin Med Genet. 2024:e32088. Vaisfeld A, Neri G. Simpson-Golabi-Behmel syndrome. Am J Med Genet C Semin Med Genet. 2024:e32088.
79.
Zurück zum Zitat Biesecker L. The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet. 2006;14:1151–7.PubMedCrossRef Biesecker L. The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet. 2006;14:1151–7.PubMedCrossRef
80.
Zurück zum Zitat Biesecker L, Sapp J. Proteus syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2012 [Updated 2023 May 25]. Biesecker L, Sapp J. Proteus syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2012 [Updated 2023 May 25].
81.
Zurück zum Zitat Marini F, Falchetti A, Del Monte F, Carbonell Sala S, Tognarini I, Luzi E, et al. Multiple endocrine neoplasia type 2. Orphanet J Rare Dis. 2006;1:45.PubMedPubMedCentralCrossRef Marini F, Falchetti A, Del Monte F, Carbonell Sala S, Tognarini I, Luzi E, et al. Multiple endocrine neoplasia type 2. Orphanet J Rare Dis. 2006;1:45.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Eng C, Plitt G. Multiple endocrine neoplasia type 2. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2023 Aug 10]. Eng C, Plitt G. Multiple endocrine neoplasia type 2. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1999 [Updated 2023 Aug 10].
84.
Zurück zum Zitat Roberts A. Noonan Syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2022 Feb 17]. Roberts A. Noonan Syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2001 [Updated 2022 Feb 17].
85.
Zurück zum Zitat Russell B, Tan W, Graham J. Bohring-Opitz syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2018. Russell B, Tan W, Graham J. Bohring-Opitz syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2018.
86.
Zurück zum Zitat Moosajee M, Hingorani M, Moore A. PAX6-Related aniridia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2003 [Updated 2018 Oct 18]. Moosajee M, Hingorani M, Moore A. PAX6-Related aniridia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2003 [Updated 2018 Oct 18].
87.
Zurück zum Zitat Duffy KA, Trout KL, Gunckle JM, Krantz SM, Morris J, Kalish JM. Results from the WAGR syndrome patient registry: characterization of WAGR spectrum and recommendations for care management. Front Pediatr. 2021;9:733018.PubMedPubMedCentralCrossRef Duffy KA, Trout KL, Gunckle JM, Krantz SM, Morris J, Kalish JM. Results from the WAGR syndrome patient registry: characterization of WAGR spectrum and recommendations for care management. Front Pediatr. 2021;9:733018.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Evans D. NF2-Related schwannomatosis. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1998 [Updated 2023 Apr 20]. Evans D. NF2-Related schwannomatosis. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1998 [Updated 2023 Apr 20].
91.
Zurück zum Zitat Schultz K, Stewart D, Kamihara J. DICER1 tumor predisposition. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2014 [Updated 2020 Apr 30]. Schultz K, Stewart D, Kamihara J. DICER1 tumor predisposition. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2014 [Updated 2020 Apr 30].
92.
Zurück zum Zitat Bakhuizen JJ, Hanson H, van der Tuin K, Lalloo F, Tischkowitz M, Wadt K, et al. Surveillance recommendations for DICER1 pathogenic variant carriers: a report from the SIOPE Host Genome Working Group and CanGene-CanVar Clinical Guideline Working Group. Fam Cancer. 2021;20:337–48.PubMedPubMedCentralCrossRef Bakhuizen JJ, Hanson H, van der Tuin K, Lalloo F, Tischkowitz M, Wadt K, et al. Surveillance recommendations for DICER1 pathogenic variant carriers: a report from the SIOPE Host Genome Working Group and CanGene-CanVar Clinical Guideline Working Group. Fam Cancer. 2021;20:337–48.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Savage S, Niewisch M. Dyskeratosis congenita and related telomere biology disorders. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2009 [Updated 2023 Jan 19]. Savage S, Niewisch M. Dyskeratosis congenita and related telomere biology disorders. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2009 [Updated 2023 Jan 19].
94.
Zurück zum Zitat Garofola C, Nassereddin A, Gross GP. Dyskeratosis congenita. Treasure Island (FL): StatPearls; 2024. Garofola C, Nassereddin A, Gross GP. Dyskeratosis congenita. Treasure Island (FL): StatPearls; 2024.
95.
Zurück zum Zitat Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105:1607–16.PubMedCrossRef Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105:1607–16.PubMedCrossRef
96.
Zurück zum Zitat Schmid S, Gillessen S, Binet I, Brandle M, Engeler D, Greiner J, et al. Management of von hippel-lindau disease: an interdisciplinary review. Oncol Res Treat. 2014;37:761–71.PubMedCrossRef Schmid S, Gillessen S, Binet I, Brandle M, Engeler D, Greiner J, et al. Management of von hippel-lindau disease: an interdisciplinary review. Oncol Res Treat. 2014;37:761–71.PubMedCrossRef
98.
Zurück zum Zitat van Leeuwaarde R, Ahmad S, van Nesselrooij B, Von Hippel-Lindau syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2000 [Updated 2024 Feb 29]. van Leeuwaarde R, Ahmad S, van Nesselrooij B, Von Hippel-Lindau syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2000 [Updated 2024 Feb 29].
100.
Zurück zum Zitat Lalvani S, Brown RM. Neurofibromatosis type 1: optimizing management with a multidisciplinary approach. J Multidiscip Healthc. 2024;17:1803–17.PubMedPubMedCentralCrossRef Lalvani S, Brown RM. Neurofibromatosis type 1: optimizing management with a multidisciplinary approach. J Multidiscip Healthc. 2024;17:1803–17.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Angelova-Toshkina D, Holzapfel J, Huber S, Schimmel M, Wieczorek D, Gnekow AK, et al. Neurofibromatosis type 1: A comparison of the 1997 NIH and the 2021 revised diagnostic criteria in 75 children and adolescents. Genet Med. 2022;24:1978–85.PubMedCrossRef Angelova-Toshkina D, Holzapfel J, Huber S, Schimmel M, Wieczorek D, Gnekow AK, et al. Neurofibromatosis type 1: A comparison of the 1997 NIH and the 2021 revised diagnostic criteria in 75 children and adolescents. Genet Med. 2022;24:1978–85.PubMedCrossRef
102.
Zurück zum Zitat Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol. 2019;15:299–311.PubMedCrossRef Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol. 2019;15:299–311.PubMedCrossRef
103.
Zurück zum Zitat Huber S, Schimmel M, Dunstheimer D, Nemes K, Richter M, Streble J, et al. The need for tumor surveillance of children and adolescents with cancer predisposition syndromes: a retrospective cohort study in a tertiary-care children’s hospital. Eur J Pediatr. 2022;181:1585–96.PubMedCrossRef Huber S, Schimmel M, Dunstheimer D, Nemes K, Richter M, Streble J, et al. The need for tumor surveillance of children and adolescents with cancer predisposition syndromes: a retrospective cohort study in a tertiary-care children’s hospital. Eur J Pediatr. 2022;181:1585–96.PubMedCrossRef
104.
Zurück zum Zitat Kaffai S, Angelova-Toshkin D, Weins AB, Ickinger S, Steinke-Lange V, Vollert K, et al. Cancer predisposing syndromes in childhood and adolescence pose several challenges necessitating interdisciplinary care in dedicated programs. Front Pediatr. 2024;12:1410061.PubMedPubMedCentralCrossRef Kaffai S, Angelova-Toshkin D, Weins AB, Ickinger S, Steinke-Lange V, Vollert K, et al. Cancer predisposing syndromes in childhood and adolescence pose several challenges necessitating interdisciplinary care in dedicated programs. Front Pediatr. 2024;12:1410061.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17:1295–305.PubMedCrossRef Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17:1295–305.PubMedCrossRef
106.
Zurück zum Zitat Ghorbanoghli Z, van Kouwen M, Versluys B, Bonnet D, Devalck C, Tinat J, et al. High yield of surveillance in patients diagnosed with constitutional mismatch repair deficiency. J Med Genet. 2023;60:679–84.PubMedCrossRef Ghorbanoghli Z, van Kouwen M, Versluys B, Bonnet D, Devalck C, Tinat J, et al. High yield of surveillance in patients diagnosed with constitutional mismatch repair deficiency. J Med Genet. 2023;60:679–84.PubMedCrossRef
107.
Zurück zum Zitat Eisenhofer G, Deutschbein T, Constantinescu G, Langton K, Pamporaki C, Calsina B, et al. Plasma metanephrines and prospective prediction of tumor location, size and mutation type in patients with pheochromocytoma and paraganglioma. Clin Chem Lab Med. 2020;59:353–63.PubMedCrossRef Eisenhofer G, Deutschbein T, Constantinescu G, Langton K, Pamporaki C, Calsina B, et al. Plasma metanephrines and prospective prediction of tumor location, size and mutation type in patients with pheochromocytoma and paraganglioma. Clin Chem Lab Med. 2020;59:353–63.PubMedCrossRef
108.
Zurück zum Zitat van Engelen K, Barrera M, Wasserman JD, Armel SR, Chitayat D, Druker H, et al. Tumor surveillance for children and adolescents with cancer predisposition syndromes: the psychosocial impact reported by adolescents and caregivers. Pediatr Blood Cancer. 2021;68:e29021.PubMedCrossRef van Engelen K, Barrera M, Wasserman JD, Armel SR, Chitayat D, Druker H, et al. Tumor surveillance for children and adolescents with cancer predisposition syndromes: the psychosocial impact reported by adolescents and caregivers. Pediatr Blood Cancer. 2021;68:e29021.PubMedCrossRef
110.
Zurück zum Zitat Rowland E, Metcalfe A. Communicating inherited genetic risk between parent and child: a meta-thematic synthesis. Int J Nurs Stud. 2013;50:870–80.PubMedCrossRef Rowland E, Metcalfe A. Communicating inherited genetic risk between parent and child: a meta-thematic synthesis. Int J Nurs Stud. 2013;50:870–80.PubMedCrossRef
111.
Zurück zum Zitat Wilharm C, Pralong A, Weiss M, Hallek M, Voltz R, Tuchscherer A, et al. Facing life-threat during youth: a qualitative study on challenges, coping, and needs among adolescents and young adults with cancer. Support Care Cancer. 2024;32:179.PubMedPubMedCentralCrossRef Wilharm C, Pralong A, Weiss M, Hallek M, Voltz R, Tuchscherer A, et al. Facing life-threat during youth: a qualitative study on challenges, coping, and needs among adolescents and young adults with cancer. Support Care Cancer. 2024;32:179.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Winzig J, Inhestern L, Sigmund D, Paul V, Hail LA, Rutkowski S, et al. Exploring the perspective of adolescent childhood cancer survivors on follow-up care and their concerns regarding the transition process-a qualitative content analysis. Cancer Med. 2024;13:e7234.PubMedPubMedCentralCrossRef Winzig J, Inhestern L, Sigmund D, Paul V, Hail LA, Rutkowski S, et al. Exploring the perspective of adolescent childhood cancer survivors on follow-up care and their concerns regarding the transition process-a qualitative content analysis. Cancer Med. 2024;13:e7234.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Otth M, Denzler S, Koenig C, Koehler H, Scheinemann K. Transition from pediatric to adult follow-up care in childhood cancer survivors-a systematic review. J Cancer Surviv. 2021;15:151–62.PubMedCrossRef Otth M, Denzler S, Koenig C, Koehler H, Scheinemann K. Transition from pediatric to adult follow-up care in childhood cancer survivors-a systematic review. J Cancer Surviv. 2021;15:151–62.PubMedCrossRef
Metadaten
Titel
Non-malignant features of cancer predisposition syndromes manifesting in childhood and adolescence: a guide for the general pediatrician
verfasst von
Michaela Kuhlen
Andreas B. Weins
Nicole Stadler
Daniela Angelova-Toshkina
Michael C. Frühwald
Publikationsdatum
06.12.2024
Verlag
Springer Nature Singapore
Erschienen in
World Journal of Pediatrics
Print ISSN: 1708-8569
Elektronische ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-024-00853-8

Neu im Fachgebiet Pädiatrie

Vorsicht mit Glukokortikoiden bei Glomerulopathie

Auch niedrig dosierte Glukokortikoide zur Behandlung einer primären Glomerulopathie lassen offenbar die Infektionsgefahr steigen. In einer US-Studie hing das Risiko vor allem mit der kombinierten Anwendung von Immunsuppressiva zusammen.

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Medikamente verändern wohl Nährstoffzusammensetzung der Muttermilch

Einige Medikamente wie selektive Serotonin-Wiederaufnahmehemmer können offenbar die Makronährstoffzusammensetzung der Muttermilch verändern. Das birgt möglicherweise gesundheitliche Risiken für manche gestillte Kinder.

Kann man Gestationsdiabetes mit oralen Antidiabetika behandeln?

Der Wunsch, Frauen mit Gestationsdiabetes eine orale Erstlinientherapie anbieten zu können, bleibt auch vorläufig ein Wunsch: Eine orale Stufentherapie hat sich in einer randomisierten Studie nicht als gleichwertig zu einer Insulintherapie erwiesen. 

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.