Skip to main content
Erschienen in: Rheumatology International 10/2017

01.08.2017 | Genes and Disease

Non-synonymous WNT16 polymorphisms alleles are associated with different osteoarthritis phenotypes

verfasst von: Carmen García-Ibarbia, Sara Neila, Carlos Garcés, Maria A. Alonso, María T. Zarrabeitia, Carmen Valero, Fernando Ortiz, José A. Riancho

Erschienen in: Rheumatology International | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Hereditary factors have a strong influence on osteoarthritis (OA). The Wnt pathway is involved in bone and cartilage homeostasis. Hence, we hypothesized that allelic variations of WNT16 could influence the OA phenotype. We studied 509 Caucasian patients undergoing joint replacement due to severe primary OA. Radiographs were used to classify the OA as atrophic or hypertrophic. Two nonsynonymous polymorphisms of WNT16 (rs2707466 and rs2908004) were analyzed. The association between the genotypes and the OA phenotype was analyzed by logistic regression and adjusted for age and body mass index. A genotype–phenotype association was found in the sex-stratified analysis. Thus, there was a significant difference in the genotypic frequencies of rs2707466 between hypertrophic and atrophic hip OA in males (p = 0.003), with overrepresentation of G alleles in the hypertrophic phenotype (OR 2.08; CI 1.28–3.38). An association in the same direction was observed between these alleles and the type of knee OA, with G alleles being more common in the hypertrophic than in atrophic knee phenotypes (p = 0.008; OR 1.956, CI 1.19–3.19). Similar associations were found for the rs2908004 SNP, but it only reached statistical significance for knee OA (p = 0.017; OR 0.92, CI 0.86–0.989). This is the first study attempting to explore the association of genetic variants with the OA phenotype. These data suggest the need to consider the OA phenotype in future genetic association studies of OA.
Literatur
1.
2.
Zurück zum Zitat Burger H, Van Daele PL, Odding E, Valkenburg HA, Hofman A, Grobbee DE et al (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 39(1):81–86CrossRefPubMed Burger H, Van Daele PL, Odding E, Valkenburg HA, Hofman A, Grobbee DE et al (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 39(1):81–86CrossRefPubMed
3.
Zurück zum Zitat Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 36(12):1671–1680CrossRefPubMed Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 36(12):1671–1680CrossRefPubMed
4.
Zurück zum Zitat Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 53(3):158–162CrossRefPubMedPubMedCentral Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 53(3):158–162CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Lingard EA, Mitchell SY, Francis RM, Rawlings D, Peaston R, Birrell FN et al (2010) The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 39(2):234–239CrossRefPubMed Lingard EA, Mitchell SY, Francis RM, Rawlings D, Peaston R, Birrell FN et al (2010) The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 39(2):234–239CrossRefPubMed
6.
Zurück zum Zitat Akamatsu Y, Mitsugi N, Taki N, Takeuchi R, Saito T (2009) Relationship between low bone mineral density and varus deformity in postmenopausal women with knee osteoarthritis. J Rheumatol 36(3):592–597CrossRefPubMed Akamatsu Y, Mitsugi N, Taki N, Takeuchi R, Saito T (2009) Relationship between low bone mineral density and varus deformity in postmenopausal women with knee osteoarthritis. J Rheumatol 36(3):592–597CrossRefPubMed
7.
Zurück zum Zitat Solomon L (1976) Patterns of osteoarthritis of the hip. J Bone Jt Surg Br 58(2):176–183 Solomon L (1976) Patterns of osteoarthritis of the hip. J Bone Jt Surg Br 58(2):176–183
8.
Zurück zum Zitat Hardcastle SA, Dieppe P, Gregson CL, Hunter D, Thomas GE, Arden NK et al (2014) Prevalence of radiographic hip osteoarthritis is increased in high bone mass. Osteoarthr Cartil 22(8):1120–1128CrossRefPubMedPubMedCentral Hardcastle SA, Dieppe P, Gregson CL, Hunter D, Thomas GE, Arden NK et al (2014) Prevalence of radiographic hip osteoarthritis is increased in high bone mass. Osteoarthr Cartil 22(8):1120–1128CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Schnitzler CM, Mesquita JM, Wane L (1992) Bone histomorphometry of the iliac crest, and spinal fracture prevalence in atrophic and hypertrophic osteoarthritis of the hip. Osteoporos Int 2(4):186–194CrossRefPubMed Schnitzler CM, Mesquita JM, Wane L (1992) Bone histomorphometry of the iliac crest, and spinal fracture prevalence in atrophic and hypertrophic osteoarthritis of the hip. Osteoporos Int 2(4):186–194CrossRefPubMed
10.
Zurück zum Zitat Deng ZH, Zeng C, Li YS, Yang T, Li H, Wei J et al (2016) Relation between phalangeal bone mineral density and radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord 17(1):71CrossRefPubMedPubMedCentral Deng ZH, Zeng C, Li YS, Yang T, Li H, Wei J et al (2016) Relation between phalangeal bone mineral density and radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord 17(1):71CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Osteoarthr Cartil 12(Suppl A):S39–S44CrossRefPubMed Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Osteoarthr Cartil 12(Suppl A):S39–S44CrossRefPubMed
12.
Zurück zum Zitat Yerges-Armstrong LM, Yau MS, Liu Y, Krishnan S, Renner JB, Eaton CB et al (2014) Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Miner Res 29(6):1373–1379CrossRefPubMedPubMedCentral Yerges-Armstrong LM, Yau MS, Liu Y, Krishnan S, Renner JB, Eaton CB et al (2014) Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Miner Res 29(6):1373–1379CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Sharma AR, Jagga S, Lee SS, Nam JS (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14(10):19805–19830CrossRefPubMedPubMedCentral Sharma AR, Jagga S, Lee SS, Nam JS (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14(10):19805–19830CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Corr M (2008) Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 4(10):550–556CrossRefPubMed Corr M (2008) Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 4(10):550–556CrossRefPubMed
16.
Zurück zum Zitat Glass DA, Karsenty G (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 73:43–84CrossRefPubMed Glass DA, Karsenty G (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 73:43–84CrossRefPubMed
17.
Zurück zum Zitat Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501CrossRefPubMedPubMedCentral Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206CrossRefPubMedPubMedCentral Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745CrossRefPubMedPubMedCentral Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Koller DL, Zheng HF, Karasik D, Yerges-Armstrong L, Liu CT, McGuigan F et al (2013) Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res 28(3):547–558CrossRefPubMedPubMedCentral Koller DL, Zheng HF, Karasik D, Yerges-Armstrong L, Liu CT, McGuigan F et al (2013) Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res 28(3):547–558CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41(1):15–17CrossRefPubMed Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41(1):15–17CrossRefPubMed
22.
Zurück zum Zitat Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117CrossRefPubMedPubMedCentral Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Garcia-Ibarbia C, Perez-Castrillon JL, Ortiz F, Velasco J, Zarrabeitia MT, Sumillera M et al (2013) Wnt-related genes and large-joint osteoarthritis: association study and replication. Rheumatol Int 33(11):2875–2880CrossRefPubMed Garcia-Ibarbia C, Perez-Castrillon JL, Ortiz F, Velasco J, Zarrabeitia MT, Sumillera M et al (2013) Wnt-related genes and large-joint osteoarthritis: association study and replication. Rheumatol Int 33(11):2875–2880CrossRefPubMed
24.
Zurück zum Zitat Dell’Accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421CrossRefPubMed Dell’Accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421CrossRefPubMed
25.
Zurück zum Zitat Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76(1):218–226CrossRefPubMed Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76(1):218–226CrossRefPubMed
26.
Zurück zum Zitat Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15(Suppl A):A1–A56CrossRefPubMed Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15(Suppl A):A1–A56CrossRefPubMed
27.
Zurück zum Zitat Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK et al (1995) Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 38(7):907–916CrossRefPubMed Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK et al (1995) Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 38(7):907–916CrossRefPubMed
28.
Zurück zum Zitat Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24(9):2449–2454CrossRefPubMed Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24(9):2449–2454CrossRefPubMed
29.
Zurück zum Zitat Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288CrossRefPubMedPubMedCentral Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat van den Bosch MH, Blom AB, Sloetjes AW, Koenders MI, Van de Loo FA, Van den Berg WB et al (2015) Induction of canonical wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am J Pathol 185(7):1970–1980CrossRefPubMed van den Bosch MH, Blom AB, Sloetjes AW, Koenders MI, Van de Loo FA, Van den Berg WB et al (2015) Induction of canonical wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am J Pathol 185(7):1970–1980CrossRefPubMed
31.
Zurück zum Zitat Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206CrossRefPubMed Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206CrossRefPubMed
32.
Zurück zum Zitat Buckland-Wright C (2004) Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr Cartil 12(Suppl A):S10–S19CrossRefPubMed Buckland-Wright C (2004) Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr Cartil 12(Suppl A):S10–S19CrossRefPubMed
33.
Zurück zum Zitat Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50(2):341–344CrossRefPubMed Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50(2):341–344CrossRefPubMed
34.
Zurück zum Zitat Bellido M, Lugo L, Roman-Blas JA, Castaneda S, Calvo E, Largo R et al (2011) Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr Cartil 19(10):1228–1236CrossRefPubMed Bellido M, Lugo L, Roman-Blas JA, Castaneda S, Calvo E, Largo R et al (2011) Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr Cartil 19(10):1228–1236CrossRefPubMed
35.
36.
Zurück zum Zitat Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K et al (2008) Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum 58(10):3172–3182CrossRefPubMed Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K et al (2008) Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum 58(10):3172–3182CrossRefPubMed
37.
Zurück zum Zitat Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE (2009) The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthr Cartil 17(10):1313–1318CrossRefPubMedPubMedCentral Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE (2009) The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthr Cartil 17(10):1313–1318CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C et al (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 24(1):12–21CrossRefPubMed Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C et al (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 24(1):12–21CrossRefPubMed
39.
Zurück zum Zitat Lories RJ, Peeters J, Bakker A (2007) Articular cartilage and biomechanical properties of the long bones en Frzb-knockout mice. Arthritis Rheum 56:4095–4103CrossRefPubMed Lories RJ, Peeters J, Bakker A (2007) Articular cartilage and biomechanical properties of the long bones en Frzb-knockout mice. Arthritis Rheum 56:4095–4103CrossRefPubMed
Metadaten
Titel
Non-synonymous WNT16 polymorphisms alleles are associated with different osteoarthritis phenotypes
verfasst von
Carmen García-Ibarbia
Sara Neila
Carlos Garcés
Maria A. Alonso
María T. Zarrabeitia
Carmen Valero
Fernando Ortiz
José A. Riancho
Publikationsdatum
01.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheumatology International / Ausgabe 10/2017
Print ISSN: 0172-8172
Elektronische ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-017-3783-5

Weitere Artikel der Ausgabe 10/2017

Rheumatology International 10/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.