Skip to main content
Erschienen in: International Journal of Diabetes in Developing Countries 4/2016

09.12.2015 | Original Article

Noninvasive blood glucose measurement utilizing a newly designed system based on modulated ultrasound and infrared light

verfasst von: Md. Koushik Chowdhury, Anuj Srivastava, Neeraj Sharma, Shiru Sharma

Erschienen in: International Journal of Diabetes in Developing Countries | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The approach of a new noninvasive innovation for blood glucose measurement will reform management of diabetes alongside expanded patient compliance, decline load on therapeutic crisis, and diabetes associated complications. In this present work, we represent a modulated ultrasound and infrared technique-based noninvasive system for blood glucose measurement over human subjects. The oral glucose tolerance test- and random blood glucose level test-based clinical study was performed over human subjects to measure the performance of our indigenously designed system. The accuracy was examined by pairing and comparing our noninvasive predicted data with the invasive reference data. The oral glucose tolerance test and random blood glucose test produced a total of 180 and 30 paired glucose values (noninvasive vs. invasive), respectively. The root mean squared error between the noninvasive and invasive glucose value for oral glucose tolerance test and random blood glucose measurement was 23.76 mg/dl and 28.20 mg/dl, respectively. The Pearson correlation coefficient between the noninvasive and invasive glucose value for both the tests was 0.76 and 0.85, respectively. Similarly, the mean absolute error for both the tests was 15.92 mg/dl and 17.76 mg/dl, respectively. Further, the Clarke Error Grid analysis depicts that both the tests result occupy medically accurate and acceptable zones A and B, respectively (oral glucose tolerance test: zone A = 78.33 %; zone B = 21.66 % and random blood glucose measurement: zone A = 83.33 %; zone B = 16.66 %). Hence, the present study direct towards the potentiality of our technique for noninvasive blood glucose measurement. The instrument was medically safe and well tolerated.
Literatur
2.
Zurück zum Zitat So C. F., K. S Choi., Wong T. K.S, J. Chung W.Y. Recent advances in noninvasive glucose monitoring, Medical Devices: Evidence and Research, Dove Press, 2012; 5: 45–52. So C. F., K. S Choi., Wong T. K.S, J. Chung W.Y. Recent advances in noninvasive glucose monitoring, Medical Devices: Evidence and Research, Dove Press, 2012; 5: 45–52.
3.
Zurück zum Zitat Maruo K, Tsurugi M, Chin J, Ota T, Arimoto H, Yamada Y. Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J Sel Top Quantum Electron. 2003;9:322–30.CrossRef Maruo K, Tsurugi M, Chin J, Ota T, Arimoto H, Yamada Y. Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J Sel Top Quantum Electron. 2003;9:322–30.CrossRef
4.
Zurück zum Zitat Tuchin VV, editor. Handbook of optical sensing of glucose in biological fluids and tissues. London: CRC Press. Taylor & Francis Group; 2009. Tuchin VV, editor. Handbook of optical sensing of glucose in biological fluids and tissues. London: CRC Press. Taylor & Francis Group; 2009.
5.
Zurück zum Zitat Tura A, Maran, Pacini G. Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res Clin Pract. 2007;77:16–40.CrossRefPubMed Tura A, Maran, Pacini G. Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res Clin Pract. 2007;77:16–40.CrossRefPubMed
6.
Zurück zum Zitat Tura A. Advances in the development of devices for noninvasive glycemia monitoring: who will win the race? Nutritional Therapy and Metabolism. 2010;28(1):33–9. Tura A. Advances in the development of devices for noninvasive glycemia monitoring: who will win the race? Nutritional Therapy and Metabolism. 2010;28(1):33–9.
7.
Zurück zum Zitat Zhu L, Lin J, Lin B, Li H. Noninvasive blood glucose measurement by ultrasound-modulated optical technique. Chin Opt Lett. 2013;11(2):0217011–5. Zhu L, Lin J, Lin B, Li H. Noninvasive blood glucose measurement by ultrasound-modulated optical technique. Chin Opt Lett. 2013;11(2):0217011–5.
8.
Zurück zum Zitat Zhu Lili, Lin Jieqing, Xie Wenming, Hui Li. New optical method for noninvasive blood glucose measurement by optical ultrasonic modulation, Proc. SPIE 7845, Optics in Health Care and Biomedical Optics IV. 2010;784525. Zhu Lili, Lin Jieqing, Xie Wenming, Hui Li. New optical method for noninvasive blood glucose measurement by optical ultrasonic modulation, Proc. SPIE 7845, Optics in Health Care and Biomedical Optics IV. 2010;784525.
9.
Zurück zum Zitat Coakley WT. Ultrasonic separations in analytical biotechnology. Trends Biotechnol. 1997;15:506–11.CrossRefPubMed Coakley WT. Ultrasonic separations in analytical biotechnology. Trends Biotechnol. 1997;15:506–11.CrossRefPubMed
10.
Zurück zum Zitat Haar TG, Wyard SJ. Blood cell banding in ultrasonic standing wave fields: a physical analysis. Ultrasound Med Biol. 1978;4(2):111–23.CrossRefPubMed Haar TG, Wyard SJ. Blood cell banding in ultrasonic standing wave fields: a physical analysis. Ultrasound Med Biol. 1978;4(2):111–23.CrossRefPubMed
11.
Zurück zum Zitat Radel S, Brandstetter M, Lendl B. Observation of particles manipulated by ultrasound in close proximity to a cone-shaped infrared spectroscopy probe. Ultrasonics. 2010;50:240–6.CrossRefPubMed Radel S, Brandstetter M, Lendl B. Observation of particles manipulated by ultrasound in close proximity to a cone-shaped infrared spectroscopy probe. Ultrasonics. 2010;50:240–6.CrossRefPubMed
12.
Zurück zum Zitat Silva GT, Urban MW, Fatemi M. Multifrequency radiation force of acoustic waves in fluids. Physica D. 2007;232:48–53.CrossRef Silva GT, Urban MW, Fatemi M. Multifrequency radiation force of acoustic waves in fluids. Physica D. 2007;232:48–53.CrossRef
13.
Zurück zum Zitat Urban MW, Fatemi M, Greenleaf JF. Modulation of ultrasound to produce multifrequency radiation force. Acoustical Society of America, 2010; 1228–38. Urban MW, Fatemi M, Greenleaf JF. Modulation of ultrasound to produce multifrequency radiation force. Acoustical Society of America, 2010; 1228–38.
14.
Zurück zum Zitat Urban MW, Silva GT, Fatemi M, Greenleaf JF. Multifrequency vibro acoustography. IEEE Trans Med Imaging. 2006;25:1284–95.CrossRefPubMed Urban MW, Silva GT, Fatemi M, Greenleaf JF. Multifrequency vibro acoustography. IEEE Trans Med Imaging. 2006;25:1284–95.CrossRefPubMed
15.
Zurück zum Zitat Mak S.Y., Wave experiments using low-cost 40 kHz ultrasonic transducers, Physical Education, IOP publishing Ltd. 2003; 38 (5): 441–46. Mak S.Y., Wave experiments using low-cost 40 kHz ultrasonic transducers, Physical Education, IOP publishing Ltd. 2003; 38 (5): 441–46.
16.
Zurück zum Zitat Greenslade TB. Experiments with ultrasonic transducers. Phys Teach. 1994;32:392–7.CrossRef Greenslade TB. Experiments with ultrasonic transducers. Phys Teach. 1994;32:392–7.CrossRef
17.
Zurück zum Zitat Suchkova V, Farhan N, Siddiqi AA, Carstensen EL, Dalecki D, Sally C, et al. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation. 1998;98:1030–5.CrossRefPubMed Suchkova V, Farhan N, Siddiqi AA, Carstensen EL, Dalecki D, Sally C, et al. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation. 1998;98:1030–5.CrossRefPubMed
18.
Zurück zum Zitat Birnbaum Y, Luo H, Nagai T, Fishbein MC, Peterson TM, Li S, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation. 1998;97:130–4. Birnbaum Y, Luo H, Nagai T, Fishbein MC, Peterson TM, Li S, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation. 1998;97:130–4.
19.
Zurück zum Zitat Suchkova VN, Baggs RB, Francis CW. Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model enhancement of thrombolysis and improvement in capillary muscle perfusion. Circulation. 2000;101:2296–301.CrossRefPubMed Suchkova VN, Baggs RB, Francis CW. Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model enhancement of thrombolysis and improvement in capillary muscle perfusion. Circulation. 2000;101:2296–301.CrossRefPubMed
20.
Zurück zum Zitat Voigt J, Wendelken M, Driver V, Alvarez OM. Low-frequency ultrasound (20–40) kHz as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials. Int J Low Extrem Wounds. 2012;11(1):69.CrossRef Voigt J, Wendelken M, Driver V, Alvarez OM. Low-frequency ultrasound (20–40) kHz as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials. Int J Low Extrem Wounds. 2012;11(1):69.CrossRef
21.
Zurück zum Zitat Tenhunen J, Kopola H, Myllyla R. Non-invasive glucose measurement based on selective near infrared absorption: requirements on instrumentation and special range. Measurement. 1998;24:173–7.CrossRef Tenhunen J, Kopola H, Myllyla R. Non-invasive glucose measurement based on selective near infrared absorption: requirements on instrumentation and special range. Measurement. 1998;24:173–7.CrossRef
22.
Zurück zum Zitat Kulkarni OC, Mandal P, Das SS, Banerjee S. A feasibility study on noninvasive blood glucose measurement using photoacoustic method. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). 2010; 1–4. Kulkarni OC, Mandal P, Das SS, Banerjee S. A feasibility study on noninvasive blood glucose measurement using photoacoustic method. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). 2010; 1–4.
23.
Zurück zum Zitat Konig K. Multiphoton microscopy in life sciences. J Microsc. 2004;200(2):83–104.CrossRef Konig K. Multiphoton microscopy in life sciences. J Microsc. 2004;200(2):83–104.CrossRef
24.
Zurück zum Zitat Van Assendelft OW, editors. Spectrophotometry of hemoglobin derivates. Assen: Royal Vangorcum Ltd; 1970. Van Assendelft OW, editors. Spectrophotometry of hemoglobin derivates. Assen: Royal Vangorcum Ltd; 1970.
25.
Zurück zum Zitat Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem. 1992;38:1601–7.PubMed Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem. 1992;38:1601–7.PubMed
26.
Zurück zum Zitat Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther. 2004;6(5):660–97.CrossRefPubMed Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther. 2004;6(5):660–97.CrossRefPubMed
27.
Zurück zum Zitat Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem. 1999;45:165–77.PubMed Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem. 1999;45:165–77.PubMed
28.
Zurück zum Zitat Mcewen MP, Reynolds KJ. Noninvasive monitoring with strongly absorbed light. Opt Appl. 2014;XLIV(2):177–90. Mcewen MP, Reynolds KJ. Noninvasive monitoring with strongly absorbed light. Opt Appl. 2014;XLIV(2):177–90.
29.
Zurück zum Zitat Bin Zainul, Abidin MT, Rosli MKR, Shamsuddin SA, Madzhi NK, Abdullah MF. Initial quantitative comparison of 940nm and 950nm infrared sensor performance for measuring glucose non-invasively. 2013 I.E. International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). 2013; 1–6. Bin Zainul, Abidin MT, Rosli MKR, Shamsuddin SA, Madzhi NK, Abdullah MF. Initial quantitative comparison of 940nm and 950nm infrared sensor performance for measuring glucose non-invasively. 2013 I.E. International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). 2013; 1–6.
30.
Zurück zum Zitat Kumar VS. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;75:16–27. Kumar VS. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;75:16–27.
31.
Zurück zum Zitat Cohen O, Fine I, Monashkin E, Karasik A. Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements. Diabetes Technol Ther. 2003;5:11–7.CrossRefPubMed Cohen O, Fine I, Monashkin E, Karasik A. Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements. Diabetes Technol Ther. 2003;5:11–7.CrossRefPubMed
32.
Zurück zum Zitat Pandey MC, Joshi AK. Non-invasive optical blood glucose measurement. International Journal of Engineering Research and Applications (IJERA). 2013;3(4):129–31. Pandey MC, Joshi AK. Non-invasive optical blood glucose measurement. International Journal of Engineering Research and Applications (IJERA). 2013;3(4):129–31.
33.
Zurück zum Zitat Iiya F. Glucose correlation with light scattering patterns. Chapter 9. In: Tuchin VV, editor. Handbook of optical sensing of glucose in biological fluids and tissues. London: CRC Press, Taylor & Francis Group; 2009. Iiya F. Glucose correlation with light scattering patterns. Chapter 9. In: Tuchin VV, editor. Handbook of optical sensing of glucose in biological fluids and tissues. London: CRC Press, Taylor & Francis Group; 2009.
34.
Zurück zum Zitat Tirtariyadi R. Optical glucometer interface-developing a data collecting system for near-infrared bio-sensing applications. Electrical & biomedical engineering project report. Canada: McMaster University; 2009. Tirtariyadi R. Optical glucometer interface-developing a data collecting system for near-infrared bio-sensing applications. Electrical & biomedical engineering project report. Canada: McMaster University; 2009.
35.
Zurück zum Zitat Yadav J, Rani A, Singh V, Murari BM. Near-infrared LED based non-invasive blood glucose sensor. 2014 International Conference on Signal Processing and Integrated Networks (SPIN). 2014; 591–594. Yadav J, Rani A, Singh V, Murari BM. Near-infrared LED based non-invasive blood glucose sensor. 2014 International Conference on Signal Processing and Integrated Networks (SPIN). 2014; 591–594.
36.
Zurück zum Zitat Amir O, Weinstein D, Zilberman S, Less M, Perl-Treves D, Primack H, et al. Continuous noninvasive glucose monitoring technology based on occlusion spectroscopy. J Diabetes Sci Technol. 2007;1(4):463–9.CrossRefPubMedPubMedCentral Amir O, Weinstein D, Zilberman S, Less M, Perl-Treves D, Primack H, et al. Continuous noninvasive glucose monitoring technology based on occlusion spectroscopy. J Diabetes Sci Technol. 2007;1(4):463–9.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Kohl M, Esseupreis M, Cope M. The influence of glucose concentration upon the transport of light in tissue- simulating phantoms. Phys Med Biol. 1995;40:1267–87.CrossRefPubMed Kohl M, Esseupreis M, Cope M. The influence of glucose concentration upon the transport of light in tissue- simulating phantoms. Phys Med Biol. 1995;40:1267–87.CrossRefPubMed
38.
Zurück zum Zitat Kohl M, Cope M, Essenpreis M, Böcker D. Influence of glucose concentration on light scattering in tissue- simulating phantoms. Opt Lett. 1994;19:2170–2.CrossRefPubMed Kohl M, Cope M, Essenpreis M, Böcker D. Influence of glucose concentration on light scattering in tissue- simulating phantoms. Opt Lett. 1994;19:2170–2.CrossRefPubMed
39.
Zurück zum Zitat Hill B. (ed.) Accu-Chek advantage: electrochemistry for diabetes management, current separations. 2014. Hill B. (ed.) Accu-Chek advantage: electrochemistry for diabetes management, current separations. 2014.
40.
Zurück zum Zitat Hidalgo JI, Colmenar MJ, Risco-M JL, Maqueda E, Botella M, Rubio JA, et al. Clarke and Parkes error grid analysis of diabetic glucose models obtained with evolutionary computation, In proceedings of the 2014 conference companion on genetic and evolutionary computation companion (GECCO comp '14). New York: ACM; 2014. p. 1305–12. Hidalgo JI, Colmenar MJ, Risco-M JL, Maqueda E, Botella M, Rubio JA, et al. Clarke and Parkes error grid analysis of diabetic glucose models obtained with evolutionary computation, In proceedings of the 2014 conference companion on genetic and evolutionary computation companion (GECCO comp '14). New York: ACM; 2014. p. 1305–12.
41.
Zurück zum Zitat Cox DJ, Clarke WL, Gonder-Frederick L, Pohl S, Hoover C, Snyder A, et al. Accuracy of perceiving blood glucose in IDDM. Diabetes Care. 1985;8(6):529–36.CrossRefPubMed Cox DJ, Clarke WL, Gonder-Frederick L, Pohl S, Hoover C, Snyder A, et al. Accuracy of perceiving blood glucose in IDDM. Diabetes Care. 1985;8(6):529–36.CrossRefPubMed
42.
Zurück zum Zitat Clarke WL, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10(5):622–8.CrossRefPubMed Clarke WL, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10(5):622–8.CrossRefPubMed
43.
Zurück zum Zitat Kovatchev B, Gonder-Fredrick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose monitoring sensors. Diabetes Care. 2004;27(8):1922–8. Kovatchev B, Gonder-Fredrick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose monitoring sensors. Diabetes Care. 2004;27(8):1922–8.
44.
Zurück zum Zitat Maran A, Crepaldi C, Tiengo A, Grassi G, Continuous subcutaneous glucose monitoring in diabetic patients. Diabetes Care. 2002;25:347–352. Maran A, Crepaldi C, Tiengo A, Grassi G, Continuous subcutaneous glucose monitoring in diabetic patients. Diabetes Care. 2002;25:347–352.
45.
Zurück zum Zitat Klonoff DC. Continuous glucose monitoring, roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–9.CrossRefPubMed Klonoff DC. Continuous glucose monitoring, roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–9.CrossRefPubMed
46.
Zurück zum Zitat Guevara E, Gonzalez FJ. Joint optical-electrical technique for noninvasive glucose monitoring. REVISTA MEXICANA DE FISICA. 2010;56(5):430–4. Guevara E, Gonzalez FJ. Joint optical-electrical technique for noninvasive glucose monitoring. REVISTA MEXICANA DE FISICA. 2010;56(5):430–4.
47.
Zurück zum Zitat Facchinetti A, Sparacino G, Cobelli C. Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration. J Diabetes Sci Technol. 2007;1(7):617–27.CrossRefPubMedPubMedCentral Facchinetti A, Sparacino G, Cobelli C. Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration. J Diabetes Sci Technol. 2007;1(7):617–27.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Hariri A, Wang LY. Identification and low-complexity regime-switching-insulin control of type I diabetic patients. J Biomed Sci Eng. 2011;4:297–314.CrossRef Hariri A, Wang LY. Identification and low-complexity regime-switching-insulin control of type I diabetic patients. J Biomed Sci Eng. 2011;4:297–314.CrossRef
49.
Zurück zum Zitat Maxim-Vladimirovich S, Adriaan B, Nataliya-Lvovna S, Anton-Pavlovich T, Timur Alexandrovich J, Valeriy Anatol’evich K. Information technologies in modern industry, education & society. World Applied Sciences Journal. 2013;24:171–6. Maxim-Vladimirovich S, Adriaan B, Nataliya-Lvovna S, Anton-Pavlovich T, Timur Alexandrovich J, Valeriy Anatol’evich K. Information technologies in modern industry, education & society. World Applied Sciences Journal. 2013;24:171–6.
50.
Zurück zum Zitat Sharma JK. (ed.). Business statistics, Pearson Education India, 2012;463–464. Sharma JK. (ed.). Business statistics, Pearson Education India, 2012;463–464.
51.
Zurück zum Zitat Vaddiraju S, Burgess DJ, Loannis T, Jain FC, Fotios P. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol. 2010;4(6):1540–62.CrossRefPubMedPubMedCentral Vaddiraju S, Burgess DJ, Loannis T, Jain FC, Fotios P. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol. 2010;4(6):1540–62.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Oliver NS, Toumazou C, Cass AE, Johnston DG. Glucose sensors: a review of current and emerging technology. Diabet Med. 2009;26(3):197–210.CrossRefPubMed Oliver NS, Toumazou C, Cass AE, Johnston DG. Glucose sensors: a review of current and emerging technology. Diabet Med. 2009;26(3):197–210.CrossRefPubMed
Metadaten
Titel
Noninvasive blood glucose measurement utilizing a newly designed system based on modulated ultrasound and infrared light
verfasst von
Md. Koushik Chowdhury
Anuj Srivastava
Neeraj Sharma
Shiru Sharma
Publikationsdatum
09.12.2015
Verlag
Springer India
Erschienen in
International Journal of Diabetes in Developing Countries / Ausgabe 4/2016
Print ISSN: 0973-3930
Elektronische ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-015-0459-0

Weitere Artikel der Ausgabe 4/2016

International Journal of Diabetes in Developing Countries 4/2016 Zur Ausgabe