Skip to main content
Erschienen in: BMC Medical Genetics 1/2018

Open Access 01.12.2018 | Case report

Novel heterozygous pathogenic variants in CHUK in a patient with AEC-like phenotype, immune deficiencies and 1q21.1 microdeletion syndrome: a case report

verfasst von: Maxime Cadieux-Dion, Nicole P. Safina, Kendra Engleman, Carol Saunders, Elena Repnikova, Nikita Raje, Kristi Canty, Emily Farrow, Neil Miller, Lee Zellmer, Isabelle Thiffault

Erschienen in: BMC Medical Genetics | Ausgabe 1/2018

Abstract

Background

Ectodermal dysplasias (ED) are a group of diseases that affects the development or function of the teeth, hair, nails and exocrine and sebaceous glands. One type of ED, ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC or Hay-Wells syndrome), is an autosomal dominant disease characterized by the presence of skin erosions affecting the palms, soles and scalp. Other clinical manifestations include ankyloblepharon filiforme adnatum, cleft lip, cleft palate, craniofacial abnormalities and ectodermal defects such as sparse wiry hair, nail changes, dental changes, and subjective hypohydrosis.

Case presentation

We describe a patient presenting clinical features reminiscent of AEC syndrome in addition to recurrent infections suggestive of immune deficiency. Genetic testing for TP63, IRF6 and RIPK4 was negative. Microarray analysis revealed a 2 MB deletion on chromosome 1 (1q21.1q21.2). Clinical exome sequencing uncovered compound heterozygous variants in CHUK; a maternally-inherited frameshift variant (c.1365del, p.Arg457Aspfs*6) and a de novo missense variant (c.1388C > A, p.Thr463Lys) on the paternal allele.

Conclusions

To our knowledge, this is the fourth family reported with CHUK-deficiency and the second patient with immune abnormalities. This is the first case of CHUK-deficiency with compound heterozygous pathogenic variants, including one variant that arose de novo. In comparison to cases found in the literature, this patient demonstrates a less severe phenotype than previously described.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12881-018-0556-2) contains supplementary material, which is available to authorized users.
Abkürzungen
ACMG
American College of Medical Genetics
AEC
Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome
BPS
Bartsocas-Papas syndrome
ED
Ectodermal dysplasia
EEC
Ectrodactyly-ectodermal dysplasia-clefting syndrome
Ig
Immunoglobulin
IGV
Integrative Genomics Viewer
NICU
Neonatal Intensive Care Unit
OMIM
Online Mendelian Inheritance in Man
PPS
Popliteal pterygium syndrome
RSV
Respiratory syncytial virus
VWS
Van der Woude syndrome

Background

Ectodermal dysplasias (ED, OMIM:604292) are a group of diseases affecting the teeth, hair, nails and exocrine and sebaceous glands. In some cases, part of the skin, eyes, inner ears, fingers, toes and central nervous system can also be affected. There are approximately 150 different types of ED, the most commonly recognized syndromes being the ectrodactyly-ectodermal dysplasia-clefting syndrome (EEC, OMIM: 129900), Rapp-Hodgkin syndrome (OMIM: 129400) and ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC, OMIM:106260) [1]. AEC syndrome, also known as Hay-Wells syndrome, is caused by heterozygous pathogenic variants in TP63 [2, 3]. A classical feature of AEC syndrome is the presence of skin erosions affecting the palms, soles and scalp. Other clinical manifestations include ankyloblepharon filiforme adnatum, cleft lip, cleft palate, craniofacial abnormalities, and ectodermal defects such as sparse wiry hair, nail changes, dental changes, and subjective hypohydrosis [46].
IRF6-related disorders are a group of inherited disorders associated with heterozygous pathogenic variants in IRF6, including Van der Woude syndrome (VWS, OMIM:119300) and popliteal pterygium syndrome (PPS, OMIM:119500). VWS is characterized by orofacial clefting and lip pits whereas PPS is characterized by similar lip/palate abnormalities in combination with ankyloblepharon in some cases, as well as digital and genital abnormalities [7, 8]. Bartsocas-Papas syndrome (BPS, OMIM: 263650), a severe form of PPS, is associated with homozygous pathogenic variants in RIPK4 and CHUK [911]. Recently, a de novo missense variant in CHUK was reported in one patient with ectodermal dysplasia, orofacial clefting, limb anomalies and hypogammaglobulinemia [12].
Copy number variants affecting the 1q21.1 region have been associated with genomic disorders. Phenotypic features of 1q21.1 deletion syndrome include microcephaly (50%), mild intellectual disability (30%), mildly dysmorphic facial features, and eye abnormalities (26%). Other findings can include cardiac defects, genitourinary anomalies, skeletal malformations, and seizures (~ 15%). Psychiatric and behavioral abnormalities can include autism spectrum disorders, attention deficit hyperactivity disorder, and sleep disturbances (OMIM: 612474). The majority of microdeletions are inherited, and incomplete penetrance and variable expressivity have been noted [1315]. In this report, we describe, for the first time, a patient with compound heterozygous variants in CHUK. Interestingly, one variant arose de novo. To our knowledge, this is the second patient with CHUK-deficiency and immune abnormalities associated with de novo variant in CHUK. However, based on our data, it is unclear if, in some cases, de novo heterozygous CHUK variants are sufficient to cause disease. Clinical features of the patient are consistent, although less severe, with previously reported cases. This patient is also carrier of a 2 MB deletion on chromosome 1 which might contribute to some of his features.

Case presentation

Our patient is a male born to healthy non consanguineous parents weighing 2.375 kg, measuring 48 inches at birth. Maternal and paternal age were 27 and 25 years old, respectively. During the pregnancy there were no exposures to drugs, alcohol, tobacco or medications. The fetal movements were described as normal up until approximately 32 weeks gestation, when they were noted to be decreased. He was delivered by induced vaginal delivery at 37 + 4 weeks gestation due to intrauterine growth retardation and reduced fetal movements. He was transferred to the Children’s Mercy Hospital Neonatal Intensive Care Unit (NICU) on day 1 of life due to cleft lip and palate and ankyloblepharon filiforme adnatum. Physical examination revealed sparse eyelashes and eyebrows, hypoplasia of the teeth, abnormal palmar creases, 5th finger clinodactyly, mild 2nd, 3rd toe syndactyly and hypohidrosis (Fig. 1). The patient had recurrent bacterial and viral infections. His infections included recurrent otitis media despite bilateral myringotomy and tube placement, Staphylococcus aureus impetigo, coxsackie hand foot mouth disease, recurrent upper and lower respiratory infections including respiratory syncytial virus (RSV) bronchiolitis and multiple episodes of non-RSV viral bronchiolitis. His immune work up showed mild abnormalities including low immunoglobulin (Ig) M (31 mg/dL) and low normal IgG levels (355 mg/dL). His IgA was normal (17 mg/dL). His lymphocyte subsets showed normal T cells (CD3; 1860 mm3) but mildly low CD4 (1333 mm3) and CD8 (372 mm3) subsets. The patient’s developmental history was appropriate. He had a head ultrasound, abdominal ultrasound, echocardiogram and bone survey which were unremarkable. This clinical presentation led to the suspicion of an ectodermal dysplasia syndrome such as AEC syndrome, Bartsocas-Papas syndrome or Van der Woude syndrome. Gene testing for TP63, RIPK4 and IRF6 was negative. Microarray analysis revealed a 2 MB deletion on chromosome 1 encompassing 18 genes (arr [hg19] 1q21.1q21.2 (145,885,645–147,929,115)). Parental studies were requested but not performed.
Clinical exome sequencing was performed on the affected individual with methods as previously published [1618]. Variants were filtered to 1% minor allele frequency, then prioritized by the American College of Medical Genetics (ACMG) categorization [19], OMIM identity and phenotypic assessment. This individual was found to be compound heterozygous for a frameshift variant c.1365del (p.Arg457Aspfs*6) and a missense variant c.1388C > A (p.Thr463Lys) in CHUK (NM_001278.3) (Fig. 2a). Both variants are located in exon 13 and occurred in trans, as visualized by the Integrative Genomics Viewer (IGV) tool (Additional file 1: Figure S1) [20, 21]. Sanger sequencing confirmed that the p.Arg457Aspfs*6 variant was maternally-inherited and the p.Thr463Lys was not detected in either parental sample (Fig. 2b). Paternity was confirmed using short-tandem repeat analysis. This indicates that the p.Thr463Lys variant arose de novo, but germline mosaicism in the father can’t be excluded. These variants were absent from population databases.

Discussion & conclusion

Pathogenic variants in CHUK have been reported in 3 families to date (Table 1; Additional file 2: Figure S2): In 2010, Lahtela et al., described a Finnish family in which a homozygous loss of function variant in CHUK (c.1264C > T; p.Gln422*) was associated with Cocoon syndrome, an autosomal recessive lethal condition characterized by severe fetal malformations. Prenatal ultrasound of 2 fetuses revealed an abnormal cyst in the cranial region, a large defect in the craniofacial area, an omphalocele and immotile and hypoplastic limbs. Abnormalities of the heart, lungs, skin, bones and skeletal muscles were also observed. Both parents were heterozygous for this variant and genealogical analysis revealed a common ancestor [22]. In 2015, Leslie et al., reported a homozygous variant in the splice acceptor site of exon 10 (c.934-2A > G) in a female patient with Bartsocas-Papas syndrome born to healthy first degree cousins. Clinical manifestations included alopecia totalis (with absent eyebrows and eyelashes), wide cranial suture and fontanelle, nose and ear dysmorphisms, bilateral microophthalmia, ankyloblepharon, bilateral cleft lip and palate, genital hypoplasia, popliteal webs and skeletal abnormalities [11]. In 2017, Khandelwal et al., reported a 10-year-old female born to non-consanguineous Caucasian parents with a de novo missense variant in CHUK (c.425A > G, p.His142Arg). Clinical features of the patient included sparse hair, absent eyebrows and eyelashes, ankyloblepharon and dysplastic nails. X-rays of the hands and feet showed complex anomalies consisting of, among others, hypoplastic thumbs and 3rd–5th toe syndactyly. Other features included posterior cleft palate, retrognathia, buccal synechia, hypoplastic external genitalia, conical and fragile primary teeth and short stature (height -3.5SD and weight -3SD). Her development was marked by growth retardation, gastrointestinal reflux with swallowing problems and lower respiratory tract infections. She also had hypogammaglobulinemia. To our knowledge, a second pathogenic variant was not detected in this patient, but additional screening methods such as deletion/duplication analysis were not performed [12].
Table 1
Comparison of clinical features of patients with variants in CHUK reported in the literature and in this report
 
Lahtela et al., 2010 [22]
Leslie et al., 2015 [11]
Khandelwal et al., 2017 [12]
This study
Mode of inheritance
AR
AR
AD (?)
AR (with de novo paternal variant)
Variant(s)
hom c.1264C > T (p.Gln422*)
hom c.934-2A > G (p.?)
het de novo c.425A > G (p.His142Arg)
comp het c.1388C > A (p.Thr463Lys) / c.1365del (p.Arg457Aspfs*6)
Age
14 and 13 weeks gestation
Infant
10 years
30 months
Sex
Females (2 fetuses)
Female
Female
Male
Family history
Negative
Negative
Negative
Negative
Hair
n.a
Alopecia totalis, absent eyebrows and eyelashes
Sparse hair, absent eyebrows and eyelashes
Sparse short scalp hair, sparse eyebrows
Cranium
Underdeveloped skull bones, abnormal cyst
Wide cranial suture and anterior fontanelle, prominent occiput
n.a
Normal
Ears
n.a
Low set with overfolded helices
n.a
Normal
Eye
Missing eyes, hypoplastic eyeballs
Bilateral microphtalmia, ankyloblepharon, cloudy corneas
Ankyloblepharon
Mild epicanthus, ankyloblepharon
Mouth
Abnormal orifice covered with skin
Cleft lip/palate (bilateral), intraoral bands
Cleft palate (posterior), buccal synechia
Cleft lip/palate (unilateral left)
Nose
Sharp protrusion
Distorted, absent alae nasi
Hypoplastic alae nasi
Depressed flat nasal bridge, alae nasi hypoplasia
Chin
n.a
Micrognatia
Retrognathia
n.a
Chest
n.a
Hypoplastic nipples, short sternum
n.a
Normal
Abdomen
Omphalocele
High umbilical stump, umbilical cord fused to the abdominal wall. No organomegaly
n.a
Soft without organomegaly
Upper extremities
Hypoplastic, encased under skin
Short, bilateral cubital webs
n.a
Normal appearance
Hands
n.a
Small, bilateral syndactyly
Abnormal
Significant 5th finger clinodactyly. Single creases bilaterally
Lower extremities
Hypoplastic, encased under skin
Very short with popliteal webs extending from the upper thigh to the feet
n.a
Normal appearance. No pterygium
Feet
n.a
Fused forefeet
Bilateral toes syndactyly of three rays with dysmorphic phalanges
Mild 2nd, 3rd toe syndactyly
Skin/tegument
Abnormal transparent skin
Skin tags (scalp, right eyelid, umbilical cord, vagina)
Dysplastic nails
Light skin coloration. Mild eczema
Genitalia
n.a
Hypoplasia of the labia majora, labia minora, and clitoris
Hypoplastic external genitalia
n.a
Skeletal survey
Hypoplastic bones
Three metacarpal bones, hypoplasia of proximal phalanges, aplasia of distal phalanges (bilateral), absent foot bones (except the talus; left side), absent calcaneus, absent tarsal bones, hypoplasia of the foot phalanges (right side)
Hypoplastic thumbs and first metacarpals, four metatarsal bones with large proximal extremity of the 4th ray (left side) and fusion between the 4th and the 5th rays (right side)
n.a
Legend: n.a information not available, E Embryonic
*Describe a stop codon. It is part of the nomenclature convention
The CHUK gene encodes for Ikka (Inhibitor of nuclear factor kappa-B kinase subunit alpha), a catalytic subunit of the multiprotein complex IbK kinase. Studies in mice show that the Ikka protein is ubiquitously expressed with the highest levels in the developing spine, limb buds and head. It plays an important role in limb development, apoptosis of interdigital tissue and proliferation and differentiation of epidermal keratinocytes. Embryos from the Ikka-deficient mice developed to term, but died shortly after birth. The fetuses displayed several skeletal abnormalities affecting the size and the morphology of the spine, skull, forepaws and the hindpaws. Limb bones were relatively smaller and of normal shape. Microscopic evaluation of the skin revealed hyperplasia of the suprabasal layer (stratum spinosum) and absent stratum granulosum and stratum corneum. Mice heterozygous for the CHUK gene deletion are normal, viable and fertile [23].
In this report, we describe a male patient presenting with an AEC syndrome-like phenotype and recurrent infections suggestive of immune deficiency. Targeted sequencing of TP63, RIPK4 and IRF6 was negative. Microarray analysis identified a 2 MB deletion on chromosome 1 covering the distal part of the 1q21.1 region deletion. Although this pathogenic deletion is unlikely to account for all the clinical features of the patient, it could contribute to his dysmorphic facial features, small size and failure to thrive (Fig. 1, Additional file 3: Figure S3). Additionally, exome sequencing revealed that he was compound heterozygous for two novel variants in CHUK. The c.1365del (p.Arg457Aspfs*6) frameshift variant, was inherited from his unaffected mother and the c.1388C > A (p.Thr463Lys) missense variant arose de novo. This genotype is compatible with autosomal recessive inheritance and consistent with previously reported families [11, 22]. To our knowledge, only one patient has been reported so far with a de novo missense variant in CHUK [12]. Since deletion/duplication testing was not performed, the presence of a second undetected variant cannot be ruled out. Interestingly, our patient shares several clinical features with this individual. However, skeletal defects appeared less severe in our patient and we cannot rule out progressive hypogammaglobulinemia needing Ig replacement at follow up. Therefore, based on our findings, it is unclear if, in some cases, the inheritance pattern could be dominant and that de novo heterozygous CHUK variants are sufficient to cause the disease. Even if the majority of pathogenic de novo variants are involved in dominant genetic disorders, there are growing examples of recessive disorders that can be caused by the combination of an inherited variant on one allele and a de novo variant on the other.

Acknowledgements

Authors would like to thank the patient and the family involved in this study. We thank our colleagues in the Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City.

Funding

This work was supported by the Marion Merrell Dow Foundation, Children’s Mercy - Kansas City, Patton Trust, W.T. Kemper Foundation, Pat & Gil Clements Foundation, Claire Giannini Foundation, and Black & Veatch.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.
The project was approved by the research ethics committee of the Children’s Mercy Hospitals.
Written informed consent for publication of this case, including age, relevant medical history, symptoms and full facial photographs, was obtained from the patient’s father.

Competing interests

Authors declare that they have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, et al. p63 gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet. 2001;69(3):481–92.CrossRefPubMedPubMedCentral van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, et al. p63 gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet. 2001;69(3):481–92.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Rinne T, Bolat E, Meijer R, Scheffer H, van Bokhoven H. Spectrum of p63 mutations in a selected patient cohort affected with ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). Am J Med Genet A. 2009;149A(9):1948–51.CrossRefPubMed Rinne T, Bolat E, Meijer R, Scheffer H, van Bokhoven H. Spectrum of p63 mutations in a selected patient cohort affected with ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). Am J Med Genet A. 2009;149A(9):1948–51.CrossRefPubMed
4.
Zurück zum Zitat Sutton VR, van Bokhoven H. TP63-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993. Sutton VR, van Bokhoven H. TP63-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993.
5.
Zurück zum Zitat Koch PJ, Dinella J, Fete M, Siegfried EC, Koster MI. Modeling AEC-new approaches to study rare genetic disorders. Am J Med Genet A. 2014;164A(10):2443–54.CrossRefPubMed Koch PJ, Dinella J, Fete M, Siegfried EC, Koster MI. Modeling AEC-new approaches to study rare genetic disorders. Am J Med Genet A. 2014;164A(10):2443–54.CrossRefPubMed
6.
Zurück zum Zitat Sutton VR, Plunkett K, Dang DX, Lewis RA, Bree AF, Bacino CA. Craniofacial and anthropometric phenotype in ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (hay-wells syndrome) in a cohort of 17 patients. Am J Med Genet A. 2009;149A(9):1916–21.CrossRefPubMed Sutton VR, Plunkett K, Dang DX, Lewis RA, Bree AF, Bacino CA. Craniofacial and anthropometric phenotype in ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (hay-wells syndrome) in a cohort of 17 patients. Am J Med Genet A. 2009;149A(9):1916–21.CrossRefPubMed
7.
Zurück zum Zitat Schutte BC, Saal HM, Goudy S, Leslie E. IRF6-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993. Schutte BC, Saal HM, Goudy S, Leslie E. IRF6-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993.
8.
Zurück zum Zitat Hall JG, Reed SD, Rosenbaum KN, Gershanik J, Chen H, Wilson KM. Limb pterygium syndromes: a review and report of eleven patients. Am J Med Genet. 1982;12(4):377–409.CrossRefPubMed Hall JG, Reed SD, Rosenbaum KN, Gershanik J, Chen H, Wilson KM. Limb pterygium syndromes: a review and report of eleven patients. Am J Med Genet. 1982;12(4):377–409.CrossRefPubMed
9.
Zurück zum Zitat Kalay E, Sezgin O, Chellappa V, Mutlu M, Morsy H, Kayserili H, Kreiger E, Cansu A, Toraman B, Abdalla EM, et al. Mutations in RIPK4 cause the autosomal-recessive form of popliteal pterygium syndrome. Am J Hum Genet. 2012;90(1):76–85.CrossRefPubMedPubMedCentral Kalay E, Sezgin O, Chellappa V, Mutlu M, Morsy H, Kayserili H, Kreiger E, Cansu A, Toraman B, Abdalla EM, et al. Mutations in RIPK4 cause the autosomal-recessive form of popliteal pterygium syndrome. Am J Hum Genet. 2012;90(1):76–85.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Mitchell K, O'Sullivan J, Missero C, Blair E, Richardson R, Anderson B, Antonini D, Murray JC, Shanske AL, Schutte BC, et al. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet. 2012;90(1):69–75.CrossRefPubMedPubMedCentral Mitchell K, O'Sullivan J, Missero C, Blair E, Richardson R, Anderson B, Antonini D, Murray JC, Shanske AL, Schutte BC, et al. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet. 2012;90(1):69–75.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Leslie EJ, O'Sullivan J, Cunningham ML, Singh A, Goudy SL, Ababneh F, Alsubaie L, Ch’ng GS, van der Laar IM, Hoogeboom AJ, et al. Expanding the genetic and phenotypic spectrum of popliteal pterygium disorders. Am J Med Genet A. 2015;167A(3):545–52.CrossRefPubMed Leslie EJ, O'Sullivan J, Cunningham ML, Singh A, Goudy SL, Ababneh F, Alsubaie L, Ch’ng GS, van der Laar IM, Hoogeboom AJ, et al. Expanding the genetic and phenotypic spectrum of popliteal pterygium disorders. Am J Med Genet A. 2015;167A(3):545–52.CrossRefPubMed
12.
Zurück zum Zitat Khandelwal KD, Ockeloen CW, Venselaar H, Boulanger C, Brichard B, Sokal E, Pfundt R, Rinne T, van Beusekom E, Bloemen M, et al. Identification of a de novo variant in CHUK in a patient with an EEC/AEC syndrome-like phenotype and hypogammaglobulinemia. Am J Med Genet A. 2017; Khandelwal KD, Ockeloen CW, Venselaar H, Boulanger C, Brichard B, Sokal E, Pfundt R, Rinne T, van Beusekom E, Bloemen M, et al. Identification of a de novo variant in CHUK in a patient with an EEC/AEC syndrome-like phenotype and hypogammaglobulinemia. Am J Med Genet A. 2017;
13.
Zurück zum Zitat Digilio MC, Bernardini L, Consoli F, Lepri FR, Giuffrida MG, Baban A, Surace C, Ferese R, Angioni A, Novelli A, et al. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: rare association with pulmonary valve stenosis. Eur J Med Genet. 2013;56(3):144–9.CrossRefPubMed Digilio MC, Bernardini L, Consoli F, Lepri FR, Giuffrida MG, Baban A, Surace C, Ferese R, Angioni A, Novelli A, et al. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: rare association with pulmonary valve stenosis. Eur J Med Genet. 2013;56(3):144–9.CrossRefPubMed
14.
Zurück zum Zitat Haldeman-Englert CR, Jewett T. 1q21.1 recurrent microdeletion. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993. Haldeman-Englert CR, Jewett T. 1q21.1 recurrent microdeletion. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, et al., editors. GeneReviews(R). Seattle; 1993.
15.
Zurück zum Zitat Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40(12):1466–71.CrossRefPubMedPubMedCentral Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40(12):1466–71.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, LePichon JB, Miller NA, Thiffault I, Dinwiddie DL, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6(265):265ra168.CrossRefPubMedPubMedCentral Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, LePichon JB, Miller NA, Thiffault I, Dinwiddie DL, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6(265):265ra168.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4(154):154ra135.CrossRefPubMedPubMedCentral Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4(154):154ra135.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3(65):65ra64.CrossRef Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3(65):65ra64.CrossRef
19.
Zurück zum Zitat Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.CrossRefPubMedPubMedCentral Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.CrossRefPubMed Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.CrossRefPubMed
22.
Zurück zum Zitat Lahtela J, Nousiainen HO, Stefanovic V, Tallila J, Viskari H, Karikoski R, Gentile M, Saloranta C, Varilo T, Salonen R, et al. Mutant CHUK and severe fetal encasement malformation. N Engl J Med. 2010;363(17):1631–7.CrossRefPubMed Lahtela J, Nousiainen HO, Stefanovic V, Tallila J, Viskari H, Karikoski R, Gentile M, Saloranta C, Varilo T, Salonen R, et al. Mutant CHUK and severe fetal encasement malformation. N Engl J Med. 2010;363(17):1631–7.CrossRefPubMed
23.
Zurück zum Zitat Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R, Karin M. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science. 1999;284(5412):316–20.CrossRefPubMed Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R, Karin M. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science. 1999;284(5412):316–20.CrossRefPubMed
Metadaten
Titel
Novel heterozygous pathogenic variants in CHUK in a patient with AEC-like phenotype, immune deficiencies and 1q21.1 microdeletion syndrome: a case report
verfasst von
Maxime Cadieux-Dion
Nicole P. Safina
Kendra Engleman
Carol Saunders
Elena Repnikova
Nikita Raje
Kristi Canty
Emily Farrow
Neil Miller
Lee Zellmer
Isabelle Thiffault
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2018
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0556-2

Weitere Artikel der Ausgabe 1/2018

BMC Medical Genetics 1/2018 Zur Ausgabe