Skip to main content
Erschienen in: Tumor Biology 12/2014

01.12.2014 | Research Article

Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma

verfasst von: Zübeyde Yalniz, Hulya Tigli, Hatice Tigli, Oner Sanli, Nejat Dalay, Nur Buyru

Erschienen in: Tumor Biology | Ausgabe 12/2014

Einloggen, um Zugang zu erhalten

Abstract

The tumor suppressor LKB1 gene is a master kinase and inhibits mammalian target of rapamycin (mTOR) by activating AMP-activated protein kinase (AMPK) and AMPK-related kinases. LKB1 is a critical intermediate in the mTOR signaling pathway, and mutations of the LKB1 gene have been implicated in the development of different tumor types. Recent evidence indicates that LKB1 alterations contribute to cancer progression and metastasis by modulating vascular endothelial growth factor (VEGF) production. The Ras homolog enriched in brain (RHEB) protein is a component of the mTOR pathway and functions as a positive regulator of mTOR. However, the mechanisms and effectors of RHEB in mTOR signaling are not well known. In this study, we analyzed the expression of RHEB and HIF1α genes in correlation with LKB1 gene mutations. All coding exons and exon/intron boundaries of the LKB1 gene were analyzed by direct sequencing in 77 renal cell carcinoma (RCC) tumors and 62 matched noncancerous tissue samples. In 51.6 % of the patients, ten different mutations including four novel mutations in the coding sequences and six single nucleotide substitutions in the introns were observed. Rheb and HIF1α expression levels were not statistically different between the tumor and corresponding noncancerous tissue samples. However, expression of the Rheb gene was upregulated in the tumor samples carrying the intron 2 (+24 G→T) alteration. Association between the gene expression and tissue protein levels was also analyzed for HIF1α in a subgroup of patients, and a high correlation was confirmed. Our results indicate that the LKB1 gene is frequently altered in RCC and may play a role in RCC progression.
Literatur
1.
Zurück zum Zitat Cho E, Lindblad P, Adami HO. Kidney cancer. In: Adami HO, Hunter D, Trichopoulos D, editors. Textbook of cancer epidemiology. 2nd ed. New York: Oxford University Press; 2008. Cho E, Lindblad P, Adami HO. Kidney cancer. In: Adami HO, Hunter D, Trichopoulos D, editors. Textbook of cancer epidemiology. 2nd ed. New York: Oxford University Press; 2008.
2.
Zurück zum Zitat Elfiky AA, Aziz SA, Conrad PJ, Siddiqu S, Hackl W, Maira M, et al. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Trans Med. 2011;9:133.CrossRef Elfiky AA, Aziz SA, Conrad PJ, Siddiqu S, Hackl W, Maira M, et al. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Trans Med. 2011;9:133.CrossRef
3.
Zurück zum Zitat The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.PubMedCentralCrossRef The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.PubMedCentralCrossRef
4.
Zurück zum Zitat Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear cell renal cell carcinoma. Nat Genet. 2013;45:860–7.PubMedCrossRef Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear cell renal cell carcinoma. Nat Genet. 2013;45:860–7.PubMedCrossRef
5.
Zurück zum Zitat Hara K, Maruki Y, Long X, Yashino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–89.PubMedCrossRef Hara K, Maruki Y, Long X, Yashino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–89.PubMedCrossRef
6.
Zurück zum Zitat Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11:1457–66.PubMedCrossRef Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11:1457–66.PubMedCrossRef
7.
Zurück zum Zitat Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, De Pinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.PubMedCrossRef Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, De Pinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.PubMedCrossRef
8.
Zurück zum Zitat Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004;29:32–8.PubMedCrossRef Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004;29:32–8.PubMedCrossRef
9.
Zurück zum Zitat Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5:566–71.PubMedCrossRef Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5:566–71.PubMedCrossRef
10.
Zurück zum Zitat Katajisto P, Vallenius T, Vaahtomeri K, Ekman N, Udd L, Tiainen M, et al. The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta. 2007;1775:63–75.PubMed Katajisto P, Vallenius T, Vaahtomeri K, Ekman N, Udd L, Tiainen M, et al. The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta. 2007;1775:63–75.PubMed
11.
Zurück zum Zitat Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–43.PubMedPubMedCentralCrossRef Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–43.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Corradetti MN, Inoki K, Bardeesy N, De Pinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004;18:1533–8.PubMedPubMedCentralCrossRef Corradetti MN, Inoki K, Bardeesy N, De Pinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004;18:1533–8.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science. 2001;293:1323–6.PubMedCrossRef Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science. 2001;293:1323–6.PubMedCrossRef
14.
Zurück zum Zitat Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRef Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRef
15.
Zurück zum Zitat Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, vn Engeland M, de Bruiine AD, et al. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.PubMedCrossRef Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, vn Engeland M, de Bruiine AD, et al. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.PubMedCrossRef
16.
Zurück zum Zitat Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–52.PubMedCrossRef Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–52.PubMedCrossRef
17.
Zurück zum Zitat Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20:1955–64.PubMedPubMedCentralCrossRef Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20:1955–64.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chism DD, Rathmell K. Seeing the forest fort he trees: kidney oncogenomes in relation to therapeutic outcomes. Clin Cancer Res. 2014;20:1721–3.PubMedPubMedCentralCrossRef Chism DD, Rathmell K. Seeing the forest fort he trees: kidney oncogenomes in relation to therapeutic outcomes. Clin Cancer Res. 2014;20:1721–3.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Tigli H, Seven D, Tunc M, Sanli O, Basaran S, Ulutin T, et al. LKB1 mutations and their correlation with LKB1 and Rheb expression in bladder cancer. Mol Carcinog. 2013;52:660–5.PubMedCrossRef Tigli H, Seven D, Tunc M, Sanli O, Basaran S, Ulutin T, et al. LKB1 mutations and their correlation with LKB1 and Rheb expression in bladder cancer. Mol Carcinog. 2013;52:660–5.PubMedCrossRef
20.
Zurück zum Zitat Onozato R, Kosaka T, Achiwa H, Kuwano H, Takahashi T, Yatabe Y, et al. LKB1 gene mutations in Japanese lung cancer patients. Cancer Sci. 2007;98:1747–51.PubMedCrossRef Onozato R, Kosaka T, Achiwa H, Kuwano H, Takahashi T, Yatabe Y, et al. LKB1 gene mutations in Japanese lung cancer patients. Cancer Sci. 2007;98:1747–51.PubMedCrossRef
21.
Zurück zum Zitat Kenanli E, Karaman E, Enver O, Ulutin T, Buyru N. Genetic alterations of the LKB1 gene in head and neck cancer. DNA Cell Biol. 2010;29:735–8.PubMedCrossRef Kenanli E, Karaman E, Enver O, Ulutin T, Buyru N. Genetic alterations of the LKB1 gene in head and neck cancer. DNA Cell Biol. 2010;29:735–8.PubMedCrossRef
22.
Zurück zum Zitat Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58:2087–90.PubMed Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58:2087–90.PubMed
23.
Zurück zum Zitat Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkanken M, Salovaara R, et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol. 1999;154:677–81.PubMedPubMedCentralCrossRef Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkanken M, Salovaara R, et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol. 1999;154:677–81.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Sakamoto K, McCarthy A, Smith D, Gren KA, Garahame Hardie D, Ashworth A, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24:1810–20.PubMedPubMedCentralCrossRef Sakamoto K, McCarthy A, Smith D, Gren KA, Garahame Hardie D, Ashworth A, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24:1810–20.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Granot Z, Swisa A, Magenheim J, Stolovich-Rein M, Fujimoto W, Manduchi E, et al. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab. 2009;10:296–308.PubMedPubMedCentralCrossRef Granot Z, Swisa A, Magenheim J, Stolovich-Rein M, Fujimoto W, Manduchi E, et al. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab. 2009;10:296–308.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumor suppressor LKB1 in clear cell renal carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108:327–33.PubMedPubMedCentralCrossRef Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumor suppressor LKB1 in clear cell renal carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108:327–33.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Bardman LA, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126:1788–94.PubMedCrossRef Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Bardman LA, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126:1788–94.PubMedCrossRef
28.
Zurück zum Zitat Kline ER, Muller S, Pan L, Tighiouart M, Chen ZG, Marcus AI. Localization-specific LKB1 loss in head and neck squamous cell carcinoma metastasis. Head Neck. 2011;33:1501–12.PubMedCrossRef Kline ER, Muller S, Pan L, Tighiouart M, Chen ZG, Marcus AI. Localization-specific LKB1 loss in head and neck squamous cell carcinoma metastasis. Head Neck. 2011;33:1501–12.PubMedCrossRef
30.
Zurück zum Zitat Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.PubMedCrossRef Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.PubMedCrossRef
31.
Zurück zum Zitat Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28.PubMedPubMedCentralCrossRef Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH, et al. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res. 1998;58:3787–90.PubMed Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH, et al. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res. 1998;58:3787–90.PubMed
33.
Zurück zum Zitat Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schulkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22:5102–14.PubMedPubMedCentralCrossRef Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schulkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22:5102–14.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRef Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Qui W, Schönleben F, Thaker HM, Goggins M, Su GH. A novel mutation of STK11/LKB1 gene leads to the loss of cell growth inhibition in head and neck squamous cell carcinoma. Oncogene. 2006;25:2937–42.CrossRef Qui W, Schönleben F, Thaker HM, Goggins M, Su GH. A novel mutation of STK11/LKB1 gene leads to the loss of cell growth inhibition in head and neck squamous cell carcinoma. Oncogene. 2006;25:2937–42.CrossRef
36.
Zurück zum Zitat Land SC, Tee AR. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–43.PubMedCrossRef Land SC, Tee AR. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–43.PubMedCrossRef
37.
Zurück zum Zitat Gromov PS, Madsen P, Tomerup N, Celis JE. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb. FEBS Lett. 1995;377:221–6.PubMedCrossRef Gromov PS, Madsen P, Tomerup N, Celis JE. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb. FEBS Lett. 1995;377:221–6.PubMedCrossRef
38.
Zurück zum Zitat Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.PubMedCrossRef Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.PubMedCrossRef
39.
Zurück zum Zitat Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61:5215–22.PubMed Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61:5215–22.PubMed
40.
Zurück zum Zitat Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Hen C, et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res. 2002;62:2957–61.PubMed Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Hen C, et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res. 2002;62:2957–61.PubMed
Metadaten
Titel
Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma
verfasst von
Zübeyde Yalniz
Hulya Tigli
Hatice Tigli
Oner Sanli
Nejat Dalay
Nur Buyru
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2014
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2550-4

Weitere Artikel der Ausgabe 12/2014

Tumor Biology 12/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.