Skip to main content
Erschienen in: Journal of Clinical Immunology 6/2018

20.07.2018 | Original Article

Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma

verfasst von: Ido Somekh, Benjamin Marquardt, Yanshan Liu, Meino Rohlfs, Sebastian Hollizeck, Musa Karakukcu, Ekrem Unal, Ebru Yilmaz, Turkan Patiroglu, Murat Cansever, Shirly Frizinsky, Vicktoria Vishnvenska-Dai, Erez Rechavi, Tali Stauber, Amos J. Simon, Atar Lev, Christoph Klein, Daniel Kotlarz, Raz Somech

Erschienen in: Journal of Clinical Immunology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

RAS guanyl-releasing protein 1 (RASGRP1) deficiency has recently been shown to cause a primary immunodeficiency (PID) characterized by CD4+ T cell lymphopenia and Epstein-Barr virus (EBV)-associated B cell lymphoma. Our report of three novel patients widens the scope of RASGRP1 deficiency by providing new clinical and immunological insights on autoimmunity, immune cell development, and predisposition to lymphoproliferative disease.

Methods

One patient of Turkish origin (P1) and two Palestinian patients (P2, P3) were evaluated for immunodeficiency. To decipher the molecular cause of disease, whole exome sequencing was conducted. Identified mutations were validated by immunological and biochemical assays.

Results

We report three patients presenting with similar clinical characteristics of immunodeficiency and EBV-associated lymphoproliferative disease. In addition, P2 and P3 exhibited overt autoimmune manifestations. Genetic screening identified two novel loss-of-function mutations in RASGRP1. Immunoblotting and active Ras pull-down assays confirmed perturbed ERK1/2 signaling and reduced Ras-GTPase activity in heterologous Jurkat cells with ectopic expression of RASGRP1 mutants. All three patients had CD4+ T cell lymphopenia. P2 and P3 showed decreased mitogen-induced lymphocyte proliferation, reduced T cell receptor excision circles, abnormal T cell receptor (TCR) Vβ repertoires, and increased frequencies of TCRγδ cells. TCR gamma repertoire diversity was significantly reduced with a remarkable clonal expansion.

Conclusions

RASGRP1 deficiency is associated with life-threatening immune dysregulation, severe autoimmune manifestations, and susceptibility to EBV-induced B cell malignancies. Early diagnosis is critical and hematopoietic stem cell transplantation might be considered as curative treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fischer A. Human primary immunodeficiency diseases: a perspective. Nat Immunol. 2004;5(1):23–30.CrossRefPubMed Fischer A. Human primary immunodeficiency diseases: a perspective. Nat Immunol. 2004;5(1):23–30.CrossRefPubMed
2.
Zurück zum Zitat Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018 Jan;38(1):96–128.CrossRefPubMed Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018 Jan;38(1):96–128.CrossRefPubMed
3.
Zurück zum Zitat Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–94.CrossRefPubMed Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–94.CrossRefPubMed
4.
Zurück zum Zitat Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847.CrossRefPubMedPubMedCentral Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki OY, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17(12):1352–60.CrossRefPubMedPubMedCentral Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki OY, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17(12):1352–60.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Platt CD, Fried AJ, Hoyos-Bachiloglu R, Usmani GN, Schmidt B, Whangbo J, et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clinical immunology (Orlando, Fla.) 2017;183:142–144. Platt CD, Fried AJ, Hoyos-Bachiloglu R, Usmani GN, Schmidt B, Whangbo J, et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clinical immunology (Orlando, Fla.) 2017;183:142–144.
7.
Zurück zum Zitat Mao H, Yang W, Latour S, Yang J, Winter S, Zheng J, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol. 2017; Mao H, Yang W, Latour S, Yang J, Winter S, Zheng J, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol. 2017;
8.
Zurück zum Zitat Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO molecular medicine. 2018 Feb;10(2):188–99.CrossRefPubMedPubMedCentral Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO molecular medicine. 2018 Feb;10(2):188–99.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol. 2013 Sep 04;4:239.CrossRefPubMedPubMedCentral Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol. 2013 Sep 04;4:239.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Stone JC. Regulation of Ras in lymphocytes: get a GRP. Biochem Soc Trans. 2006;34(Pt 5):858–61.CrossRefPubMed Stone JC. Regulation of Ras in lymphocytes: get a GRP. Biochem Soc Trans. 2006;34(Pt 5):858–61.CrossRefPubMed
12.
Zurück zum Zitat Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000;1(4):317–321. Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000;1(4):317–321.
13.
Zurück zum Zitat Lev A, Simon AJ, Broides A, Levi J, Garty BZ, Rosenthal E, et al. Thymic function in MHC class II-deficient patients. J Allergy Clin Immunol. 2013;131(3):831–9.CrossRefPubMed Lev A, Simon AJ, Broides A, Levi J, Garty BZ, Rosenthal E, et al. Thymic function in MHC class II-deficient patients. J Allergy Clin Immunol. 2013;131(3):831–9.CrossRefPubMed
14.
Zurück zum Zitat Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7(1):e30494.CrossRefPubMedPubMedCentral Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7(1):e30494.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Alamyar E, Duroux P, Lefranc MP, Giudicelli V. IMGT((R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods in molecular biology (Clifton, NJ). 2012;882:569–604.CrossRef Alamyar E, Duroux P, Lefranc MP, Giudicelli V. IMGT((R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods in molecular biology (Clifton, NJ). 2012;882:569–604.CrossRef
16.
Zurück zum Zitat Keylock CJ. Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos. 2005;109:203–7.CrossRef Keylock CJ. Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos. 2005;109:203–7.CrossRef
17.
Zurück zum Zitat Kotlarz D, Marquardt B, Baroy T, Lee WS, Konnikova L, Hollizeck S, et al. Human TGF-beta1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet. 2018;50(3):344–8.CrossRefPubMedPubMedCentral Kotlarz D, Marquardt B, Baroy T, Lee WS, Konnikova L, Hollizeck S, et al. Human TGF-beta1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet. 2018;50(3):344–8.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Seidemann K, Tiemann M, Schrappe M, Yakisan E, Simonitsch I, Janka-Schaub G, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706.CrossRefPubMed Seidemann K, Tiemann M, Schrappe M, Yakisan E, Simonitsch I, Janka-Schaub G, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706.CrossRefPubMed
19.
Zurück zum Zitat Minard-Colin V, Brugières L, Reiter A, Cairo MS, Gross TG, Woessmann W, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74.CrossRefPubMedPubMedCentral Minard-Colin V, Brugières L, Reiter A, Cairo MS, Gross TG, Woessmann W, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics/editorial board, Jonathan L Haines [et al]. 2013 Jan;0 7:Unit7 20. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics/editorial board, Jonathan L Haines [et al]. 2013 Jan;0 7:Unit7 20.
22.
Zurück zum Zitat Chen Y, Ci X, Gorentla B, Sullivan SA, Stone JC, Zhang W, et al. Differential requirement of RasGRP1 for gammadelta T cell development and activation. Journal of immunology (Baltimore, Md : 1950). 2012;189(1):61–71. Chen Y, Ci X, Gorentla B, Sullivan SA, Stone JC, Zhang W, et al. Differential requirement of RasGRP1 for gammadelta T cell development and activation. Journal of immunology (Baltimore, Md : 1950). 2012;189(1):61–71.
23.
Zurück zum Zitat Ebinu JO, Stang SL, Teixeira C, Bottorff DA, Hooton J, Blumberg PM, et al. RasGRP links T-cell receptor signaling to Ras. Blood 2000;95(10):3199–3203. Ebinu JO, Stang SL, Teixeira C, Bottorff DA, Hooton J, Blumberg PM, et al. RasGRP links T-cell receptor signaling to Ras. Blood 2000;95(10):3199–3203.
24.
Zurück zum Zitat Priatel JJ, Teh SJ, Dower NA, Stone JC, Teh HS. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity. 2002;17(5):617–27.CrossRefPubMed Priatel JJ, Teh SJ, Dower NA, Stone JC, Teh HS. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity. 2002;17(5):617–27.CrossRefPubMed
25.
Zurück zum Zitat Lee SH, Yun S, Lee J, Kim MJ, Piao ZH, Jeong M, et al. RasGRP1 is required for human NK cell function. Journal of immunology (Baltimore, Md : 1950). 2009;183(12):7931–7938. Lee SH, Yun S, Lee J, Kim MJ, Piao ZH, Jeong M, et al. RasGRP1 is required for human NK cell function. Journal of immunology (Baltimore, Md : 1950). 2009;183(12):7931–7938.
26.
Zurück zum Zitat Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. Journal of immunology (Baltimore, Md : 1950). 2005;175(11):7179–7184. Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. Journal of immunology (Baltimore, Md : 1950). 2005;175(11):7179–7184.
27.
Zurück zum Zitat Fuller DM, Zhu M, Song X, Ou-Yang CW, Sullivan SA, Stone JC, et al. Regulation of RasGRP1 function in T cell development and activation by its unique tail domain. PLoS One 2012;7(6):e38796. Fuller DM, Zhu M, Song X, Ou-Yang CW, Sullivan SA, Stone JC, et al. Regulation of RasGRP1 function in T cell development and activation by its unique tail domain. PLoS One 2012;7(6):e38796.
28.
Zurück zum Zitat Sun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016;48(3):323–330. Sun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016;48(3):323–330.
29.
Zurück zum Zitat Ferretti A, Fortwendel JR, Gebb SA, Barrington RA. Autoantibody-mediated pulmonary alveolar proteinosis in Rasgrp1-deficient mice. Journal of immunology (Baltimore, Md : 1950). 2016;197(2):470–479. Ferretti A, Fortwendel JR, Gebb SA, Barrington RA. Autoantibody-mediated pulmonary alveolar proteinosis in Rasgrp1-deficient mice. Journal of immunology (Baltimore, Md : 1950). 2016;197(2):470–479.
30.
Zurück zum Zitat Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. Journal of immunology (Baltimore, Md : 1950). 2007;179(7):4890–4900. Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. Journal of immunology (Baltimore, Md : 1950). 2007;179(7):4890–4900.
31.
Zurück zum Zitat Rapoport MJ, Bloch O, Amit-Vasina M, Yona E, Molad Y. Constitutive abnormal expression of RasGRP-1 isoforms and low expression of PARP-1 in patients with systemic lupus erythematosus. Lupus. 2011;20(14):1501–9.CrossRefPubMed Rapoport MJ, Bloch O, Amit-Vasina M, Yona E, Molad Y. Constitutive abnormal expression of RasGRP-1 isoforms and low expression of PARP-1 in patients with systemic lupus erythematosus. Lupus. 2011;20(14):1501–9.CrossRefPubMed
32.
Zurück zum Zitat Golinski ML, Vandhuick T, Derambure C, Freret M, Lecuyer M, Guillou C, et al. Dysregulation of RasGRP1 in rheumatoid arthritis and modulation of RasGRP3 as a biomarker of TNFalpha inhibitors. Arthritis research & therapy 2015;17:382. Golinski ML, Vandhuick T, Derambure C, Freret M, Lecuyer M, Guillou C, et al. Dysregulation of RasGRP1 in rheumatoid arthritis and modulation of RasGRP3 as a biomarker of TNFalpha inhibitors. Arthritis research & therapy 2015;17:382.
33.
Zurück zum Zitat Qu HQ, Grant SF, Bradfield JP, Kim C, Frackelton E, Hakonarson H, et al. Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet 2009;46(8):553–554. Qu HQ, Grant SF, Bradfield JP, Kim C, Frackelton E, Hakonarson H, et al. Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet 2009;46(8):553–554.
34.
Zurück zum Zitat Zhou XJ, Nath SK, Qi YY, Sun C, Hou P, Zhang YM, et al. Novel identified associations of RGS1 and RASGRP1 variants in IgA Nephropathy. Sci Rep 2016;6:35781. Zhou XJ, Nath SK, Qi YY, Sun C, Hou P, Zhang YM, et al. Novel identified associations of RGS1 and RASGRP1 variants in IgA Nephropathy. Sci Rep 2016;6:35781.
35.
Zurück zum Zitat Somech R. T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Allergy Clin Immunol. 2011;11(6):517–24.CrossRefPubMed Somech R. T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Allergy Clin Immunol. 2011;11(6):517–24.CrossRefPubMed
36.
Zurück zum Zitat Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2(5):309–22.CrossRefPubMed Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2(5):309–22.CrossRefPubMed
37.
Zurück zum Zitat Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM. The influence of the MAPK pathway on T cell lineage commitment. Immunity. 1997;7(5):609–18.CrossRefPubMed Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM. The influence of the MAPK pathway on T cell lineage commitment. Immunity. 1997;7(5):609–18.CrossRefPubMed
38.
Zurück zum Zitat Bommhardt U, Basson MA, Krummrei U, Zamoyska R. Activation of the extracellular signal-related kinase/mitogen-activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus. Journal of immunology (Baltimore, Md : 1950). 1999;163(2):715–722. Bommhardt U, Basson MA, Krummrei U, Zamoyska R. Activation of the extracellular signal-related kinase/mitogen-activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus. Journal of immunology (Baltimore, Md : 1950). 1999;163(2):715–722.
39.
Zurück zum Zitat Guilbault B, Kay RJ. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem. 2004;279(19):19523–30.CrossRefPubMed Guilbault B, Kay RJ. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem. 2004;279(19):19523–30.CrossRefPubMed
40.
Zurück zum Zitat Bartlett A, Buhlmann JE, Stone J, Lim B, Barrington RA. Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice. Journal of immunology (Baltimore, Md : 1950). 2013;191(7):3605–3613. Bartlett A, Buhlmann JE, Stone J, Lim B, Barrington RA. Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice. Journal of immunology (Baltimore, Md : 1950). 2013;191(7):3605–3613.
41.
Zurück zum Zitat Priatel JJ, Chen X, Zenewicz LA, Shen H, Harder KW, Horwitz MS, et al. Chronic immunodeficiency in mice lacking RasGRP1 results in CD4 T cell immune activation and exhaustion. Journal of immunology (Baltimore, Md : 1950.) 2007;179(4):2143–2152. Priatel JJ, Chen X, Zenewicz LA, Shen H, Harder KW, Horwitz MS, et al. Chronic immunodeficiency in mice lacking RasGRP1 results in CD4 T cell immune activation and exhaustion. Journal of immunology (Baltimore, Md : 1950.) 2007;179(4):2143–2152.
42.
Zurück zum Zitat Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci. 2015 Nov;1356:22–44.CrossRefPubMed Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci. 2015 Nov;1356:22–44.CrossRefPubMed
43.
Zurück zum Zitat Menasche G, Feldmann J, Fischer A, de Saint Basile G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev. 2005 Feb;203:165–79.CrossRefPubMed Menasche G, Feldmann J, Fischer A, de Saint Basile G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev. 2005 Feb;203:165–79.CrossRefPubMed
44.
Zurück zum Zitat Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol. 2013 Sep;162(5):573–86.CrossRefPubMed Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol. 2013 Sep;162(5):573–86.CrossRefPubMed
Metadaten
Titel
Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma
verfasst von
Ido Somekh
Benjamin Marquardt
Yanshan Liu
Meino Rohlfs
Sebastian Hollizeck
Musa Karakukcu
Ekrem Unal
Ebru Yilmaz
Turkan Patiroglu
Murat Cansever
Shirly Frizinsky
Vicktoria Vishnvenska-Dai
Erez Rechavi
Tali Stauber
Amos J. Simon
Atar Lev
Christoph Klein
Daniel Kotlarz
Raz Somech
Publikationsdatum
20.07.2018
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 6/2018
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-018-0533-8

Weitere Artikel der Ausgabe 6/2018

Journal of Clinical Immunology 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.