Skip to main content
Erschienen in: Medical Molecular Morphology 3/2018

13.03.2018 | Review

Novel Rest functions revealed by conditional gene ablation

verfasst von: Hitomi Aoki

Erschienen in: Medical Molecular Morphology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Rest is a regulator of neuronal development and has been suggested to function in maintaining the pluripotent state of embryonic stem cells (ESCs); however, this remains controversial. Since Rest null mice show embryonic lethality, we herein generated conditional Rest knockout (CKO) models to investigate Rest functions in more detail. Our results revealed that Rest was not necessary for maintaining the pluripotency of ESCs and instead promoted primitive endoderm differentiation. In contrast to the repressive role of Rest in vitro, including ESCs, neural stem cells, and fibroblasts, on the expression of target neural genes, Rest CKO did not affect the in vivo development of brain tissue. However, the same Rest CKO mice showed an abnormal lens morphology after birth with augmented Notch signaling and down-regulated lens fiber regulator gene expression. The ablation of Rest during neural crest cell (NCC) development caused neonatal lethality due to swelling of the digestive tract with reductions in acetylcholinesterase activity in the myenteric plexus derived from NCCs. Furthermore, a reduced number of melanocyte precursors also derived from NCCs resulted in white spotted coat color phenotypes lacking mature melanocytes. Rest controls thousands of target genes and may have many unknown functions related to diseases.
Literatur
1.
Zurück zum Zitat Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957CrossRefPubMed Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957CrossRefPubMed
2.
Zurück zum Zitat Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363CrossRefPubMed Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363CrossRefPubMed
3.
Zurück zum Zitat Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93:9881–9886CrossRefPubMed Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93:9881–9886CrossRefPubMed
4.
Zurück zum Zitat Johnson R, Teh CH, Kunarso G, Wong KY, Srinivasan G, Cooper ML, Volta M, Chan SS, Lipovich L, Pollard SM, Karuturi RK, Wei CL, Buckley NJ, Stanton LW (2008) REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6:e256CrossRefPubMedPubMedCentral Johnson R, Teh CH, Kunarso G, Wong KY, Srinivasan G, Cooper ML, Volta M, Chan SS, Lipovich L, Pollard SM, Karuturi RK, Wei CL, Buckley NJ, Stanton LW (2008) REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6:e256CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Sun YM, Greenway DJ, Johnson R, Street M, Belyaev ND, Deuchars J, Bee T, Wilde S, Buckley NJ (2005) Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell 16:5630–5638CrossRefPubMedPubMedCentral Sun YM, Greenway DJ, Johnson R, Street M, Belyaev ND, Deuchars J, Bee T, Wilde S, Buckley NJ (2005) Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell 16:5630–5638CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657CrossRefPubMed Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657CrossRefPubMed
7.
Zurück zum Zitat Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5:1929–1935CrossRefPubMed Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5:1929–1935CrossRefPubMed
8.
Zurück zum Zitat Zhao Y, Zhu M, Yu Y, Qiu L, Zhang Y, He L, Zhang J (2017) Brain REST/NRSF is not only a silent repressor but also an active protector. Mol Neurobiol 54:541–550CrossRefPubMed Zhao Y, Zhu M, Yu Y, Qiu L, Zhang Y, He L, Zhang J (2017) Brain REST/NRSF is not only a silent repressor but also an active protector. Mol Neurobiol 54:541–550CrossRefPubMed
9.
Zurück zum Zitat Jorgensen HF, Chen ZF, Merkenschlager M, Fisher AG (2009) Is REST required for ESC pluripotency? Nature 457:E4–E5CrossRefPubMed Jorgensen HF, Chen ZF, Merkenschlager M, Fisher AG (2009) Is REST required for ESC pluripotency? Nature 457:E4–E5CrossRefPubMed
10.
Zurück zum Zitat Jorgensen HF, Terry A, Beretta C, Pereira CF, Leleu M, Chen ZF, Kelly C, Merkenschlager M, Fisher AG (2009) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:715–721CrossRefPubMedPubMedCentral Jorgensen HF, Terry A, Beretta C, Pereira CF, Leleu M, Chen ZF, Kelly C, Merkenschlager M, Fisher AG (2009) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:715–721CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227CrossRefPubMedPubMedCentral Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chen ZF, Paquette AJ, Anderson DJ (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20:136–142CrossRefPubMed Chen ZF, Paquette AJ, Anderson DJ (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20:136–142CrossRefPubMed
13.
Zurück zum Zitat Yamada Y, Aoki H, Kunisada T, Hara A (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6:10–15CrossRefPubMed Yamada Y, Aoki H, Kunisada T, Hara A (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6:10–15CrossRefPubMed
14.
Zurück zum Zitat Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878CrossRefPubMed Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878CrossRefPubMed
15.
Zurück zum Zitat Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex. J Biol Chem 275:9461–9467CrossRefPubMed Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex. J Biol Chem 275:9461–9467CrossRefPubMed
16.
17.
Zurück zum Zitat Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16:784–789CrossRefPubMedPubMedCentral Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16:784–789CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX (2002) Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 251:27–44CrossRefPubMed Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX (2002) Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 251:27–44CrossRefPubMed
19.
Zurück zum Zitat Shimoda M, Kanai-Azuma M, Hara K, Miyazaki S, Kanai Y, Monden M, Miyazaki J (2007) Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci 120:3859–3869CrossRefPubMed Shimoda M, Kanai-Azuma M, Hara K, Miyazaki S, Kanai Y, Monden M, Miyazaki J (2007) Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci 120:3859–3869CrossRefPubMed
20.
Zurück zum Zitat Aoki H, Hara A, Era T, Kunisada T, Yamada Y (2012) Genetic ablation of rest leads to in vitro-specific depression of neuronal genes during neurogenesis. Development 139:667–677CrossRefPubMed Aoki H, Hara A, Era T, Kunisada T, Yamada Y (2012) Genetic ablation of rest leads to in vitro-specific depression of neuronal genes during neurogenesis. Development 139:667–677CrossRefPubMed
21.
Zurück zum Zitat Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978PubMed Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978PubMed
22.
Zurück zum Zitat Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388CrossRefPubMed Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388CrossRefPubMed
23.
Zurück zum Zitat Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentral Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Nishiguchi S, Wood H, Kondoh H, Lovell-Badge R, Episkopou V (1998) Sox1 directly regulates the γ-crystallin genes and is essential for lens development in mice. Genes Dev 12:776–781CrossRefPubMedPubMedCentral Nishiguchi S, Wood H, Kondoh H, Lovell-Badge R, Episkopou V (1998) Sox1 directly regulates the γ-crystallin genes and is essential for lens development in mice. Genes Dev 12:776–781CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ogino H, Yasuda K (2000) Sequential activation of transcription factors in lens induction. Dev Growth Differ 42:437–448CrossRefPubMed Ogino H, Yasuda K (2000) Sequential activation of transcription factors in lens induction. Dev Growth Differ 42:437–448CrossRefPubMed
26.
Zurück zum Zitat Aoki H, Ogino H, Tomita H, Hara A, Kunisada T (2016) Disruption of Rest leads to the early onset of cataracts with the aberrant terminal differentiation of lens fiber cells. PloS One 11:e0163042CrossRefPubMedPubMedCentral Aoki H, Ogino H, Tomita H, Hara A, Kunisada T (2016) Disruption of Rest leads to the early onset of cataracts with the aberrant terminal differentiation of lens fiber cells. PloS One 11:e0163042CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Korsakova NV, Sergeeva VE, Petrov SB (2008) Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans. Neurosci Behav Physiol 38:887–890CrossRefPubMed Korsakova NV, Sergeeva VE, Petrov SB (2008) Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans. Neurosci Behav Physiol 38:887–890CrossRefPubMed
28.
Zurück zum Zitat Uusitalo M, Kivelä T (1997) Cell types of secondary cataract: an immunohistochemical analysis with antibodies to cytoskeletal elements and macrophages. Graefes Arch Clin Exp Ophthalmol 235:506–511CrossRefPubMed Uusitalo M, Kivelä T (1997) Cell types of secondary cataract: an immunohistochemical analysis with antibodies to cytoskeletal elements and macrophages. Graefes Arch Clin Exp Ophthalmol 235:506–511CrossRefPubMed
29.
Zurück zum Zitat Bitel CL, Perrone-Bizzozero NI, Frederikse PH (2010) HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis 16:2301–2316PubMedPubMedCentral Bitel CL, Perrone-Bizzozero NI, Frederikse PH (2010) HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis 16:2301–2316PubMedPubMedCentral
30.
Zurück zum Zitat Frederikse PH, Kasinathan C, Kleiman NJ (2012) Parallels between neuron and lens fiber cell structure and molecular regulatory networks. Dev Biol 368:255–260CrossRefPubMed Frederikse PH, Kasinathan C, Kleiman NJ (2012) Parallels between neuron and lens fiber cell structure and molecular regulatory networks. Dev Biol 368:255–260CrossRefPubMed
31.
Zurück zum Zitat Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316:1497–1502CrossRefPubMed Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316:1497–1502CrossRefPubMed
32.
Zurück zum Zitat Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321:111–122CrossRefPubMedPubMedCentral Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321:111–122CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, New YorkCrossRef Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, New YorkCrossRef
34.
Zurück zum Zitat Kallunki P, Edelman GM, Jones FS (1997) Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element. J Cell Biol 138:1343–1354CrossRefPubMedPubMedCentral Kallunki P, Edelman GM, Jones FS (1997) Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element. J Cell Biol 138:1343–1354CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Liang H, Fekete DM, Andrisani OM (2011) CtBP2 downregulation during neural cREST specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 31:955–970CrossRefPubMed Liang H, Fekete DM, Andrisani OM (2011) CtBP2 downregulation during neural cREST specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 31:955–970CrossRefPubMed
36.
Zurück zum Zitat Olguın P, Oteıza P, Gamboa E, Gomez-Skarmeta JL, Kukuljan M (2006) RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. J Neurosci 26:2820–2829CrossRefPubMed Olguın P, Oteıza P, Gamboa E, Gomez-Skarmeta JL, Kukuljan M (2006) RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. J Neurosci 26:2820–2829CrossRefPubMed
37.
Zurück zum Zitat Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326CrossRefPubMed Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326CrossRefPubMed
38.
Zurück zum Zitat Aoki H, Hara A, Oomori Y, Shimizu Y, Yamada Y, Kunisada T (2014) Neonatal lethality of neural crest cell-specific Rest knockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus. Genes Cells 19:723–742CrossRefPubMed Aoki H, Hara A, Oomori Y, Shimizu Y, Yamada Y, Kunisada T (2014) Neonatal lethality of neural crest cell-specific Rest knockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus. Genes Cells 19:723–742CrossRefPubMed
39.
Zurück zum Zitat Ito Y, Sohma S, Hirano H (1984) Light- and electron-microscopic studies on acetylcholinesterase activity in Auerbach’s plexus of the developing rat colon. Histochemistry 81:209–212CrossRefPubMed Ito Y, Sohma S, Hirano H (1984) Light- and electron-microscopic studies on acetylcholinesterase activity in Auerbach’s plexus of the developing rat colon. Histochemistry 81:209–212CrossRefPubMed
40.
Zurück zum Zitat Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, Molliver DC, Bardgett ME, Snider WD, Johnson EM Jr, Milbrandt J (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263CrossRefPubMed Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, Molliver DC, Bardgett ME, Snider WD, Johnson EM Jr, Milbrandt J (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263CrossRefPubMed
41.
Zurück zum Zitat Hatano Y, Yamada Y, Hata K, Phutthaphadoong S, Aoki H, Hara A (2011) Genetic ablation of a candidate tumor suppressor gene, REST, does not promote mouse colon carcinogenesis. Cancer Sci 102:1659–1664CrossRefPubMed Hatano Y, Yamada Y, Hata K, Phutthaphadoong S, Aoki H, Hara A (2011) Genetic ablation of a candidate tumor suppressor gene, REST, does not promote mouse colon carcinogenesis. Cancer Sci 102:1659–1664CrossRefPubMed
42.
Zurück zum Zitat Aoki H, Hara A, Kunisada T (2015) White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage. Genes Cells 20:439–449CrossRefPubMed Aoki H, Hara A, Kunisada T (2015) White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage. Genes Cells 20:439–449CrossRefPubMed
43.
Zurück zum Zitat Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454CrossRefPubMedPubMedCentral Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, Wang EP, Marshall-Walker CA, Barry BJ, Murn J, Tatarakis A, Mahajan MA, Samuels HH, Shi Y, Golden JA, Mahajnah M, Shenhav R, Walsh CA (2012) Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151:1097–1112CrossRefPubMedPubMedCentral Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, Wang EP, Marshall-Walker CA, Barry BJ, Murn J, Tatarakis A, Mahajan MA, Samuels HH, Shi Y, Golden JA, Mahajnah M, Shenhav R, Walsh CA (2012) Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151:1097–1112CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach HL, Wu S, Nashelsky M, Vladar EK, Antic D, Ferguson PJ, Cirak S, Voit T, Scott MP, Axelrod JD, Gurnett C, Daoud AS, Kivity S, Neufeld MY, Mazarib A, Straussberg R, Walid S, Korczyn AD, Slusarski DC, Berkovic SF, El-Shanti HI (2008) A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 83:572–581CrossRefPubMedPubMedCentral Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach HL, Wu S, Nashelsky M, Vladar EK, Antic D, Ferguson PJ, Cirak S, Voit T, Scott MP, Axelrod JD, Gurnett C, Daoud AS, Kivity S, Neufeld MY, Mazarib A, Straussberg R, Walid S, Korczyn AD, Slusarski DC, Berkovic SF, El-Shanti HI (2008) A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 83:572–581CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27:6972–6983CrossRefPubMed Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27:6972–6983CrossRefPubMed
47.
Zurück zum Zitat Canzonetta C, Mulligan C, Deutsch S, Ruf S, O’Doherty A, Lyle R, Borel C, Lin-Marq N, Delom F, Groet J, Schnappauf F, De Vita S, Averill S, Priestley JV, Martin JE, Shipley J, Denyer G, Epstein CJ, Fillat C, Estivill X, Tybulewicz VL, Fisher EM, Antonarakis SE, Nizetic D (2008) DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 83:388–400CrossRefPubMedPubMedCentral Canzonetta C, Mulligan C, Deutsch S, Ruf S, O’Doherty A, Lyle R, Borel C, Lin-Marq N, Delom F, Groet J, Schnappauf F, De Vita S, Averill S, Priestley JV, Martin JE, Shipley J, Denyer G, Epstein CJ, Fillat C, Estivill X, Tybulewicz VL, Fisher EM, Antonarakis SE, Nizetic D (2008) DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 83:388–400CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, Imbeaud S, Loe-Mie Y, Benihoud K, Agier N, Salin PA, Cardona A, Khung-Savatovsky S, Kallunki P, Delabar JM, Puskas LG, Delacroix H, Aggerbeck L, Delezoide AL, Delattre O, Gorwood P, Moalic JM, Simonneau M (2009) DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 18:1405–1414CrossRefPubMed Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, Imbeaud S, Loe-Mie Y, Benihoud K, Agier N, Salin PA, Cardona A, Khung-Savatovsky S, Kallunki P, Delabar JM, Puskas LG, Delacroix H, Aggerbeck L, Delezoide AL, Delattre O, Gorwood P, Moalic JM, Simonneau M (2009) DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 18:1405–1414CrossRefPubMed
Metadaten
Titel
Novel Rest functions revealed by conditional gene ablation
verfasst von
Hitomi Aoki
Publikationsdatum
13.03.2018
Verlag
Springer Japan
Erschienen in
Medical Molecular Morphology / Ausgabe 3/2018
Print ISSN: 1860-1480
Elektronische ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-018-0187-x

Weitere Artikel der Ausgabe 3/2018

Medical Molecular Morphology 3/2018 Zur Ausgabe

Neu im Fachgebiet Pathologie