Skip to main content
Erschienen in: Current Osteoporosis Reports 3/2019

13.04.2019 | Skeletal Development (R Marcucio and J Feng, Section Editors)

Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease

verfasst von: Creighton T. Tuzon, Diana Rigueur, Amy E. Merrill

Erschienen in: Current Osteoporosis Reports | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Fibroblast growth factor receptor (FGFR) signaling regulates proliferation and differentiation during development and homeostasis. While membrane-bound FGFRs play a central role in these processes, the function of nuclear FGFRs is also critical. Here, we highlight mechanisms for nuclear FGFR translocation and the effects of nuclear FGFRs on skeletal development and disease.

Recent Findings

Full-length FGFRs, internalized by endocytosis, enter the nucleus through β-importin-dependent mechanisms that recognize the nuclear localization signal within FGFs. Alternatively, soluble FGFR intracellular fragments undergo nuclear translocation following their proteolytic release from the membrane. FGFRs enter the nucleus during the cellular transition between proliferation and differentiation. Once nuclear, FGFRs interact with chromatin remodelers to alter the epigenetic state and transcription of their target genes. Dysregulation of nuclear FGFR is linked to the etiology of congenital skeletal disorders and neoplastic transformation.

Summary

Revealing the activities of nuclear FGFR will advance our understanding of 20 congenital skeletal disorders caused by FGFR mutations, as well as FGFR-related cancers.
Literatur
2.
Zurück zum Zitat Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.PubMedCrossRef Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.PubMedCrossRef
3.
Zurück zum Zitat Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.PubMedCrossRef Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.PubMedCrossRef
4.
Zurück zum Zitat Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127(9):1845–55.PubMed Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127(9):1845–55.PubMed
5.
Zurück zum Zitat Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.PubMedPubMedCentralCrossRef Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed
7.
Zurück zum Zitat Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135(3):483–91.PubMedCrossRef Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135(3):483–91.PubMedCrossRef
8.
Zurück zum Zitat Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.PubMedCrossRef Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.PubMedCrossRef
9.
Zurück zum Zitat Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.PubMedCrossRef Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.PubMedCrossRef
10.
Zurück zum Zitat Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.PubMedCrossRef Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.PubMedCrossRef
11.
Zurück zum Zitat Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007;40(3):577–86.PubMedCrossRef Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007;40(3):577–86.PubMedCrossRef
12.
Zurück zum Zitat Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.PubMedCrossRef Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.PubMedCrossRef
13.
Zurück zum Zitat Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101(4):413–24.PubMedCrossRef Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101(4):413–24.PubMedCrossRef
14.
Zurück zum Zitat Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.PubMedCrossRef Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.PubMedCrossRef
15.
Zurück zum Zitat Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46.PubMedPubMedCentralCrossRef Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat •• Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66 This review provides a comprehensive assessment of the genetics and molecular biology of the FGF signaling pathway. PubMedPubMedCentralCrossRef •• Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66 This review provides a comprehensive assessment of the genetics and molecular biology of the FGF signaling pathway. PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem. 2003;88(6):1273–91.PubMedCrossRef Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem. 2003;88(6):1273–91.PubMedCrossRef
18.
Zurück zum Zitat Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–7.PubMedPubMedCentralCrossRef Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–7.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292–305.PubMedCrossRef Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292–305.PubMedCrossRef
20.
Zurück zum Zitat Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996;134(2):529–36.PubMedCrossRef Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996;134(2):529–36.PubMedCrossRef
21.
Zurück zum Zitat Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res. 1996;38(1):161–5.PubMedCrossRef Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res. 1996;38(1):161–5.PubMedCrossRef
22.
Zurück zum Zitat Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12.PubMedPubMedCentralCrossRef Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12.PubMedPubMedCentralCrossRef
23.
24.
Zurück zum Zitat • Mikolajczak M, Goodman T, Hajihosseini MK. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J. 2016;473(24):4593–607 Numerous mutations within FGFRs are causative for skeletal defects. This manuscript however identified mutations within the FGF10 ligand that fail to properly localize to the nucleus.PubMedCrossRef • Mikolajczak M, Goodman T, Hajihosseini MK. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J. 2016;473(24):4593–607 Numerous mutations within FGFRs are causative for skeletal defects. This manuscript however identified mutations within the FGF10 ligand that fail to properly localize to the nucleus.PubMedCrossRef
25.
Zurück zum Zitat Wesche J, Małecki J̧, Wiȩdłocha A, Ehsani M, Marcinkowska E, Nilsen T, et al. Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry. 2005;44(16):6071–80.PubMedCrossRef Wesche J, Małecki J̧, Wiȩdłocha A, Ehsani M, Marcinkowska E, Nilsen T, et al. Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry. 2005;44(16):6071–80.PubMedCrossRef
26.
Zurück zum Zitat Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999;10(5):1429–44.PubMedPubMedCentralCrossRef Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999;10(5):1429–44.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19(1):505–14.PubMedPubMedCentralCrossRef Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19(1):505–14.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32(3):263–7.PubMedCrossRef Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32(3):263–7.PubMedCrossRef
29.
Zurück zum Zitat Sorensen V, Nilsen T, Wiedlocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays. 2006;28(5):504–14.PubMedCrossRef Sorensen V, Nilsen T, Wiedlocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays. 2006;28(5):504–14.PubMedCrossRef
30.
Zurück zum Zitat Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25(21):9419–26.PubMedPubMedCentralCrossRef Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25(21):9419–26.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23.PubMedPubMedCentralCrossRef Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Citores L, Khnykin D, Sørensen V, Wesche J, Klingenberg O, Wiedłocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(Pt 9):1677–89.PubMed Citores L, Khnykin D, Sørensen V, Wesche J, Klingenberg O, Wiedłocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(Pt 9):1677–89.PubMed
33.
Zurück zum Zitat Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.PubMedPubMedCentralCrossRef Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 2011;6(7):e21708.PubMedPubMedCentralCrossRef Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 2011;6(7):e21708.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol. 2004;23(9):538–48.PubMedCrossRef Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol. 2004;23(9):538–48.PubMedCrossRef
36.
Zurück zum Zitat Malecki J, et al. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J. 2002;21(17):4480–90.PubMedPubMedCentralCrossRef Malecki J, et al. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J. 2002;21(17):4480–90.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral
38.
Zurück zum Zitat •• Stehbens SJ, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131(15). In endometrial cancer, activating somatic mutations in FGFR2 induce Golgi fragmentation, lose cell polarity, and migrate cells aberrantly. These outcomes are prognostic for endometrial cancer and correlate with shorter survival. •• Stehbens SJ, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131(15). In endometrial cancer, activating somatic mutations in FGFR2 induce Golgi fragmentation, lose cell polarity, and migrate cells aberrantly. These outcomes are prognostic for endometrial cancer and correlate with shorter survival.
39.
Zurück zum Zitat Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, et al. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol. 2013;139(1):135–48.PubMedCrossRef Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, et al. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol. 2013;139(1):135–48.PubMedCrossRef
40.
Zurück zum Zitat Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, et al. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014;23(21):5659–71.PubMedPubMedCentralCrossRef Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, et al. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014;23(21):5659–71.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73.PubMedPubMedCentralCrossRef Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res. 2016;6(4):827–42.PubMedPubMedCentral Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res. 2016;6(4):827–42.PubMedPubMedCentral
44.
Zurück zum Zitat • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, et al. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One. 2015;10(4):e0123380 Using genome-wide sequencing, the study revealed a mechanism for gene regulation of nuclear FGFR1 to ensure that pluripotent ESCs differentiate into neuronal cells. PubMedPubMedCentralCrossRef • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, et al. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One. 2015;10(4):e0123380 Using genome-wide sequencing, the study revealed a mechanism for gene regulation of nuclear FGFR1 to ensure that pluripotent ESCs differentiate into neuronal cells. PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A. 2005;102(28):9896–900.PubMedPubMedCentralCrossRef Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A. 2005;102(28):9896–900.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat •• Neben CL, et al. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet. 2017;26(17):3253–70 This study linked cell fate determination to disease pathology by characterizing FGFR2 mutations in BBDS and established rDNA as an FGFR2-regulated loci that balances self-renewal and cell fate determination. PubMedPubMedCentralCrossRef •• Neben CL, et al. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet. 2017;26(17):3253–70 This study linked cell fate determination to disease pathology by characterizing FGFR2 mutations in BBDS and established rDNA as an FGFR2-regulated loci that balances self-renewal and cell fate determination. PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene. 2017;612:29–35.PubMedCrossRef Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene. 2017;612:29–35.PubMedCrossRef
48.
Zurück zum Zitat Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16(2):233–47.PubMedCrossRef Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16(2):233–47.PubMedCrossRef
49.
Zurück zum Zitat Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91.PubMedCrossRef Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91.PubMedCrossRef
50.
Zurück zum Zitat Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63.PubMedCrossRef Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63.PubMedCrossRef
51.
Zurück zum Zitat Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. FGF9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36.PubMedCrossRef Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. FGF9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36.PubMedCrossRef
52.
Zurück zum Zitat Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104(42):16558–63.PubMedPubMedCentralCrossRef Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104(42):16558–63.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34.PubMedCrossRef Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34.PubMedCrossRef
54.
Zurück zum Zitat Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87.PubMedPubMedCentralCrossRef Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.PubMed Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.PubMed
56.
Zurück zum Zitat De Moerlooze L, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.PubMed De Moerlooze L, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.PubMed
57.
Zurück zum Zitat Krakow D, Cohn DH, Wilcox WR, Noh GJ, Raffel LJ, Sarukhanov A, et al. Clinical and radiographic delineation of bent bone dysplasia-FGFR2 type or bent bone dysplasia with distinctive clavicles and angel-shaped phalanges. Am J Med Genet A. 2016;170(10):2652–61.PubMedPubMedCentralCrossRef Krakow D, Cohn DH, Wilcox WR, Noh GJ, Raffel LJ, Sarukhanov A, et al. Clinical and radiographic delineation of bent bone dysplasia-FGFR2 type or bent bone dysplasia with distinctive clavicles and angel-shaped phalanges. Am J Med Genet A. 2016;170(10):2652–61.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn. 2019;248:233–46.PubMedCrossRefPubMedCentral Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn. 2019;248:233–46.PubMedCrossRefPubMedCentral
59.
Zurück zum Zitat Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.PubMedCrossRef Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.PubMedCrossRef
60.
Zurück zum Zitat Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004;13(19):2313–24.PubMedCrossRef Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004;13(19):2313–24.PubMedCrossRef
61.
Zurück zum Zitat Robertson SC, Meyer AN, Hart KC, Galvin BD, Webster MK, Donoghue DJ. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A. 1998;95(8):4567–72.PubMedPubMedCentralCrossRef Robertson SC, Meyer AN, Hart KC, Galvin BD, Webster MK, Donoghue DJ. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A. 1998;95(8):4567–72.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6(4):467–81.PubMedPubMedCentralCrossRef Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6(4):467–81.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Pollock PM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.PubMedPubMedCentralCrossRef Pollock PM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.PubMedCrossRef Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.PubMedCrossRef
65.
Zurück zum Zitat Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72.PubMedPubMedCentralCrossRef Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Cerliani JP, Vanzulli SI, Piñero CP, Bottino MC, Sahores A, Nuñez M, et al. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat. 2012;133(3):997–1008.PubMedCrossRef Cerliani JP, Vanzulli SI, Piñero CP, Bottino MC, Sahores A, Nuñez M, et al. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat. 2012;133(3):997–1008.PubMedCrossRef
67.
Zurück zum Zitat Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9.PubMedCrossRef Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9.PubMedCrossRef
68.
Zurück zum Zitat • May M, Mosto J, Vazquez PM, Gonzalez P, Rojas P, Gass H, et al. Nuclear staining of FGFR-2/STAT-5 and RUNX-2 in mucinous breast cancer. Exp Mol Pathol. 2016;100(1):39–44 Mucinous breast carcinoma (MBC) is a rare subtype of breast cancer. When compared to non-MBC, higher expression of nuclear FGFR2 and RUNX2 was observed in MBC suggesting a role for these proteins in the progression of the mucinous phenotype. PubMedCrossRef • May M, Mosto J, Vazquez PM, Gonzalez P, Rojas P, Gass H, et al. Nuclear staining of FGFR-2/STAT-5 and RUNX-2 in mucinous breast cancer. Exp Mol Pathol. 2016;100(1):39–44 Mucinous breast carcinoma (MBC) is a rare subtype of breast cancer. When compared to non-MBC, higher expression of nuclear FGFR2 and RUNX2 was observed in MBC suggesting a role for these proteins in the progression of the mucinous phenotype. PubMedCrossRef
69.
Zurück zum Zitat Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34.PubMedCrossRef Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34.PubMedCrossRef
70.
Zurück zum Zitat Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63.PubMed Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63.PubMed
71.
Zurück zum Zitat • Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, et al. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 2015;8(11):14640–8 This study suggests that the nuclear translocation of FGFR3 not only is frequent but also prognostic for pancreatic cancer. PubMedPubMedCentral • Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, et al. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 2015;8(11):14640–8 This study suggests that the nuclear translocation of FGFR3 not only is frequent but also prognostic for pancreatic cancer. PubMedPubMedCentral
Metadaten
Titel
Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease
verfasst von
Creighton T. Tuzon
Diana Rigueur
Amy E. Merrill
Publikationsdatum
13.04.2019
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 3/2019
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00512-2

Weitere Artikel der Ausgabe 3/2019

Current Osteoporosis Reports 3/2019 Zur Ausgabe

Skeletal Development (R Marcucio and J Feng, Section Editors)

A Second Career for Chondrocytes—Transformation into Osteoblasts

Osteocytes (J Klein Nulend, Section editor)

Pro-inflammatory Cytokines and Osteocytes

Bone and Diabetes (A Schwartz and P Vestergaard, section editors)

Falls and Fractures in Diabetes—More than Bone Fragility

Cancer-induced Musculoskeletal Diseases (E Keller and J Sterling, Section editors)

MicroRNAs in Bone Metastasis

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.