Skip to main content
Erschienen in: Inflammation 4/2020

13.03.2020 | Original Article

Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming

verfasst von: Wei Pan, Shanshan Hao, Mingxuan Zheng, Danhong Lin, Pengfei Jiang, Jinxiu Zhao, Hongli Shi, Xiaoying Yang, Xiangyang Li, Yinghua Yu

Erschienen in: Inflammation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Trained immunity has been recently identified in innate immune cells, which undergo long-term epigenetic and metabolic reprogramming after exposure to pathogens for protection from secondary infections. (1, 3)/(1, 6)-β-glucan derived from fungi can induce potent trained immunity; however, the effect of (1, 3)/(1, 4)-β-glucan (rich in dietary fiber oat) on trained immunity has not been reported. In the present study, two cell culture systems for trained immunity induction were validated in monocytes/macrophages from mouse bone myeloid and human THP-1 cells exposed to positive inducers of trained immunity, including β-glucan from Trametes versicolor or human-oxidized low-density lipoprotein. Primed with oat β-glucan, the mRNA expression and production of TNF-α and IL-6 significantly increased in response to re-stimulation of TLR-4/2 ligands. Moreover, the expression of several key enzymes in glycolytic pathway and tricarboxylic acid cycle was significantly upregulated. In addition, inhibiting these enzymes decreased the production of TNF-α and IL-6 boosted by oat β-glucan. These results show that oat β-glucan induces trained immunity through metabolic reprogramming. This provides important evidence that dietary fiber can maintain the long-term responsiveness of the innate immune system, which may benefit for prevention of infectious diseases or cancers.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: a memory for innate host defense. Cell Host & Microbe 9: 355–361.CrossRef Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: a memory for innate host defense. Cell Host & Microbe 9: 355–361.CrossRef
2.
Zurück zum Zitat Netea, M.G., and J.W. van der Meer. 2017. Trained immunity: An ancient way of remembering. Cell Host & Microbe 21: 297–300.CrossRef Netea, M.G., and J.W. van der Meer. 2017. Trained immunity: An ancient way of remembering. Cell Host & Microbe 21: 297–300.CrossRef
3.
Zurück zum Zitat Mourits, V.P., J.C. Wijkmans, L.A. Joosten, and M.G. Netea. 2018. Trained immunity as a novel therapeutic strategy. Current Opinion in Pharmacology 41: 52–58.CrossRef Mourits, V.P., J.C. Wijkmans, L.A. Joosten, and M.G. Netea. 2018. Trained immunity as a novel therapeutic strategy. Current Opinion in Pharmacology 41: 52–58.CrossRef
4.
Zurück zum Zitat Moret, Y., and M.T. Siva-Jothy. 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 2475–2480. Moret, Y., and M.T. Siva-Jothy. 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 2475–2480.
5.
Zurück zum Zitat Pham, H., R. Ferrari, S.J. Cokus, S.K. Kurdistani, and M. Pellegrini. 2007. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae. Molecular Systems Biology 3: 153.CrossRef Pham, H., R. Ferrari, S.J. Cokus, S.K. Kurdistani, and M. Pellegrini. 2007. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae. Molecular Systems Biology 3: 153.CrossRef
6.
Zurück zum Zitat Kristensen, I., P. Aaby, and H. Jensen. 2000. Routine vaccinations and child survival: follow up study in Guinea-Bissau. Bmj 321: 1435–1438.CrossRef Kristensen, I., P. Aaby, and H. Jensen. 2000. Routine vaccinations and child survival: follow up study in Guinea-Bissau. Bmj 321: 1435–1438.CrossRef
7.
Zurück zum Zitat Aaby, P., A. Roth, H. Ravn, B.M. Napirna, A. Rodrigues, I.M. Lisse, L. Stensballe, B.R. Diness, K.R. Lausch, N. Lund, S. Biering-Sørensen, H. Whittle, and C.S. Benn. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period. Journal of Infectious Diseases 204: 245–252.CrossRef Aaby, P., A. Roth, H. Ravn, B.M. Napirna, A. Rodrigues, I.M. Lisse, L. Stensballe, B.R. Diness, K.R. Lausch, N. Lund, S. Biering-Sørensen, H. Whittle, and C.S. Benn. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period. Journal of Infectious Diseases 204: 245–252.CrossRef
8.
Zurück zum Zitat Arts, R.J.W., A. Carvalho, C. La Rocca, C. Palma, F. Rodrigues, R. Silvestre, J. Kleinnijenhuis, E. Lachmandas, L.G. Gonçalves, A. Belinha, C. Cunha, M. Oosting, L.A.B. Joosten, G. Matarese, R. van Crevel, and M.G. Netea. 2016. Immunometabolic pathways in BCG-induced trained immunity. Cell Reports 17: 2562–2571.CrossRef Arts, R.J.W., A. Carvalho, C. La Rocca, C. Palma, F. Rodrigues, R. Silvestre, J. Kleinnijenhuis, E. Lachmandas, L.G. Gonçalves, A. Belinha, C. Cunha, M. Oosting, L.A.B. Joosten, G. Matarese, R. van Crevel, and M.G. Netea. 2016. Immunometabolic pathways in BCG-induced trained immunity. Cell Reports 17: 2562–2571.CrossRef
9.
Zurück zum Zitat Kleinnijenhuis, J., J. Quintin, F. Preijers, L.A. Joosten, D.C. Ifrim, S. Saeed, C. Jacobs, J. van Loenhout, D. de Jong, H.G. Stunnenberg, R.J. Xavier, J.W. van der Meer, R. van Crevel, and M.G. Netea. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences 109: 17537–17542.CrossRef Kleinnijenhuis, J., J. Quintin, F. Preijers, L.A. Joosten, D.C. Ifrim, S. Saeed, C. Jacobs, J. van Loenhout, D. de Jong, H.G. Stunnenberg, R.J. Xavier, J.W. van der Meer, R. van Crevel, and M.G. Netea. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences 109: 17537–17542.CrossRef
10.
Zurück zum Zitat Bekkering, S., J. Quintin, L.A. Joosten, J.W. van der Meer, M.G. Netea, and N.P. Riksen. 2014. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology 34: 1731–1738.CrossRef Bekkering, S., J. Quintin, L.A. Joosten, J.W. van der Meer, M.G. Netea, and N.P. Riksen. 2014. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology 34: 1731–1738.CrossRef
11.
Zurück zum Zitat Christ, A., P. Günther, M.A.R. Lauterbach, P. Duewell, D. Biswas, K. Pelka, C.J. Scholz, M. Oosting, K. Haendler, K. Baßler, K. Klee, J. Schulte-Schrepping, T. Ulas, S.J.C.F.M. Moorlag, V. Kumar, M.H. Park, L.A.B. Joosten, L.A. Groh, N.P. Riksen, T. Espevik, A. Schlitzer, Y. Li, M.L. Fitzgerald, M.G. Netea, J.L. Schultze, and E. Latz. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172: 162–175.CrossRef Christ, A., P. Günther, M.A.R. Lauterbach, P. Duewell, D. Biswas, K. Pelka, C.J. Scholz, M. Oosting, K. Haendler, K. Baßler, K. Klee, J. Schulte-Schrepping, T. Ulas, S.J.C.F.M. Moorlag, V. Kumar, M.H. Park, L.A.B. Joosten, L.A. Groh, N.P. Riksen, T. Espevik, A. Schlitzer, Y. Li, M.L. Fitzgerald, M.G. Netea, J.L. Schultze, and E. Latz. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172: 162–175.CrossRef
12.
Zurück zum Zitat van Splunter, M., T.L.J. van Osch, S. Brugman, H.F.J. Savelkoul, L.A.B. Joosten, M.G. Netea, and R.J.J. van Neerven. 2018. Induction of trained innate immunity in human monocytes by bovine milk and milk-derived immunoglobulin G. Nutrients 10: 1378.CrossRef van Splunter, M., T.L.J. van Osch, S. Brugman, H.F.J. Savelkoul, L.A.B. Joosten, M.G. Netea, and R.J.J. van Neerven. 2018. Induction of trained innate immunity in human monocytes by bovine milk and milk-derived immunoglobulin G. Nutrients 10: 1378.CrossRef
13.
Zurück zum Zitat Loss, G., M. Depner, L.H. Ulfman, R.J. van Neerven, A.J. Hose, J. Genuneit, A.M. Karvonen, A. Hyvärinen, V. Kaulek, C. Roduit, J. Weber, R. Lauener, P.I. Pfefferle, J. Pekkanen, O. Vaarala, J.C. Dalphin, J. Riedler, C. Braun-Fahrländer, E. von Mutius, and M.J. Ege. 2015. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology 135: 56–62.CrossRef Loss, G., M. Depner, L.H. Ulfman, R.J. van Neerven, A.J. Hose, J. Genuneit, A.M. Karvonen, A. Hyvärinen, V. Kaulek, C. Roduit, J. Weber, R. Lauener, P.I. Pfefferle, J. Pekkanen, O. Vaarala, J.C. Dalphin, J. Riedler, C. Braun-Fahrländer, E. von Mutius, and M.J. Ege. 2015. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology 135: 56–62.CrossRef
14.
Zurück zum Zitat Waser, M., K.B. Michels, C. Bieli, H. Flöistrup, G. Pershagen, E. von Mutius, M. Ege, J. Riedler, D. Schram-Bijkerk, B. Brunekreef, M. van Hage, R. Lauener, and C. Braun-Fahrländer. 2007. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical & Experimental Allergy 37: 661–670.CrossRef Waser, M., K.B. Michels, C. Bieli, H. Flöistrup, G. Pershagen, E. von Mutius, M. Ege, J. Riedler, D. Schram-Bijkerk, B. Brunekreef, M. van Hage, R. Lauener, and C. Braun-Fahrländer. 2007. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical & Experimental Allergy 37: 661–670.CrossRef
15.
Zurück zum Zitat Saeed, S., J. Quintin, H.H. Kerstens, N.A. Rao, A. Aghajanirefah, F. Matarese, S.C. Cheng, J. Ratter, K. Berentsen, M.A. van der Ent, N. Sharifi, E.M. Janssen-Megens, M. Ter Huurne, A. Mandoli, T. van Schaik, A. Ng, F. Burden, K. Downes, M. Frontini, V. Kumar, E.J. Giamarellos-Bourboulis, W.H. Ouwehand, J.M. van der Meer, L.A. Joosten, C. Wijmenga, J.H. Martens, R.J. Xavier, C. Logie, M.G. Netea, and H.G. Stunnenberg. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086.CrossRef Saeed, S., J. Quintin, H.H. Kerstens, N.A. Rao, A. Aghajanirefah, F. Matarese, S.C. Cheng, J. Ratter, K. Berentsen, M.A. van der Ent, N. Sharifi, E.M. Janssen-Megens, M. Ter Huurne, A. Mandoli, T. van Schaik, A. Ng, F. Burden, K. Downes, M. Frontini, V. Kumar, E.J. Giamarellos-Bourboulis, W.H. Ouwehand, J.M. van der Meer, L.A. Joosten, C. Wijmenga, J.H. Martens, R.J. Xavier, C. Logie, M.G. Netea, and H.G. Stunnenberg. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086.CrossRef
16.
Zurück zum Zitat Novakovic, B., E. Habibi, S.Y. Wang, R.J.W. Arts, R. Davar, W. Megchelenbrink, B. Kim, T. Kuznetsova, M. Kox, J. Zwaag, F. Matarese, S.J. van Heeringen, E.M. Janssen-Megens, N. Sharifi, C. Wang, F. Keramati, V. Schoonenberg, P. Flicek, L. Clarke, P. Pickkers, S. Heath, I. Gut, M.G. Netea, J.H.A. Martens, C. Logie, and H.G. Stunnenberg. 2016. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 167: 1354–1368.CrossRef Novakovic, B., E. Habibi, S.Y. Wang, R.J.W. Arts, R. Davar, W. Megchelenbrink, B. Kim, T. Kuznetsova, M. Kox, J. Zwaag, F. Matarese, S.J. van Heeringen, E.M. Janssen-Megens, N. Sharifi, C. Wang, F. Keramati, V. Schoonenberg, P. Flicek, L. Clarke, P. Pickkers, S. Heath, I. Gut, M.G. Netea, J.H.A. Martens, C. Logie, and H.G. Stunnenberg. 2016. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 167: 1354–1368.CrossRef
17.
Zurück zum Zitat Mitroulis, I., K. Ruppova, B. Wang, L.S. Chen, M. Grzybek, T. Grinenko, A. Eugster, M. Troullinaki, A. Palladini, I. Kourtzelis, A. Chatzigeorgiou, A. Schlitzer, M. Beyer, L.A.B. Joosten, B. Isermann, M. Lesche, A. Petzold, K. Simons, I. Henry, A. Dahl, J.L. Schultze, B. Wielockx, N. Zamboni, P. Mirtschink, Ü. Coskun, G. Hajishengallis, M.G. Netea, and T. Chavakis. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172: 147–161.CrossRef Mitroulis, I., K. Ruppova, B. Wang, L.S. Chen, M. Grzybek, T. Grinenko, A. Eugster, M. Troullinaki, A. Palladini, I. Kourtzelis, A. Chatzigeorgiou, A. Schlitzer, M. Beyer, L.A.B. Joosten, B. Isermann, M. Lesche, A. Petzold, K. Simons, I. Henry, A. Dahl, J.L. Schultze, B. Wielockx, N. Zamboni, P. Mirtschink, Ü. Coskun, G. Hajishengallis, M.G. Netea, and T. Chavakis. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172: 147–161.CrossRef
18.
Zurück zum Zitat Friedman, M. 2016. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80.CrossRef Friedman, M. 2016. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80.CrossRef
19.
Zurück zum Zitat Tian, L., J. Scholte, A. Scheurink, M. van den Berg, G. Bruggeman, E. Bruininx, P. de Vos, H.A. Schols, and H. Gruppen. 2019. Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat. International Journal of Biological Macromolecules 140: 515–521.CrossRef Tian, L., J. Scholte, A. Scheurink, M. van den Berg, G. Bruggeman, E. Bruininx, P. de Vos, H.A. Schols, and H. Gruppen. 2019. Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat. International Journal of Biological Macromolecules 140: 515–521.CrossRef
20.
Zurück zum Zitat García-Montalvo, I., S.D. Méndez, N.G. Aguirre, M.M. Sánchez, D.P. Matías, and E.C. Pérez. 2018. Increasing consumption of dietary fiber complementary to the treatment of metabolic syndrome. Nutricion hospitalaria 35 (3): 582–587.PubMed García-Montalvo, I., S.D. Méndez, N.G. Aguirre, M.M. Sánchez, D.P. Matías, and E.C. Pérez. 2018. Increasing consumption of dietary fiber complementary to the treatment of metabolic syndrome. Nutricion hospitalaria 35 (3): 582–587.PubMed
21.
Zurück zum Zitat Gulati, S., A. Misra, and R.M. Pandey. 2017. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians - a randomized controlled, parallel arm study. Lipids in Health and Disease 16 (1): 71.CrossRef Gulati, S., A. Misra, and R.M. Pandey. 2017. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians - a randomized controlled, parallel arm study. Lipids in Health and Disease 16 (1): 71.CrossRef
22.
Zurück zum Zitat Müller, A., P.J. Rice, H.E. Ensley, P.S. Coogan, J.H. Kalbfleish, J.L. Kelley, E.J. Love, C.A. Portera, T. Ha, I.W. Browder, and D.L. Williams. 1996. Receptor binding and internalization of a water-soluble (1-->3)-beta-D-glucan biologic response modifier in two monocyte/macrophage cell lines. The Journal of Immunology 156: 3418–3425.PubMed Müller, A., P.J. Rice, H.E. Ensley, P.S. Coogan, J.H. Kalbfleish, J.L. Kelley, E.J. Love, C.A. Portera, T. Ha, I.W. Browder, and D.L. Williams. 1996. Receptor binding and internalization of a water-soluble (1-->3)-beta-D-glucan biologic response modifier in two monocyte/macrophage cell lines. The Journal of Immunology 156: 3418–3425.PubMed
23.
Zurück zum Zitat Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. The Journal of Immunology 165: 618–622.CrossRef Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. The Journal of Immunology 165: 618–622.CrossRef
24.
Zurück zum Zitat Quinn, S.M., K. Cunningham, M. Raverdeau, R.J. Walsh, L. Curham, A. Malara, and K.H.G. Mills. 2019. Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell-mediated autoimmune disease. Frontiers in Immunology 10: 1109.CrossRef Quinn, S.M., K. Cunningham, M. Raverdeau, R.J. Walsh, L. Curham, A. Malara, and K.H.G. Mills. 2019. Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell-mediated autoimmune disease. Frontiers in Immunology 10: 1109.CrossRef
25.
Zurück zum Zitat Ifrim, D.C., J. Quintin, L.A.B. Joosten, C. Jacobs, T. Jansen, L. Jacobs, N.A.R. Gow, D.L. Williams, J.W.M. van der Meer, and M.G. Netea. 2014. Trained Immunity or Tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21: 534–545.CrossRef Ifrim, D.C., J. Quintin, L.A.B. Joosten, C. Jacobs, T. Jansen, L. Jacobs, N.A.R. Gow, D.L. Williams, J.W.M. van der Meer, and M.G. Netea. 2014. Trained Immunity or Tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21: 534–545.CrossRef
26.
Zurück zum Zitat Li, C., D. Yang, X. Cao, F. Wang, H. Jiang, H. Guo, L. Du, Q. Guo, and X. Yin. 2016. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochemical Pharmacology 113: 57–69.CrossRef Li, C., D. Yang, X. Cao, F. Wang, H. Jiang, H. Guo, L. Du, Q. Guo, and X. Yin. 2016. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochemical Pharmacology 113: 57–69.CrossRef
27.
Zurück zum Zitat Zhu, X., Y.Q. Cheng, L. Du, Y. Li, F. Zhang, H. Guo, Y.W. Liu, and X.X. Yin. 20 15. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Research 29 (2): 295–302. Zhu, X., Y.Q. Cheng, L. Du, Y. Li, F. Zhang, H. Guo, Y.W. Liu, and X.X. Yin. 20 15. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Research 29 (2): 295–302.
28.
Zurück zum Zitat Lund, M.E., J. To, B.A. O'Brien, and S. Donnelly. 2016. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods 430: 64–70.CrossRef Lund, M.E., J. To, B.A. O'Brien, and S. Donnelly. 2016. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods 430: 64–70.CrossRef
29.
Zurück zum Zitat Domínguez-Andrés, J., B. Novakovic, Y. Li, B.P. Scicluna, M.S. Gresnigt, R.J.W. Arts, M. Oosting, S.J.C.F.M. Moorlag, L.A. Groh, J. Zwaag, R.M. Koch, R.H. Ter, L.A.B. Joosten, C. Wijmenga, A. Michelucci, T. van der Poll, M. Kox, P. Pickkers, V. Kumar, H. Stunnenberg, and M.G. Netea. 2019. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism 29 (1): 211–220.CrossRef Domínguez-Andrés, J., B. Novakovic, Y. Li, B.P. Scicluna, M.S. Gresnigt, R.J.W. Arts, M. Oosting, S.J.C.F.M. Moorlag, L.A. Groh, J. Zwaag, R.M. Koch, R.H. Ter, L.A.B. Joosten, C. Wijmenga, A. Michelucci, T. van der Poll, M. Kox, P. Pickkers, V. Kumar, H. Stunnenberg, and M.G. Netea. 2019. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism 29 (1): 211–220.CrossRef
30.
Zurück zum Zitat Quintin, J., S. Saeed, J.H.A. Martens, E.J. Giamarellos-Bourboulis, D.C. Ifrim, C. Logie, L. Jacobs, T. Jansen, B.J. Kullberg, C. Wijmenga, L.A.B. Joosten, R.J. Xavier, J.W.M. van der Meer, H.G. Stunnenberg, and M.G. Netea. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe 12: 223–232.CrossRef Quintin, J., S. Saeed, J.H.A. Martens, E.J. Giamarellos-Bourboulis, D.C. Ifrim, C. Logie, L. Jacobs, T. Jansen, B.J. Kullberg, C. Wijmenga, L.A.B. Joosten, R.J. Xavier, J.W.M. van der Meer, H.G. Stunnenberg, and M.G. Netea. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe 12: 223–232.CrossRef
31.
Zurück zum Zitat Auinger, A., L. Riede, G. Bothe, R. Busch, and J. Gruenwald. 2013. Yeast (1,3) -(1,6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. European Journal of Nutrition 52: 1913–1918.CrossRef Auinger, A., L. Riede, G. Bothe, R. Busch, and J. Gruenwald. 2013. Yeast (1,3) -(1,6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. European Journal of Nutrition 52: 1913–1918.CrossRef
32.
Zurück zum Zitat Guggenheim, A.G., K.M. Wright, and H.L. Zwickey. 2014. Immune modulation from five major mushrooms: application to integrative oncology. Integrative Medicine: A Clinician's Journal 13: 32–44. Guggenheim, A.G., K.M. Wright, and H.L. Zwickey. 2014. Immune modulation from five major mushrooms: application to integrative oncology. Integrative Medicine: A Clinician's Journal 13: 32–44.
33.
Zurück zum Zitat Moradali, M.F., H. Mostafavi, S. Ghods, and G.A. Hedjaroude. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7: 701–724.CrossRef Moradali, M.F., H. Mostafavi, S. Ghods, and G.A. Hedjaroude. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7: 701–724.CrossRef
34.
Zurück zum Zitat Demir, G., H.O. Klein, N. Mandel-Molinas, and N. Tuzuner. 2007. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 7: 113–116.CrossRef Demir, G., H.O. Klein, N. Mandel-Molinas, and N. Tuzuner. 2007. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 7: 113–116.CrossRef
35.
Zurück zum Zitat Wu, H., A.J. Flint, Q. Qi, R.M. van Dam, L.A. Sampson, E.B. Rimm, M.D. Holmes, W.C. Willett, F.B. Hu, and Q. Sun. 2015. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Internal Medicine 175: 373–384.CrossRef Wu, H., A.J. Flint, Q. Qi, R.M. van Dam, L.A. Sampson, E.B. Rimm, M.D. Holmes, W.C. Willett, F.B. Hu, and Q. Sun. 2015. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Internal Medicine 175: 373–384.CrossRef
36.
Zurück zum Zitat Choromanska, A., J. Kulbacka, J. Harasym, M. Dubinska-Magiera, and J. Saczko. 2017. Anticancer activity of oat beta-glucan in combination with electroporation on human cancer cells. Acta Poloniae Pharmaceutica 74: 616–623.PubMed Choromanska, A., J. Kulbacka, J. Harasym, M. Dubinska-Magiera, and J. Saczko. 2017. Anticancer activity of oat beta-glucan in combination with electroporation on human cancer cells. Acta Poloniae Pharmaceutica 74: 616–623.PubMed
37.
Zurück zum Zitat Choromanska, A., J. Kulbacka, J. Harasym, R. Oledzki, A. Szewczyk, and J. Saczko. 2018. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathology & Oncology Research 24: 583–592.CrossRef Choromanska, A., J. Kulbacka, J. Harasym, R. Oledzki, A. Szewczyk, and J. Saczko. 2018. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathology & Oncology Research 24: 583–592.CrossRef
38.
Zurück zum Zitat Garcia-Valtanen, P., R.M. Guzman-Genuino, D.L. Williams, J.D. Hayball, and K.R. Diener. 2017. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95: 601–610.CrossRef Garcia-Valtanen, P., R.M. Guzman-Genuino, D.L. Williams, J.D. Hayball, and K.R. Diener. 2017. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95: 601–610.CrossRef
39.
Zurück zum Zitat Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 784: 29–33.CrossRef Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 784: 29–33.CrossRef
40.
Zurück zum Zitat Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1α -mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684.CrossRef Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1α -mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684.CrossRef
41.
Zurück zum Zitat Arts, R.J., B. Novakovic, R. Ter Horst, A. Carvalho, S. Bekkering, E. Lachmandas, F. Rodrigues, R. Silvestre, S.C. Cheng, S.Y. Wang, E. Habibi, L.G. Gonçalves, I. Mesquita, C. Cunha, A. van Laarhoven, F.L. van de Veerdonk, D.L. Williams, J.W. van der Meer, C. Logie, and C, L. A. O'Neill, C. A. Dinarello, N. P. Riksen, R. van Crevel, C. Clish, R. A. Notebaart, L. A. Joosten, H. G. Stunnenberg, R. J. Xavier, and M. G. Netea. 2016. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism 24: 807–819. Arts, R.J., B. Novakovic, R. Ter Horst, A. Carvalho, S. Bekkering, E. Lachmandas, F. Rodrigues, R. Silvestre, S.C. Cheng, S.Y. Wang, E. Habibi, L.G. Gonçalves, I. Mesquita, C. Cunha, A. van Laarhoven, F.L. van de Veerdonk, D.L. Williams, J.W. van der Meer, C. Logie, and C, L. A. O'Neill, C. A. Dinarello, N. P. Riksen, R. van Crevel, C. Clish, R. A. Notebaart, L. A. Joosten, H. G. Stunnenberg, R. J. Xavier, and M. G. Netea. 2016. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism 24: 807–819.
Metadaten
Titel
Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming
verfasst von
Wei Pan
Shanshan Hao
Mingxuan Zheng
Danhong Lin
Pengfei Jiang
Jinxiu Zhao
Hongli Shi
Xiaoying Yang
Xiangyang Li
Yinghua Yu
Publikationsdatum
13.03.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01211-2

Weitere Artikel der Ausgabe 4/2020

Inflammation 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.