Skip to main content
Erschienen in: Inflammation 5/2020

03.06.2020 | Original Article

Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon

verfasst von: Xue Li, Xin Li

Erschienen in: Inflammation | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Although obesity is associated with inflammatory bowel disease (IBD), the underlying molecular mechanism still remains unclear. In this study, we evaluated the effects of high-fat diet (HFD)-induced obesity on the development of experimental colitis in mice. The C57BL/6 mice were fed with a HFD for 12 weeks to develop obesity. The concentrations of free fatty acids (FFA), triglycerides, and cholesterol in plasma were significantly increased in HFD-fed mice compared to low-fat diet (LFD)-fed mice. We found that HFD-induced obesity could exacerbate 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced experimental colitis in mice resembling Crohn’s disease (CD). HFD-fed mice showed shorter colon length, higher clinical scores and histological scores, more production of mucosal tumor necrosis factor-α (TNF-α), and greater destruction of colonic epithelial barrier than LFD-fed mice after TNBS induction. HFD feeding also promoted reactive oxygen species (ROS) production in colonic epithelial cells, thus activating the pro-apoptotic pathway to damage colonic epithelial barrier induced by TNBS. After HCT116 cells were treated with palmitate acid (PA) and/or TNF-α for 24 h, the combination of PA and TNF-α increased ROS production, promoted mitochondrial dysfunction, and activated the pro-apoptotic pathway, but these effects were markedly attenuated by a ROS inhibitor. Taken together, these observations suggest that HFD-induced obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction, which triggers the activation of pro-apoptotic pathway in the colon.
Literatur
1.
Zurück zum Zitat Gibson, P.R. 2004. Increased gut permeability in Crohn disease: Is TNF the link? Gut 53: 1724–1725.CrossRef Gibson, P.R. 2004. Increased gut permeability in Crohn disease: Is TNF the link? Gut 53: 1724–1725.CrossRef
2.
Zurück zum Zitat Wu, X.X., X.L. Huang, R.R. Chen, T. Li, H.J. Ye, W. Xie, Z.M. Huang, and G.Z. Cao. 2019. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 42: 2215–2225.CrossRef Wu, X.X., X.L. Huang, R.R. Chen, T. Li, H.J. Ye, W. Xie, Z.M. Huang, and G.Z. Cao. 2019. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 42: 2215–2225.CrossRef
3.
Zurück zum Zitat Fasano, A., and T. Sheadonohue. 2005. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature Clinical Practice. Gastroenterology & Hepatology 2: 416–422.CrossRef Fasano, A., and T. Sheadonohue. 2005. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature Clinical Practice. Gastroenterology & Hepatology 2: 416–422.CrossRef
4.
Zurück zum Zitat He, L., T. Liu, Y. Shi, F. Tian, H. Hu, D.K. Deb, Y. Chen, M. Bissonnette, and Y.C. Li. 2018. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology 159: 967–979.CrossRef He, L., T. Liu, Y. Shi, F. Tian, H. Hu, D.K. Deb, Y. Chen, M. Bissonnette, and Y.C. Li. 2018. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology 159: 967–979.CrossRef
5.
Zurück zum Zitat Capaldo, C.T., D.N. Powell, and D. Kalman. 2017. Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine 95: 927–934.CrossRef Capaldo, C.T., D.N. Powell, and D. Kalman. 2017. Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine 95: 927–934.CrossRef
6.
Zurück zum Zitat Du, J., Y. Chen, Y. Shi, T. Liu, Y. Cao, Y. Tang, X. Ge, H. Nie, C. Zheng, and Y.C. Li. 2015. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflammatory Bowel Diseases 21: 2495–2506.CrossRef Du, J., Y. Chen, Y. Shi, T. Liu, Y. Cao, Y. Tang, X. Ge, H. Nie, C. Zheng, and Y.C. Li. 2015. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflammatory Bowel Diseases 21: 2495–2506.CrossRef
7.
Zurück zum Zitat Sabatino, A.D., R. Ciccocioppo, O. Luinetti, L. Ricevuti, R. Morera, M. Cifone, E. Solcia, and G. Corazza. 2003. Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Diseases of the Colon & Rectum 46: 1498–1507.CrossRef Sabatino, A.D., R. Ciccocioppo, O. Luinetti, L. Ricevuti, R. Morera, M. Cifone, E. Solcia, and G. Corazza. 2003. Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Diseases of the Colon & Rectum 46: 1498–1507.CrossRef
8.
Zurück zum Zitat Nenci, A., C. Becker, A. Wullaert, R. Gareus, G. van Loo, S. Danese, M. Huth, A. Nikolaev, C. Neufert, and B. Madison. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446: 557–561.CrossRef Nenci, A., C. Becker, A. Wullaert, R. Gareus, G. van Loo, S. Danese, M. Huth, A. Nikolaev, C. Neufert, and B. Madison. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446: 557–561.CrossRef
9.
Zurück zum Zitat Shi, Y., T. Liu, L. He, U. Dougherty, L. Chen, S. Adhikari, L. Alpert, G. Zhou, W. Liu, J. Wang, D.K. Deb, J. Hart, S.Q. Liu, J. Kwon, J. Pekow, D.T. Rubin, Q. Zhao, M. Bissonnette, and Y.C. Li. 2016. Activation of the renin-angiotensin system promotes colitis development. Scientific Reports 6: 27552.CrossRef Shi, Y., T. Liu, L. He, U. Dougherty, L. Chen, S. Adhikari, L. Alpert, G. Zhou, W. Liu, J. Wang, D.K. Deb, J. Hart, S.Q. Liu, J. Kwon, J. Pekow, D.T. Rubin, Q. Zhao, M. Bissonnette, and Y.C. Li. 2016. Activation of the renin-angiotensin system promotes colitis development. Scientific Reports 6: 27552.CrossRef
10.
Zurück zum Zitat Colombo, B.B., V. Fattori, C.F.S. Guazelli, T.H. Zaninelli, T.T. Carvalh, C.R. Ferraz, A.J.C. Bussmann, K.W. Ruizmiyazawa, M.M. Baracat, R. Casaqrande, and W.A. Verri Jr. 2018. Vinpocetine ameliorates acetic acid-induced colitis by inhibiting NF-κB activation in mice. Inflammation 41: 1276–1289.CrossRef Colombo, B.B., V. Fattori, C.F.S. Guazelli, T.H. Zaninelli, T.T. Carvalh, C.R. Ferraz, A.J.C. Bussmann, K.W. Ruizmiyazawa, M.M. Baracat, R. Casaqrande, and W.A. Verri Jr. 2018. Vinpocetine ameliorates acetic acid-induced colitis by inhibiting NF-κB activation in mice. Inflammation 41: 1276–1289.CrossRef
11.
Zurück zum Zitat Komaki, Y., F. Komaki, A. Sakuraba, and R. Cohen. 2016. Approach to optimize anti-TNF-α therapy in patients with IBD. Current Treatment Options in Gastroenterology 14: 83–90.CrossRef Komaki, Y., F. Komaki, A. Sakuraba, and R. Cohen. 2016. Approach to optimize anti-TNF-α therapy in patients with IBD. Current Treatment Options in Gastroenterology 14: 83–90.CrossRef
12.
Zurück zum Zitat Al-Sadi, R., S. Guo, D. Ye, M. Rawat, and T.Y. Ma. 2016. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α Axis activation of the canonical NF-κB pathway. American Journal of Pathology 186: 1151–1165.CrossRef Al-Sadi, R., S. Guo, D. Ye, M. Rawat, and T.Y. Ma. 2016. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α Axis activation of the canonical NF-κB pathway. American Journal of Pathology 186: 1151–1165.CrossRef
13.
Zurück zum Zitat Suski, J.M., M. Lebiedzinska, M. Bonora, P. Pinton, and M.R. Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation. Methods in Molecular Biology 810: 83–205. Suski, J.M., M. Lebiedzinska, M. Bonora, P. Pinton, and M.R. Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation. Methods in Molecular Biology 810: 83–205.
14.
Zurück zum Zitat Ye, L., S. Mao, S. Fang, J. Zhang, Y. Tan, and W. Gu. 2019. Increased serum Romo1 was correlated with lung function, inflammation, and oxidative stress in chronic obstructive pulmonary disease. Inflammation 42: 1555–1560.CrossRef Ye, L., S. Mao, S. Fang, J. Zhang, Y. Tan, and W. Gu. 2019. Increased serum Romo1 was correlated with lung function, inflammation, and oxidative stress in chronic obstructive pulmonary disease. Inflammation 42: 1555–1560.CrossRef
15.
Zurück zum Zitat Liao, H.Y., C.M. Kao, C. Yao, P.W. Chiu, and S.C. Chen. 2017. 2,4,6-trinitrotoluene induces apoptosis via ROS-regulated mitochondrial dysfunction and endoplasmic reticulum stress in HepG2 and Hep3B cells. Scientific Reports 7: 8148.CrossRef Liao, H.Y., C.M. Kao, C. Yao, P.W. Chiu, and S.C. Chen. 2017. 2,4,6-trinitrotoluene induces apoptosis via ROS-regulated mitochondrial dysfunction and endoplasmic reticulum stress in HepG2 and Hep3B cells. Scientific Reports 7: 8148.CrossRef
16.
Zurück zum Zitat Harper, J.W., and Z.T. L. 2016. Interaction of obesity and inflammatory bowel disease. World Journal of Gastroenterology 22: 7868–7881.CrossRef Harper, J.W., and Z.T. L. 2016. Interaction of obesity and inflammatory bowel disease. World Journal of Gastroenterology 22: 7868–7881.CrossRef
17.
Zurück zum Zitat Okla, M., W. Zaher, M. Alfayez, and S. Chung. 2018. Inhibitory effects of toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation 41: 626–642.CrossRef Okla, M., W. Zaher, M. Alfayez, and S. Chung. 2018. Inhibitory effects of toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation 41: 626–642.CrossRef
18.
Zurück zum Zitat Bournat, J.C., and C.W. Brown. 2015. Mitochondrial dysfunction in obesity. Current Opinion in Endocrinology, Diabetes, and Obesity 17: 446–452.CrossRef Bournat, J.C., and C.W. Brown. 2015. Mitochondrial dysfunction in obesity. Current Opinion in Endocrinology, Diabetes, and Obesity 17: 446–452.CrossRef
19.
Zurück zum Zitat Cheng, L., H. Jin, Y. Qiang, S. Wu, C. Yan, M. Han, T. Xiao, N. Yan, H. An, and X. Zhou. 2016. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology 40: 1–10.CrossRef Cheng, L., H. Jin, Y. Qiang, S. Wu, C. Yan, M. Han, T. Xiao, N. Yan, H. An, and X. Zhou. 2016. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology 40: 1–10.CrossRef
20.
Zurück zum Zitat Wunderlich, C.M., P.J. Ackermann, A.L. Ostermann, P. Adams-Quack, M.C. Vogt, M.-L. Tran, A. Nikolajev, A. Waisman, C. Garbers, and S. Theurich. 2018. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nature Communications 9: 1646.CrossRef Wunderlich, C.M., P.J. Ackermann, A.L. Ostermann, P. Adams-Quack, M.C. Vogt, M.-L. Tran, A. Nikolajev, A. Waisman, C. Garbers, and S. Theurich. 2018. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nature Communications 9: 1646.CrossRef
21.
Zurück zum Zitat Li, X., X. Wei, Y. Sun, J. Du, X. Li, Z. Xun, and Y.C. Li. 2019. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G453–G462.CrossRef Li, X., X. Wei, Y. Sun, J. Du, X. Li, Z. Xun, and Y.C. Li. 2019. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G453–G462.CrossRef
22.
Zurück zum Zitat Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRef Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRef
23.
Zurück zum Zitat Alnahdi, A., A. John, and H. Raza. 2019. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 11: 1979.CrossRef Alnahdi, A., A. John, and H. Raza. 2019. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 11: 1979.CrossRef
24.
Zurück zum Zitat Gulhane, M., L. Murray, R. Lourie, H. Tong, Y.H. Sheng, R. Wang, A. Kang, V. Schreiber, K.Y. Wong, and G. Magor. 2016. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports 6: 28990.CrossRef Gulhane, M., L. Murray, R. Lourie, H. Tong, Y.H. Sheng, R. Wang, A. Kang, V. Schreiber, K.Y. Wong, and G. Magor. 2016. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports 6: 28990.CrossRef
25.
Zurück zum Zitat Paik, J., Y. Fierce, P.M. Treuting, T. Brabb, and L. Maggio-Price. 2013. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. Journal of Nutrition 143: 1240–1247.CrossRef Paik, J., Y. Fierce, P.M. Treuting, T. Brabb, and L. Maggio-Price. 2013. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. Journal of Nutrition 143: 1240–1247.CrossRef
26.
Zurück zum Zitat June-Chul, L., L. Hae-Youn, K.T. Kang, K. Min-Soo, P.Y. Mi, K. Jinyoung, P. Kihyoun, K. Mi-Na, K. Seok-Hyung, and B. Jin-Woo. 2017. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 12: e0187515.CrossRef June-Chul, L., L. Hae-Youn, K.T. Kang, K. Min-Soo, P.Y. Mi, K. Jinyoung, P. Kihyoun, K. Mi-Na, K. Seok-Hyung, and B. Jin-Woo. 2017. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 12: e0187515.CrossRef
27.
Zurück zum Zitat Crespo, I., B. San-Miguel, C. Prause, N. Marroni, M.J. Cuevas, J. González-Gallego, and M.J. Tuñón. 2012. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 7: e50407.CrossRef Crespo, I., B. San-Miguel, C. Prause, N. Marroni, M.J. Cuevas, J. González-Gallego, and M.J. Tuñón. 2012. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 7: e50407.CrossRef
28.
Zurück zum Zitat Qin, L., Z.Q. Yao, Q. Chang, Y.L. Zhao, and J. Li. 2016. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 8: 7391–7404.CrossRef Qin, L., Z.Q. Yao, Q. Chang, Y.L. Zhao, and J. Li. 2016. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 8: 7391–7404.CrossRef
29.
Zurück zum Zitat Coppack, S.W. 2001. Pro-inflammatory cytokines and adipose tissue. The Proceedings of the Nutrition Society 60: 349–356.CrossRef Coppack, S.W. 2001. Pro-inflammatory cytokines and adipose tissue. The Proceedings of the Nutrition Society 60: 349–356.CrossRef
30.
Zurück zum Zitat Ding, X., D. Li, M. Li, H. Wang, and Q. Yu. 2018. SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Laboratory Investigation 98: 462–476.CrossRef Ding, X., D. Li, M. Li, H. Wang, and Q. Yu. 2018. SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Laboratory Investigation 98: 462–476.CrossRef
31.
Zurück zum Zitat Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141–153.CrossRef Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141–153.CrossRef
32.
Zurück zum Zitat Mcmurray, F., D.A. Patten, and M.-E. Harper. 2016. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity 24: 2301–2310.CrossRef Mcmurray, F., D.A. Patten, and M.-E. Harper. 2016. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity 24: 2301–2310.CrossRef
33.
Zurück zum Zitat Yao, J., Z. Li, Y. Fu, R. Wu, Y. Wang, C. Liu, L. Yang, and H. Zhang. 2019. Involvement of obesity-associated upregulation of chemerin/chemokine-like receptor 1 in oxidative stress and apoptosis in ovaries and granulosa cells. Biochemical and Biophysical Research Communications 12: 449–455.CrossRef Yao, J., Z. Li, Y. Fu, R. Wu, Y. Wang, C. Liu, L. Yang, and H. Zhang. 2019. Involvement of obesity-associated upregulation of chemerin/chemokine-like receptor 1 in oxidative stress and apoptosis in ovaries and granulosa cells. Biochemical and Biophysical Research Communications 12: 449–455.CrossRef
34.
Zurück zum Zitat Ji, J., Y. Qin, J. Ren, C. Lu, R. Wang, X. Dai, R. Zhou, Z. Huang, M. Xu, and M. Chen. 2015. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Scientific Reports 5: 16262.CrossRef Ji, J., Y. Qin, J. Ren, C. Lu, R. Wang, X. Dai, R. Zhou, Z. Huang, M. Xu, and M. Chen. 2015. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Scientific Reports 5: 16262.CrossRef
35.
Zurück zum Zitat Zhan, M., C. Brooks, F. Liu, L. Sun, and Z. Dong. 2013. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney International 83: 568–581.CrossRef Zhan, M., C. Brooks, F. Liu, L. Sun, and Z. Dong. 2013. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney International 83: 568–581.CrossRef
Metadaten
Titel
Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon
verfasst von
Xue Li
Xin Li
Publikationsdatum
03.06.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01261-6

Weitere Artikel der Ausgabe 5/2020

Inflammation 5/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.