Skip to main content
Erschienen in:

Open Access 02.05.2023 | Diagnostic Neuroradiology

Oligodendrogliomas tend to infiltrate the frontal aslant tract, whereas astrocytomas tend to displace it

verfasst von: M. J. F. Landers, H. B. Brouwers, G. J. Kortman, I. Boukrab, W. De Baene, G. J. M. Rutten

Erschienen in: Neuroradiology | Ausgabe 7/2023

Abstract

Introduction

MR-tractography is increasingly used in neurosurgical practice to evaluate the anatomical relationships between glioma and nearby subcortical tracts. In some patients, the subcortical tracts seem displaced by the glioma, while in other patients, the subcortical tracts seem infiltrated without displacement. At this point, it is unknown whether these different patterns are related to tumor type. The aim of this exploratory study was to investigate whether tumor type is related to the spatial tractography pattern of the frontal aslant tract (FAT) in low-grade gliomas (LGGs).

Methods

In 64 IDH-mutated LGG patients, the FAT was generated using a pipeline for automatic tractography. In 41 patients, the glioma adjoined the FAT, and four blinded reviewers independently assessed the following two dichotomous categories (yes/no): (i) glioma displaces the tract, and (ii) glioma infiltrates the tract.

Results

Fisher’s exact tests demonstrated strong and significant positive associations between displacement and astrocytomas (p = .002, φ = .497) and infiltration and oligodendrogliomas (p = .004, φ = .484). The interobserver agreement was good for both categories: (i) κ = 0.76 and (ii) κ = 0.71.

Conclusion

High sensitivity but low specificity for displacement in astrocytomas demonstrates that in the case of an astrocytoma, the tract is most likely displaced, but that displacement in itself is not necessarily predictive for astrocytomas, as oligodendrogliomas may both infiltrate and displace a tract. Overall, these results demonstrate that oligodendrogliomas tend to infiltrate the nearby subcortical tract, whereas astrocytomas only tend to displace it.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00234-023-03153-6.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
FAT
Frontal aslant tract
DW-MRI
Diffusion-weighted magnetic resonance imaging
LGG
Low-grade glioma
DES
Direct electrical stimulation
EOR
Extent of resection

Introduction

MR-tractography is increasingly used as a clinical tool to visualize subcortical tracts and to plan brain tumor surgery [1]. The anatomical relationship between a brain tumor and nearby subcortical tracts can be used to determine a safe surgical corridor and plan and is predictive of the extent of resection (EOR) [2, 3]. This is especially relevant in the case of low-grade glioma (LGG), as LGGs have a diffuse growth pattern, and the EOR is strongly related to survival time [4]. Determining the EOR of LGGs therefore requires a careful balance between the removal of tumor tissue and sparing functional subcortical brain tissue. Therefore, when determining the EOR, spatial information on the anatomical relationship may provide valuable insight. Currently, a clear and uniform clinical classification system to classify the spatial patterns of subcortical tract alterations specifically for LGGs is lacking. For all types of brain tumors (low- and high-grade gliomas, metastases), three non-uniform systems have been reported [57]. These systems distinguish, amongst others, between the patterns of displacement and infiltration but also rely their classification on fractional anisotropy (FA), mean diffusivity (MD), and/or directional color maps. From clinical experience, it caught our attention that the different spatial patterns may also be linked to the 1p19q status of the LGG, whereby in case of displacement, the histopathological examination resulted more often in the absence of a 1p19q codeletion (astrocytoma), while in case of infiltration, this resulted more often in the presence of a 1p19q codeletion (oligodendrogliomas). In the field of radiomics, several attempts have been made to classify 1p19q status in LGGs. A recent systematic review that investigated MRI radiomics and 1p19q deletion demonstrated that texture-based radiomics could classify 1p19q status in IDH-mutated LGGs with a maximum sensitivity of 85% and specificity of 77%, but that clinical application was limited due to the high heterogeneity between each of the radiomic pipelines [8]. In addition, none of the papers included MR-tractography for classification of the 1p19q status. Currently, it remains unknown whether the different clinically observed spatial patterns are related to the 1p19q status of LGGs. The aim of this exploratory study was to investigate this hypothesis for the frontal aslant tract (FAT) in LGG patients, whereby we hypothesize that displacement is associated with astrocytomas and infiltration with oligodendrogliomas.

Methods

We retrospectively analyzed patients with frontal IDH-mutated low-grade gliomas, from whom DW-MRI was acquired in the week before resection in the period between April 2011 and July 2021. Patients were included if histopathological examination confirmed an oligodendroglioma (1p19q codeletion present) or astrocytoma (absence of 1p19q codeletion). DWI scans were acquired using a Philips Achieva 3T MRI-scanner (b = 1500, 50 diffusion weighting directions, 6 b = 0 images, 2 mm isotropic voxel size). Probabilistic tractography of the FAT was performed using a pipeline for subject-specific automatic reconstruction of white-matter pathways (for the tractography protocol, see Appendix). This automated pipeline uses the MRtrix software package for the constrained spherical deconvolution-based iFOD2 method with tckgen [9]. The shortest distance from the glioma to the FAT was computed, and patients in which the glioma was located beyond 1 cm of the FAT were excluded. Four blinded examiners (ML, HB, GK, IB) independently assessed the following two dichotomous categories (yes/no): (i) glioma displaces the tract; (ii) the glioma infiltrates the tract. The FAT was classified as displaced in case the tumor affected the course of the FAT and ran asymmetrically as compared to the contralateral hemisphere. The FAT was classified as infiltrated in case the tract ran partly through the tumor (see Fig. 1A–C for examples of the two categories). Differences in assessments were adjudicated by consensus.
Descriptive statistics were performed for the following patient characteristics: age, sex, affected hemisphere, tumor volume, and FA and MD of the tumor. We statistically compared the characteristics with independent samples t-tests or Mann-Whitney U tests (continuous variables, depending on data distribution) and Chi-square tests (categorical variables). The significance level was set at 0.05. Interobserver agreement was calculated between the four examiners per category using Fleiss’ kappa. Fisher’s exact tests were used to investigate whether there were significant associations between the two categories and histopathological tumor type. In the case of significant associations, we calculated sensitivity, specificity, positive and negative predictive value, and accuracy.

Results

In 41 out of 64 patients with a frontal LGG, the glioma was located within 1 cm of the FAT. Comparison of the patient characteristics (Table 1) between oligodendrogliomas and astrocytomas demonstrated a significant difference in age and MD, with a lower mean age in the astrocytoma group (p < .05) and a lower mean MD in the oligodendroglioma group (p < .05). The groups did not differ significantly on any of the other patient characteristics. In six cases, differences in assessment of the spatial categories were adjudicated by consensus. In 31 cases, there was displacement, and in 24 cases, the FAT was infiltrated. There were no cases in which there was no infiltration or displacement. Fisher’s exact tests demonstrated strong significant positive associations between displacement and astrocytomas (p = .002, φ = .497) and infiltration and oligodendrogliomas (p = .004, φ = .484). The interobserver agreement was good for both categories, (i) κ = 0.76 and (ii) κ = 0.71. For the significant associations, sensitivity, specificity, positive and negative predictive value, and accuracy are presented in Table 2. For raw data see supplementary material.
Table 1
Patient characteristics (N = 41)
 
Oligodendroglioma (N = 19)
Astrocytoma (N = 22)
Age mean (SD; range) in years
46.9 (11.5; 29 - 66)*
36.3 (11.3; 21–61)*
Sex (n)
Male
Female
11 58%
8   42%
14 64%
8   36%
Affected hemisphere (N)
Right
Left
6   32%
13 68%
10 46%
12 55%
Tumor volume median (Q1;Q3)1 in cm3
 
35.0 (14.4; 61.0)
28.6 (10.4; 70.1)
Tumor FA
mean (SD; range)
 
.149 (.028; .088–.197)
.143 (.026; .097–.196)
Tumor MD1×10e−3mean (SD; range)
 
.128 (.013; .109–.163)*
.142 (.019; .113–.181)*
1Quartile 1, median of the lower half of the dataset; quartile 3, median of the upper half of the dataset
*p < .05
Table 2
Spatial pattern for the prediction of tumor type
Total N = 42
Displacement and astrocytoma
N = 21
Infiltration and oligodendroglioma
N = 16
Sensitivity
95.5%
84.2%
Specificity
47.4%
63.6%
PPV
67.7%
66.7%
NPV
90.0%
82.4%
Accuracy
73.2%
73.2%
N, number of patients; %, percentage; PPV, = positive predictive value; NPV, negative predictive value

Conclusions

Our results demonstrate that 1p19q status in LGG differently affects the course of the frontal aslant tract in and around the tumor. We found a high negative predictive value (90%) for astrocytomas and displacement, indicating that in the case of infiltration without displacement, it is 90% likely that the LGG is an oligodendroglioma. Vice versa, in the case of displacement without infiltration, it is 82% likely that the LGG is an astrocytoma. The high sensitivity but low specificity for displacement in astrocytomas demonstrates that in the case of an astrocytoma, the tract is most likely displaced, but that displacement in itself is not necessarily predictive for astrocytomas (specificity < 50%). The results demonstrate that this can be explained by the tendency of oligodendrogliomas to both infiltrate and displace a tract. Notably, in case of no displacement, this automatically means that there was infiltration because there were no cases in which there was no displacement and no infiltration.
We can not rule out that the differences in tractography results of the FAT are to a certain extent artifactual and caused by different DWI effects of each tumor type. Future research should replicate the results and investigate whether the different spatial patterns also occur in other subcortical tracts. If our findings are indeed replicable and generalizable, they can have profound implications for pre-operative counselling, choice of surgery type (awake vs. asleep), and perioperative decision-making (e.g., determining EOR) [10]. Future studies should also analyze whether these different patterns are related to postsurgical outcome. Hypothetically, if infiltrated tracts are still functional, this would imply that after complete resection, patients with an oligodendroglioma have more functional deterioration than patients with an astrocytoma, because tracts running through the tumor are more likely to be damaged than tracts that are displaced by the tumor. Therefore, we stress the need for an accurate clinical classification system of tractography patterns to enable further research on the diagnostic and prognostic value of MR-tractography, as it seems that the 1p19q status of LGGs differently influences the spatial pattern of a nearby subcortical tract.

Data Availability

The data is stored in an institutional repository, the data are available upon request.

Compliance with ethical standards

Competing interest

The authors have no financial or non-financial interest to declare.

Ethics approval

The local ethics committee (METC Brabant, The Netherlands) gave a positive advice for this study (NW2020-32).
Informed consent was obtained from all patients for participation and publication.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Anhänge

Appendix. Tractography protocol

DWI-MRI data were pre-processed using the MRTrix script dwifslpreproc. Probabilistic tractography was performed using the constrained spherical deconvolution-based iFOD2 method with tckgen. To seed and restrict tractography of the FAT, estimated regions of interest (ROIs) were identified using SLANT, a method that uses deep learning to generate patient-specific segmentations of 133 anatomical regions [11]. As seed regions, the supplementary motor area (SMA) and pre-supplementary motor area were used. As there are no anatomical landmarks that define the pre SMA, a vertical virtual plane passing through the genu of the corpus callosum was used to determine the anterior boundary of the pre SMA. The target regions used were the pars opercularis and pars triangularis of the inferior frontal gyrus. After tracking, spurious streamlines were filtered out of the tracts using fiber-to-bundle coherence as implemented in Dipy [12].

Supplementary Information

Literatur
2.
Zurück zum Zitat Khan KA, Jain SK, Sinha VD, Sinha J (2019) Preoperative diffusion tensor imaging: a landmark modality for predicting the outcome and characterization of supratentorial intra-axial brain tumors. World Neurosurg 124:e540–e551CrossRefPubMed Khan KA, Jain SK, Sinha VD, Sinha J (2019) Preoperative diffusion tensor imaging: a landmark modality for predicting the outcome and characterization of supratentorial intra-axial brain tumors. World Neurosurg 124:e540–e551CrossRefPubMed
3.
Zurück zum Zitat Bertani G, Carrabba G, Raneri F, Fava E, Castellano A, Falini A, Casarotti A, Gaini S, Bello L (2012) Predictive value of inferior fronto-occipital fasciculus (IFO) DTI-fiber tracking for determining the extent of resection for surgery of frontal and temporal gliomas preoperatively. J Neurosurg Sci 56(2):137–143PubMed Bertani G, Carrabba G, Raneri F, Fava E, Castellano A, Falini A, Casarotti A, Gaini S, Bello L (2012) Predictive value of inferior fronto-occipital fasciculus (IFO) DTI-fiber tracking for determining the extent of resection for surgery of frontal and temporal gliomas preoperatively. J Neurosurg Sci 56(2):137–143PubMed
4.
Zurück zum Zitat Sanai N, Berger MS (2018) Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol 15(2):112CrossRefPubMed Sanai N, Berger MS (2018) Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol 15(2):112CrossRefPubMed
5.
Zurück zum Zitat Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25(3):356–369PubMedPubMedCentral Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25(3):356–369PubMedPubMedCentral
6.
Zurück zum Zitat Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, Arfanakis K, Noyes J, Moritz CH, Meyerand ME (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97(3):568–575CrossRefPubMed Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, Arfanakis K, Noyes J, Moritz CH, Meyerand ME (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97(3):568–575CrossRefPubMed
7.
Zurück zum Zitat Field AS, Alexander AL, Wu YC, Hasan KM, Witwer B, Badie B (2004) Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. JMRI 20(4):555–562CrossRefPubMed Field AS, Alexander AL, Wu YC, Hasan KM, Witwer B, Badie B (2004) Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. JMRI 20(4):555–562CrossRefPubMed
8.
Zurück zum Zitat Bhandari AP, Liong R, Koppen J, Murthy S, Lasocki A (2021) Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. Am J Neuroradiol 42(1):94–101CrossRefPubMedPubMedCentral Bhandari AP, Liong R, Koppen J, Murthy S, Lasocki A (2021) Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. Am J Neuroradiol 42(1):94–101CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66CrossRef Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66CrossRef
11.
Zurück zum Zitat Huo Y, Xu Z, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, Landman BA (2018) Spatially localized atlas network tiles enables 3D whole brain segmentation from limited data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 698–705 Huo Y, Xu Z, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, Landman BA (2018) Spatially localized atlas network tiles enables 3D whole brain segmentation from limited data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 698–705
12.
Zurück zum Zitat Meesters S, Sanguinetti G, Garyfallidis E, Portegies J, Ossenblok P (2016) Duits R Cleaning output of tractography via fiber to bundle coherence, a new open source implementation. In: Abstract. Presented at Organization for Human Brain Mapping Annual Meeting, Geneve, Switzerland, pp 26–30 Meesters S, Sanguinetti G, Garyfallidis E, Portegies J, Ossenblok P (2016) Duits R Cleaning output of tractography via fiber to bundle coherence, a new open source implementation. In: Abstract. Presented at Organization for Human Brain Mapping Annual Meeting, Geneve, Switzerland, pp 26–30
Metadaten
Titel
Oligodendrogliomas tend to infiltrate the frontal aslant tract, whereas astrocytomas tend to displace it
verfasst von
M. J. F. Landers
H. B. Brouwers
G. J. Kortman
I. Boukrab
W. De Baene
G. J. M. Rutten
Publikationsdatum
02.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Neuroradiology / Ausgabe 7/2023
Print ISSN: 0028-3940
Elektronische ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-023-03153-6

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

„Wir wollen die Bedeutung von Gen- und Umwelteinflüssen besser verstehen“

Eine Mutation in einem einzelnen Gen kann bei Mäusen eine Art Bipolarstörung auslösen. PD Dr. Jan Deussing vom Max-Planck-Institut für Psychiatrie in München sieht in solchen Tiermodellen eine Möglichkeit, den Ursachen der Erkrankung auf den Grund zu gehen.

Suizidassistenz erhöht Suizidzahlen: Aktuelle Ergebnisse der geplanten S3-Leitlinie

Erstmals wird in Deutschland eine S3-Leitlinie zum Thema Suizidalität erarbeitet. Ziel ist es, die Versorgung in suizidalen Krisen durch einheitliche Standards zu verbessern. Erste Ergebnisse der bisherigen Leitlinienarbeit wurden auf dem DGPPN-Kongress vorgestellt.

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.