Skip to main content
Erschienen in: Seminars in Immunopathology 5/2019

Open Access 13.09.2019 | Review

Omnipresence of inflammasome activities in inflammatory bone diseases

verfasst von: Yael Alippe, Gabriel Mbalaviele

Erschienen in: Seminars in Immunopathology | Ausgabe 5/2019

Abstract

The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Hinweise
This article is a contribution to the special issue on Osteoimmunology - Guest Editor: Mary Nakamura

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Nucleotide-binding oligomerization domain-like receptors (NLRs, e.g., NLRP1) or absent in melanoma 2-like receptors (ALRs, e.g., AIM 2) associate with caspase-1 directly or indirectly via apoptosis-associated speck-like protein containing a CARD (ASC) to form intracellular protein complexes called inflammasomes. These macromolecular structures are assembled in response to perturbations caused by microbial products also known as pathogen-associated molecular patterns (PAMPs). For example, anthrax lethal factor, bacterial muramyl dipeptide, and bacterial flagellin induce the nucleation of the NLRP1 inflammasome, NLRP3 inflammasome, and NLRC4 inflammasome, respectively [1, 2]. The inflammasomes are also activated by host endogenous cues from damaged cells or exogenous materials, signals commonly known as danger-associated molecular patterns (DAMPs). In this regard, the NLRP3 inflammasome stands out, owing to its ability to sense a wide range of structurally different molecular entities including crystalline materials, misfolded or aggregated proteins, metabolites, prosthetic implant wear debris, and certain materials found in the environment such as asbestos and silica particles [35] (Fig. 1). The NLRC4 inflammasome and AIM2 inflammasome are also activated to some extent by endogenous DAMPs [68]. The inflammatory responses induced by PAMPs or DAMPs can be either acute when the perturbation is rapidly resolved, and the homeostasis is restored, or chronic and pathologic when rapid clearance mechanisms fail. Finally, activating mutations in NLRP1, NLRP3, NLRC4, or MEFV cause inflammasome assembly independently of PAMPs or DAMPs [915].
Caspase-1 processes pro-interleukin-1β (pro-IL-1β) and pro-IL-18 into IL-1β and IL-18, respectively [16]. It also cleaves gasdermin D (GSDMD), generating an N-terminal fragment that translocates from the cytoplasm to the plasma membrane where it forms pores through which IL-1β and IL-18 are secreted [17, 18]. However, excessive pore formation resulting from sustained activation of GSDMD in both infectious and sterile conditions compromises membrane integrity, and ultimately ruptures the cell, releasing pro-inflammatory cytoplasmic contents into the extracellular environment. This form of cell death, termed pyroptosis, is inflammatory and results in the recruitment of immune cells and the perpetuation of inflammation [19, 20]. Caspase-8 and neutrophil elastase can also generate IL-1β and IL-18 whereas caspase-8, caspase-11 (ortholog of human caspase-4 and caspase-5), and neutrophil elastase efficiently process GSDMD [2128]. Sustained exposure to supra-physiological levels of IL-1β and IL-18, ultimately, inflicts damage to multiple tissues including the skeleton.
Coordinated actions of the osteoclasts and the osteoblasts are essential to maintain bone mass and quality. The osteoclasts remove the old or defective matrix, which is replenished fully by the osteoblasts; this tightly regulated process is known as bone coupling [29]. Several growth factors, including bone morphogenetic proteins (BMPs) and Wnts control the differentiation of the osteoblasts from mesenchymal stem cells whereas the osteoclasts differentiate from myeloid progenitors exposed to signals generated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) [30, 31]. The osteoblast and osteoclast differentiation programs are antagonized and enhanced, respectively, by pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and IL-1β. Excessive bone resorption by the osteoclasts at the expenses of bone formation by the osteoblasts in inflammatory conditions creates an imbalance, which over time leads to bone loss and increased fracture risk [32]. In this article, we review the role of the inflammasomes in bone resorption and highlight the collateral effects of these protein complexes on other skeletal cells.

Mechanisms of bone resorption that are relevant to the inflammasomes

IL-1β plays numerous roles in bone pathophysiology. It stimulates RANKL production by mesenchymal cells (e.g., stromal cells, osteoblasts, and osteocytes), synoviocytes, and T cells directly or indirectly through the regulation of IL-6, IL-17, and TNF-α expression [3338]. The reciprocal regulation of IL-1β production by these cytokines and the reported RANKL-independent actions of IL-6 and TNF-α in osteoclast differentiation indicate that these responses are complex and multidirectional [39, 40]. Irrespective of the hierarchy of the events, IL-1β and its effectors act in synergy with RANKL to promote osteoclast differentiation and activity while suppressing osteogenesis [32]. IL-1β also stimulates its own synthesis, a positive feedback mechanism that underlies the chronicity of inflammasome actions in bone diseases [33, 41]. On the other hand, while pro-inflammatory actions of IL-18 in skin disorders [42] and infection-associated allergic diseases [43] are well described, the role of this cytokine in bone is ambiguous. Indeed, IL-18 can inhibit or stimulate bone resorption, depending on cell-contexts [4446].
Secretion of IL-1β through GSDMD-assembled pores by live cells has been reported [18, 26]. This phenomenon referred to as a hyper-reactive state occurs independently of pyroptosis and may be characteristic of diseases of low-grade inflammation as discussed later in this review. GSDMD pores have an inner diameter of 10–20 nm, which is much bigger than the diameter of mature IL-1β and IL-18 (approximately 5 nm) [17, 20, 4749]. There is thus far no basis for such large pores to facilitate only the secretion of these cytokines, implying that molecules with smaller sizes such as eicosanoids, which are also important regulators of bone resorption may be secreted through GSDMD pores. On the other hand, pyroptosis is presumably prominent in diseases marked by chronic episodes of high-grade inflammation such as inflammasomopathies. In this context, IL-1β and IL-18 are concomitantly secreted alongside alarmins including IL-1α, S100A8/9, HMGB1 [50, 51], and possibly lipid mediators such as eicosanoids [52]; this outcome may underlie the limited efficacy of IL-1 blockers in the treatment of bone diseases. Indeed, not only are these alarmins produced by myeloid cells, synovial cells, and osteoblasts [53, 54], but they are also potent modulators of inflammation and osteoclastogenesis, regulating the expression of RANKL, TNF-α, IL-1β, and IL-6 [33, 55]. Inflammasome signaling also leads to the cleavage of poly(ADP-ribose) polymerase 1 (PARP1) by caspase-7, a response that ultimately promotes the degradation of this negative regulator of osteoclast differentiation and bone resorption [56]. Thus, the inflammasomes are key players in the pathogenesis of inflammatory osteolysis. Understanding the biology of these signaling platforms is essential for the development of effective therapies targeting inflammatory bone loss.

Widespread activities of the inflammasomes in inflammatory osteolysis

Evidence suggests that the inflammasomes are implicated in a wide range of diseases of bone loss driven by sterile and non-sterile inflammation (Table 1).
Table 1
Inflammasomes and their activators in inflammatory bone diseases
Activators
Disorders
Description of the activators
Inflammasomes
PAMPs
Periodontitis[[5759]
Porphyromonas gingivalis
NLRP3, AIM2
Osteomyelitis[[6062]
Staphylococcus aureus
NLRP3
Mutations
CAPS[[6379]
Autosomal dominant
NLRP3, NLRC4, NLRP12
MAS[[11, 12, 80, 81]
Autosomal dominant
NLRC4
FMF[[82, 83]
Autosomal recessive
Pyrin
DAMPs
Sterile CRMO[[22, 23]
Unknown
NLRP3
Arthritis[[8488]
Self-DNA, other DAMPs?
NLRP3, AIM2, others?
Metabolic diseases, aging[[58, 8991]
Purine metabolites, fatty acids, other DAMPs?
NLRP3, NLRC4, AIM2, others?
Wear debris osteolysis[[3, 92, 93]
PMMA, CoCrMo, etc.
NLRP3, AIM2
Crystal-induced arthropathies[[9497]
MSU crystals (gout), CPPD crystals (pseudogout), BCP crystals
NLRP3

Cryopyrin-associated periodic syndromes

Cryopyrin-associated periodic syndromes (CAPS), which include familial cold autoinflammatory syndrome (FCAS), Muckle–Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease (NOMID) are caused by autosomal dominant mutations in the NACHT domain of NLRP3 [6365, 98]. Additionally, myeloid-restricted somatic mosaicism and mutations in NLRP12 and NLRC4 may account for the inflammatory responses in CAPS patients negative for mutations in NLRP3 [66]. NLRP3 is believed to switch from a closed and inactive conformation to an open state in response to PAMP- or DAMP-induced cues; NLRP3-activating mutations locked this protein in the active state, leading to the constitutive assembly of the inflammasome [67]. Common features of CAPS include recurring fever episodes, urticaria, conjunctivitis, and joint pain whereas central nervous system complications and arthropathies characterized by bone deformities, bulky epiphyses, leg length discrepancy, and short stature are hallmarks of NOMID, the most severe manifestation of these disorders [66, 6870]. Consistent with the tumor-like features of bony outgrowths, induced pluripotent stem cells from NOMID patients are more proliferative and exhibit higher differentiation potential than normal cells [71]. Epiphyseal abnormalities undoubtedly predispose NOMID patients to joint instability and subsequent development of osteoarthritis. It is worth noting that skeletal phenotyping is based on radiographic observations and limited histology that reveal heterogeneously calcified bone matrix, and severely disorganized and hypocellular growth plate [70].
Murine models of CAPS in which wild-type Nlrp3 alleles are replaced by murine or human alleles carrying mutations found in patients, reproduce several features of human disorders including early onset of systemic inflammation, skin and joint pathologies, and growth retardation. Cryopyrinopathies are in general more severe in rodents than in humans as mutant mice of all phenotypes (i.e., CAPS, MWS, and NOMID) exhibit short lifespan (3–4 weeks) [7274]. NOMID mice in which NLRP3 is activated globally exhibit normal patterning of skeletal elements but display hypocellular epiphyses due to massive chondrocyte death, and disorganized growth plate matrix protruding towards the bone marrow cavity [73]. Unexpectedly, conditional activation of NLRP3 in myeloid cells but not in osteochondro-progenitors reproduces the abnormal cartilage features, suggesting that the phenotype is not chondrocyte autonomous [75]. CAPS mice also exhibit severe low bone mass, a phenotype that correlates with a massive expansion of osteoclast precursors, exuberant osteoclastogenesis, and increased osteoclast activity [41, 73, 7577]. Thus, while the magnitude of bone resorption in CAPS patients is not known, this process is prominent and well characterized in mouse models.
Systemic inflammation and multiple organ pathologies, including bone abnormalities, are entirely prevented in NOMID mice lacking IL-1 receptor [75]. However, persistent residual inflammation is reported in FCAS mice and MWS mice deficient in IL-1 and IL-18 signaling [78, 79]. These findings align with clinical studies, which consistently show that epiphyseal lesions and outgrowths continue to expand for a significant number of NOMID patients on IL-1 biologics despite the resolution of disease-associated inflammatory symptoms [70, 99101]. Collectively, these observations suggest that IL-1β is not the primary driver of skeletal outcomes in CAPS, and that inflammasome-dependent responses other than IL-1β play a role in these disorders. This view is consistent with findings showing that levels of TNF-α remain elevated in certain CAPS patients on IL-1 blockers, and neutralization of TNF-α activity improves inflammatory endpoints in CAPS mice [78]. This view is further supported by recent evidence indicating that the pathogenesis of NOMID in mice is prevented by (i) genetic ablation of GSDMD and (ii) a novel inhibitor of the interactions of p38α MAPK and MAPK-activated kinase 2, which inhibits not only IL-1β, but also IL-6 and TNF-α [41, 77]. Thus, multiple responses, including pyroptosis, contribute to inflammasomopathies.

Macrophage activation syndrome

The NLRC4 inflammasome senses bacterial type III and IV secretion systems and flagellin via NLR family apoptosis inhibitory proteins (NAIPs). As noted above, NLRC4-activating mutations are found in certain FCAS patients. Moreover, recent evidence implicates the NLRC4 inflammasome in the pathogenesis of sterile inflammatory disorders as patients with NLRC4 gain-of-function mutations develop cytopenia, high ferritin levels, hemophagocytosis, and splenomegaly. These symptoms are associated with excessive levels of IL-18 and IL-1β, and recurring fever flares, a phenotype that is reminiscent of macrophage activation syndrome (MAS) [12, 80]. MAS is a frequent complication of systemic juvenile idiopathic arthritis (sJIA), a disease that interferes with healthy skeletal development and bone mass acquisition [102]. Although IL-1β levels are in general lower in MAS compared with CAPS, IL-1 biologics are efficacious in the treatment of sJIA [103, 104]. Consistent with the role of mutated NLRC4 in the development of joint pathologies, transgenic mice expressing constitutively active NLRC4 produce high levels of IL-1β and IL-18, and develop arthritis [81]. The NLRC4 inflammasome is also activated by nucleotide-derived metabolites (e.g., adenine and N-4-acetylcytidine) [6] and fatty acids (e.g., lysophosphatidylcholine and palmitate) [89] and is upregulated by bone-derived DAMPs during osteoclastogenesis [90]. An interplay between the NLRP3 and NLRC4 inflammasomes has been noted in these models of sterile inflammation as well as in response to Salmonella infection [105, 106].

Familial Mediterranean fever

MEFV encodes pyrin, which activates caspase-1 through ASC upon sensing post-translationally modified Rho GTPase [107]. These modifications include phosphorylation, ADP-ribosylation, and glycosylation and occur upon cell exposure to Clostridium toxins and in conditions of mevalonate kinase deficiency or proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gain-of-function [82, 108110]. Hyper-activation of the pyrin inflammasome by MEFV-activating mutations causes Familial Mediterranean fever (FMF), a disease that is characterized by high levels of IL-1β, IL-6, IL-8, and IL-12, recurring fever episodes, arthritis, and low bone mass [83, 111]. FMF is the most prevalent monogenic autoinflammatory disorder; it affects over 100,000 persons worldwide and causes sporadic and chronic symptoms [98]. FMF mice develop severe systemic inflammation and exhibit massive cartilage and bone erosion [112]. These mice do not display systemic inflammatory symptoms upon deletion of GSDMD, IL-1 receptor, or ASC [112, 113].

Arthritis

Inflammasomes are activated in several autoimmune diseases, including rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Components of the NLRP3 inflammasomes and various cytokines including TNF-α, IL-1β, IL-6, IL-7, and IL-17 are highly expressed in RA [84, 114]. Specific interactions among these cytokines and other inflammatory mediators may drive systemic and focal osteolysis in arthritis [115]. Systemic arthritis and bone loss induced by TNF over-expression are abolished upon ablation of IL-1β signaling despite the presence of synovial inflammation, suggesting that the effects of TNF-α on bone are mediated by IL-1β [116]. These findings positioning IL-1β downstream of TNF-α are in line with the observation that TNF-α-induced RANKL production by murine stromal cells is dependent on IL-1β [85, 117]. As noted above, the upregulation of TNF-α by IL-1β is also well known. Components of the inflammasomes, including NLRP3, ASC, and caspase-1 are upregulated in AS, a disease that is also associated with high levels of IL-1β, TNF-α, IL-6, IL-23, and IL-17 [118]. Bone manifestations in AS include excessive focal bone formation in joints whereas pronounced trabecular bone loss occurs in vertebral bodies [119].
Various inflammasomes are assembled in mouse models of arthritis. For example, NLRP3 and AIM-2 are both upregulated in the synovium of IL-10-deficient mice exposed to antigen-induced arthritis, and osteoclast differentiation from bone marrow cells isolated from these mutant mice is blunted by the inhibitors of NLRP3 and AIM-2 inflammasomes [120]. Moreover, arthritis induced by DNase II deficiency, which is associated with accrual of self-DNA, is attenuated by AIM2 ablation [86, 87]. The complexity of inflammasome functions is underscored by the observations that NLRP3, NLRP1, NLRC4, and caspase-1, but not ASC are dispensable for collagen-induced and antigen-induced arthritis [88, 121]; yet NLRP3 is a key player in joint destruction in a mouse model of A20 deficiency, in which NLRC4 and AIM2 are expendable [122]. Thus, the role of the inflammasomes in experimental arthritis is mouse model-dependent.

Osteomyelitis

Defective innate immune defense mechanisms including the inflammasomes underlie the pathogenesis of periodontitis and osteomyelitis commonly caused by Porphyromonas gingivalis and Staphylococcus aureus, respectively. P. gingivalis–derived PAMPs such as LPS are potent activators of priming signals, which through TLR4 signaling drive the expression of several components of the inflammasomes including IL-1β, NLRP3, AIM2, and caspase-11 [57, 58]. Accordingly, the massive alveolar bone destruction caused by P. gingivalis is attenuated upon loss of NLRP3 [59]. S. aureus bacterial products include peptidoglycans, hemolysins, bacterial lipoproteins, and Panton-Valentine leucocidin stimulate the inflammasomes through TLR2-mediated activation of NF-kB [123]. Moreover, some of these factors promote osteoclastogenesis [124]. The osteoblasts also express the NLRP3 inflammasome [60] though to lower levels compared with myeloid cells [73] and contribute to the pathogenesis of periodontitis and osteomyelitis [61, 125127].
Autoinflammatory reactions of unknown etiology causes confined chronic non-bacterial osteomyelitis (CNO) or systemic chronic recurrent multifocal osteomyelitis (CRMO). Components of the NLRP3 inflammasome are expressed in osteoclasts in bone specimens from CRMO patients [62]. Mice carrying an inactivating -mutation in the proline-serine-threonine phosphatase-interacting protein 2 gene (Pstpip2) develop a phenotype reminiscent of CRMO, which is associated with over-production of IL-1β, enhanced osteoclastogenesis and bone resorption, responses that depend on IL-1 receptor and IL-1β, but not IL-1α, and are driven by neutrophils [21, 22]. Neutrophils in CRMO mice over-produce IL-1β via redundant actions of caspase-8 and the NLRP3 inflammasome [23].

Metabolic bone diseases

Inflammasomes have been linked to age- and menopause-related osteoporosis [6, 90, 91]. Estrogen profoundly affects the skeleton through various mechanisms including immunomodulation, suppressive effects on the expression of TNF-α and IL-1β, induction of osteoclast apoptosis through ERα, suppression of osteoclast differentiation, inhibition of RANKL production by osteoblasts, T and B cells, and stimulation of osteoprotegerin (OPG) expression [31, 128, 129]. Consistent with increased levels of pro-inflammatory cytokines in conditions of estrogen deficiency, blockade of TNF-α or IL-1β in post-menopausal patients leads to a decrease in the levels of bone resorption markers [130]. Accordingly, inhibition of TNF-α or deletion of NLRP3 protects against ovariectomy-induced bone loss in mice [90, 131].
Aging is associated with low-grade chronic inflammation. This process is referred to as inflammaging and is associated with increased levels of circulating IL-18, IL-1 receptor antagonist, and IL-6 [132]. Inflammasome gene modules including NLRC4 and IL-1β are upregulated in older people compared with younger individuals; persistent expression of these genes correlates with the occurrence of age-related complications, including chronic production of inflammatory cytokines, metabolic dysfunction, and oxidative stress [6]. The NLRP3 inflammasome also modulates age-related inflammation in peripheral tissues and age-related bone loss in mice, though the underlying mechanisms are unknown [91].
The ability of the NLRP3 inflammasome to detect a wide variety of endogenous DAMPs is likely an important driver in the development of age- and metabolic-related pathologies. These DAMPs include crystalline cholesterol, extracellular ATP, purine and pyrimidine metabolites, and debris from damaged tissues [6, 133]. For example, metabolites from the purine and pyrimidine pathways stimulate the NLRP3 and NLRC4 inflammasomes in THP-1 cells, activate human platelets and neutrophils in cultures, and promote hypertension and inflammation in mice [6]. The NLRP3 inflammasome may also be involved in hyper-multinucleation of murine osteoclasts caused by purinergic receptor P2X5 signaling [134]. We have shown that bone matrix degradation products regulate the NLRP3 and NLRC4 inflammasomes in cells of the osteoclast lineage [90]. Accordingly, Nlrp3 null mice are protected from bone loss induced by ovariectomy, sustained exposure to parathyroid hormone or RANKL. Treatment of mice with zoledronic acid inhibits inflammasome activation, thus reinforcing the view that endogenous DAMPs are released from the bone matrix during bone resorption, causing autocrine and paracrine effects on osteoclastogenesis [90].

Wear debris-induced osteolysis

Wear particles from articulating prosthetic joint surfaces such as those from cobalt-chromium-molybdenum (CoCrMo) implants induce inflammatory responses that cause aseptic loosening as a result of uncontrolled osteolysis [135]. The osteolytic process is associated with the formation at the implant-bone interface of a cellular membrane enriched in cells of the monocyte-macrophage lineage [136]. Activation of the NF-kB pathway through TLR2 signaling by prosthetic debris promote not only the expression of pro-inflammatory cytokines such as TNF-α, but also priming signals for the NLRP3 and AIM2 inflammasomes. Macrophages can also phagocytose these particles; cellular accumulation of these non-degradable materials enhances the production of reactive oxygen species and the rupture of the phagosomes, which releases cathepsins in the cytoplasm, events that activate the inflammasomes [92]. The size and shape of CoCrMo alloys affect the amplitude of the inflammatory responses [93]. Thus, wear debris can provide both priming and assembly signals that lead to aberrant inflammasome activation. Consistent with the role of the NLRP3 inflammasome in bone damage induced by prosthetic particles, bone resorption induced by polymethylmethacrylate (PMMA) particles is reduced in the absence of caspase-1 [3, 145]. Thus, both the metal and plastic components of the prostheses activate the inflammasomes.

Crystal-induced arthropathies

Endogenous crystalline particles are involved in the pathogenesis of arthropathies. For example, gouty arthritis is caused by precipitation of monosodium urate (MSU) crystals [94], calcium pyrophosphate deposition disease (CPDD) is driven by calcium pyrophosphate dihydrate (CPPD) crystals [94], and degenerative arthropathies such as osteoarthritis and Milwaukee shoulder are the result of abnormal accumulation of basic calcium phosphate (BCP) crystals [137]. Shared mechanisms among these diseases include phagocytosis of crystals by myeloid cells, an event that activates several inflammatory pathways including the inflammasomes, chondrocyte apoptosis, and matrix calcification [138140]. Bone erosions in gout stems from continuous recruitment of macrophages to tophi [95]; sporadic CPDD is characterized by the presence of CPPD crystals in articular cartilage whereas patients with CPDD familial patterns have low bone mineral density though the extent to which bone resorption is impacted is not known [141]. BCP crystals, particularly hydroxyapatite crystals, promote osteoclast formation in vitro in NLRP3 inflammasome-dependent manner [90, 96, 142]. However, the actions of BCP on NLRP3 inflammasome-mediated skeletal pathology are controversial. Lack of components of the NLRP3 inflammasome prevents the development of neutrophil inflammation in the air-pouch model of synovitis and decreased pathology in the Ank-deficient model of arthritis [97]. By contrast, inflammatory responses induced by the injection of BCP crystals into the knees or intra-peritoneally are independent of the NLRP3 inflammasome [143, 144]. Alternative processing of IL-1β by caspase-8 and pyroptosis may account for these discrepant observations.

Therapeutic perspective

Anti-resorptive drugs such as bisphosphonates and denosumab are efficacious in the prevention of inflammation-associated bone fractures, but they do not impact the course of inflammation (Fig. 2). Thus, inhibition of osteoclast differentiation and/or activity is not sufficient to arrest the damage to the bone surrounding soft tissues such as the synovium in conditions of high-grade inflammation. On the other hand, biologics are successfully used in the clinic to temper down inflammation (Fig. 2). However, biologics have their shortcomings such as high costs, the requirement for parenteral delivery, the development of resistance, and immunosuppression. In addition, the efficacy of these drugs is restrained by redundancy among signaling pathways as they target specific inflammatory instigators. Thus, there is still an unmet medical need for the development of adequate therapeutic strategies; in-depth understanding of the mechanism of action of key inflammatory pathways is required to achieve this goal. Recent breakthroughs revealing that aberrant activities of the inflammasomes cause pyroptosis, a lytic form of cell death that concomitantly unleashes several inflammatory mediators to the extracellular milieu offer novel perspectives for drug discovery. For example, strategies aimed at preventing pyroptosis through selective blockade of individual components of the inflammasomes such as caspase-1, NLRP3, or GSDMD or inhibiting signaling nodes that integrate several inflammatory cues such as p38 MAPK are being fiercely explored.

Acknowledgments

We thank Dustin Kress for careful reading of the manuscript. We have tried to cite primary work in most cases, but due to a large amount of research in the area of inflammation, we are sure to have missed some important papers. We apologize in advance to authors who have been omitted. The drawings were modified from https://​smart.​servier.​com 

Compliance with ethical standards

Conflict of interest

G.M. is a consultant for Aclaris Therapeutics, Inc. Other authors declare no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Özören N et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat Immunol 7(6):576–582PubMed Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Özören N et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat Immunol 7(6):576–582PubMed
2.
Zurück zum Zitat Guey B, Bodnar M, Manié SN, Tardivel A, Petrilli V (2014) Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci 111(48):17254–17259PubMedPubMedCentral Guey B, Bodnar M, Manié SN, Tardivel A, Petrilli V (2014) Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci 111(48):17254–17259PubMedPubMedCentral
3.
Zurück zum Zitat Burton L, Paget D, Binder NB, Bohnert K, Nestor BJ et al (2013) Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation. J Orthop Res 31(1):73–80PubMed Burton L, Paget D, Binder NB, Bohnert K, Nestor BJ et al (2013) Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation. J Orthop Res 31(1):73–80PubMed
4.
Zurück zum Zitat Haneklaus M, O’Neill LAJ (2015) NLRP3 at the interface of metabolism and inflammation. Immunol Rev 265(1):53–62PubMed Haneklaus M, O’Neill LAJ (2015) NLRP3 at the interface of metabolism and inflammation. Immunol Rev 265(1):53–62PubMed
5.
Zurück zum Zitat Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science (80) 327(5963):296–300 Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science (80) 327(5963):296–300
6.
Zurück zum Zitat Furman D, Chang J, Lartigue L, Bolen CR, Haddad F et al (2017) Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 23(2):174–184PubMedPubMedCentral Furman D, Chang J, Lartigue L, Bolen CR, Haddad F et al (2017) Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 23(2):174–184PubMedPubMedCentral
7.
Zurück zum Zitat Lénárt N, Coutts G, Denes A, Rothwell N, Brough D et al (2015) AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci 112(13):4050–4055PubMedPubMedCentral Lénárt N, Coutts G, Denes A, Rothwell N, Brough D et al (2015) AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci 112(13):4050–4055PubMedPubMedCentral
8.
Zurück zum Zitat Lugrin J, Martinon F (2018) The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev 281(1):99–114PubMed Lugrin J, Martinon F (2018) The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev 281(1):99–114PubMed
9.
Zurück zum Zitat Hoffman HM, Broderick L (2016) The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol 138(1):3–14PubMed Hoffman HM, Broderick L (2016) The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol 138(1):3–14PubMed
10.
Zurück zum Zitat Canna SW, Nigrovic PA (2016) Editorial: 21st century storm chasers: defining macrophage activation syndrome. Arthritis Rheum 68(3):557–560 Canna SW, Nigrovic PA (2016) Editorial: 21st century storm chasers: defining macrophage activation syndrome. Arthritis Rheum 68(3):557–560
11.
Zurück zum Zitat Benseler S, DiMattia MA, Gouni S, Biancotto A, O’Shea JJ et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedPubMedCentral Benseler S, DiMattia MA, Gouni S, Biancotto A, O’Shea JJ et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedPubMedCentral
12.
Zurück zum Zitat Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46(10):1135–1139PubMedPubMedCentral Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46(10):1135–1139PubMedPubMedCentral
13.
Zurück zum Zitat Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420PubMed Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420PubMed
14.
Zurück zum Zitat Jin Y, Birlea SA, Fain PR, Spritz RA (2007) Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 127(11):2558–2562PubMed Jin Y, Birlea SA, Fain PR, Spritz RA (2007) Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 127(11):2558–2562PubMed
15.
Zurück zum Zitat Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G et al (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356(12):1216–1225PubMed Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G et al (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356(12):1216–1225PubMed
16.
Zurück zum Zitat Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell. 157(5):1013–1022PubMed Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell. 157(5):1013–1022PubMed
17.
Zurück zum Zitat Ding J, Wang K, Liu W, She Y, Sun Q et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535(7610):111–116PubMed Ding J, Wang K, Liu W, She Y, Sun Q et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535(7610):111–116PubMed
18.
Zurück zum Zitat Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48(1):35–44.e6PubMed Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48(1):35–44.e6PubMed
19.
Zurück zum Zitat He WT, Wan H, Hu L, Chen P, Wang X et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298PubMedPubMedCentral He WT, Wan H, Hu L, Chen P, Wang X et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298PubMedPubMedCentral
20.
Zurück zum Zitat Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778PubMedPubMedCentral Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778PubMedPubMedCentral
21.
Zurück zum Zitat Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK et al (2014) Inflammasome-independent IL-1 mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci 111(3):1072–1077PubMedPubMedCentral Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK et al (2014) Inflammasome-independent IL-1 mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci 111(3):1072–1077PubMedPubMedCentral
22.
Zurück zum Zitat Lukens JR, Gross JM, Calabrese C, Iwakura Y, Lamkanfi M et al (2014) Critical role for inflammasome-independent IL-1 production in osteomyelitis. Proc Natl Acad Sci 111(3):1066–1071PubMedPubMedCentral Lukens JR, Gross JM, Calabrese C, Iwakura Y, Lamkanfi M et al (2014) Critical role for inflammasome-independent IL-1 production in osteomyelitis. Proc Natl Acad Sci 111(3):1066–1071PubMedPubMedCentral
23.
Zurück zum Zitat Gurung P, Burton A, Kanneganti T-D (2016) NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β–mediated osteomyelitis. Proc Natl Acad Sci 113(16):4452–4457PubMedPubMedCentral Gurung P, Burton A, Kanneganti T-D (2016) NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β–mediated osteomyelitis. Proc Natl Acad Sci 113(16):4452–4457PubMedPubMedCentral
24.
Zurück zum Zitat Shi J, Zhao Y, Wang K, Shi X, Wang Y et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526(7575):660–665PubMed Shi J, Zhao Y, Wang K, Shi X, Wang Y et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526(7575):660–665PubMed
25.
Zurück zum Zitat Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526(7575):666–671PubMed Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526(7575):666–671PubMed
26.
Zurück zum Zitat Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J et al (2016) An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science (80) 352(6290):1232–1236 Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J et al (2016) An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science (80) 352(6290):1232–1236
27.
Zurück zum Zitat Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115(46):E10888–E10897PubMedPubMedCentral Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115(46):E10888–E10897PubMedPubMedCentral
28.
Zurück zum Zitat Orning P, Weng D, Starheim K, Ratner D, Best Z et al (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 362(6418):1064–1069PubMedPubMedCentral Orning P, Weng D, Starheim K, Ratner D, Best Z et al (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 362(6418):1064–1069PubMedPubMedCentral
29.
Zurück zum Zitat Sims NA, Gooi JH (2008) Seminars in cell & developmental biology bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19:444–451PubMed Sims NA, Gooi JH (2008) Seminars in cell & developmental biology bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19:444–451PubMed
30.
Zurück zum Zitat Bellido T, Plotkin LI, Bruzzaniti A (2014) Bone cells. In: Basic and applied bone biology. Elsevier, Milano, pp 27–45 Bellido T, Plotkin LI, Bruzzaniti A (2014) Bone cells. In: Basic and applied bone biology. Elsevier, Milano, pp 27–45
31.
Zurück zum Zitat Novack DV, Mbalaviele G (2016) Osteoclasts-key players in skeletal health and disease. Microbiol Spectr 4(3):1–19 Novack DV, Mbalaviele G (2016) Osteoclasts-key players in skeletal health and disease. Microbiol Spectr 4(3):1–19
32.
Zurück zum Zitat Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 127(6):2030–2039PubMedPubMedCentral Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 127(6):2030–2039PubMedPubMedCentral
33.
Zurück zum Zitat Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27(1):519–550PubMed Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27(1):519–550PubMed
34.
Zurück zum Zitat Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK et al (1998) OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 161(11):6113–6121PubMed Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK et al (1998) OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 161(11):6113–6121PubMed
35.
Zurück zum Zitat Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y (2000) Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res 15(7):1321–1329PubMed Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y (2000) Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res 15(7):1321–1329PubMed
36.
Zurück zum Zitat Wang R, Zhang L, Zhang X, Moreno J, Luo X et al (2001) Differential regulation of the expression of CD95 ligand, receptor activator of nuclear factor-kappa B ligand (RANKL), TNF-related apoptosis-inducing ligand (TRAIL), and TNF-alpha during T cell activation. J Immunol 166(3):1983–1990PubMed Wang R, Zhang L, Zhang X, Moreno J, Luo X et al (2001) Differential regulation of the expression of CD95 ligand, receptor activator of nuclear factor-kappa B ligand (RANKL), TNF-related apoptosis-inducing ligand (TRAIL), and TNF-alpha during T cell activation. J Immunol 166(3):1983–1990PubMed
37.
Zurück zum Zitat Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM et al (2002) Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis 61(12):1047–1054PubMedPubMedCentral Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM et al (2002) Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis 61(12):1047–1054PubMedPubMedCentral
38.
Zurück zum Zitat Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ (2000) Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res 15(8):1459–1466PubMed Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ (2000) Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res 15(8):1459–1466PubMed
39.
Zurück zum Zitat Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275–286PubMedPubMedCentral Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275–286PubMedPubMedCentral
40.
Zurück zum Zitat O’Brien W, Fissel BM, Maeda Y, Yan J, Ge X et al (2016) RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheum 68(12):2889–2900 O’Brien W, Fissel BM, Maeda Y, Yan J, Ge X et al (2016) RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheum 68(12):2889–2900
41.
Zurück zum Zitat Wang C, Hockerman S, Jacobsen EJ, Alippe Y, Selness SR et al (2018) Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 215(5):1315–1325PubMedPubMedCentral Wang C, Hockerman S, Jacobsen EJ, Alippe Y, Selness SR et al (2018) Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 215(5):1315–1325PubMedPubMedCentral
42.
43.
44.
Zurück zum Zitat Zhang W, Cong X-L, Qin Y-H, He Z-W, He D-Y, Dai S-M (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation. 36(1):103–109PubMed Zhang W, Cong X-L, Qin Y-H, He Z-W, He D-Y, Dai S-M (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation. 36(1):103–109PubMed
45.
Zurück zum Zitat Martin TJ, Romas E, Gillespie MT (1998) Interleukins in the control of osteoclast differentiation. Crit Rev Eukaryot Gene Expr 8(2):107–123PubMed Martin TJ, Romas E, Gillespie MT (1998) Interleukins in the control of osteoclast differentiation. Crit Rev Eukaryot Gene Expr 8(2):107–123PubMed
46.
Zurück zum Zitat Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H et al (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101(3):595–603PubMedPubMedCentral Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H et al (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101(3):595–603PubMedPubMedCentral
47.
Zurück zum Zitat Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS et al (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci 113(28):7858–7863PubMedPubMedCentral Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS et al (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci 113(28):7858–7863PubMedPubMedCentral
48.
Zurück zum Zitat Finzel BC, Clancy LL, Holland DR, Muchmore SW, Watenpaugh KD, Einspahr HM (1989) Crystal structure of recombinant human interleukin-1β at 2·0 Å resolution. J Mol Biol 209(4):779–791PubMed Finzel BC, Clancy LL, Holland DR, Muchmore SW, Watenpaugh KD, Einspahr HM (1989) Crystal structure of recombinant human interleukin-1β at 2·0 Å resolution. J Mol Biol 209(4):779–791PubMed
49.
Zurück zum Zitat Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535(7610):153–158PubMedPubMedCentral Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535(7610):153–158PubMedPubMedCentral
50.
Zurück zum Zitat Kevin Tracey DJ, Kanneganti T-D, Walle VM, Vitari AC, Amer AO et al (2019) Alarmin HMGB1 in endotoxemia inflammasome-dependent release of the. J Immunol 185:4385–4392 Kevin Tracey DJ, Kanneganti T-D, Walle VM, Vitari AC, Amer AO et al (2019) Alarmin HMGB1 in endotoxemia inflammasome-dependent release of the. J Immunol 185:4385–4392
51.
Zurück zum Zitat Yang J, Shah R, Robling AG, Templeton E, Yang H et al (2008) HMGB1 is a bone-active cytokine. J Cell Physiol 214(3):730–739PubMed Yang J, Shah R, Robling AG, Templeton E, Yang H et al (2008) HMGB1 is a bone-active cytokine. J Cell Physiol 214(3):730–739PubMed
52.
Zurück zum Zitat Von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 490(7418):107–111 Von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 490(7418):107–111
53.
Zurück zum Zitat Charoonpatrapong K, Shah R, Robling AG, Alvarez M, Clapp DW et al (2006) HMGB1 expression and release by bone cells. J Cell Physiol 207(2):480–490PubMed Charoonpatrapong K, Shah R, Robling AG, Alvarez M, Clapp DW et al (2006) HMGB1 expression and release by bone cells. J Cell Physiol 207(2):480–490PubMed
54.
Zurück zum Zitat Chen Y, Sun W, Gao R, Su Y, Umehara H et al (2013) The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology. 52(10):1739–1747PubMed Chen Y, Sun W, Gao R, Su Y, Umehara H et al (2013) The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology. 52(10):1739–1747PubMed
55.
Zurück zum Zitat Bertheloot D, Latz E (2017) HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 14(1):43–64PubMed Bertheloot D, Latz E (2017) HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 14(1):43–64PubMed
56.
Zurück zum Zitat Wang C, Qu C, Alippe Y, Bonar SL, Civitelli R et al (2016) Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation. Cell Death Dis 7(3):e2153–e2153PubMedPubMedCentral Wang C, Qu C, Alippe Y, Bonar SL, Civitelli R et al (2016) Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation. Cell Death Dis 7(3):e2153–e2153PubMedPubMedCentral
57.
Zurück zum Zitat Park E, Na HS, Song YR, Shin SY, Kim YM, Chung J (2014) Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun 82(1):112–123PubMedPubMedCentral Park E, Na HS, Song YR, Shin SY, Kim YM, Chung J (2014) Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun 82(1):112–123PubMedPubMedCentral
58.
Zurück zum Zitat Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G et al (2009) Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 157(3):415–422PubMedPubMedCentral Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G et al (2009) Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 157(3):415–422PubMedPubMedCentral
59.
Zurück zum Zitat Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, Suzuki T, Ando T (2017) Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm Res 66(1):59–65PubMed Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, Suzuki T, Ando T (2017) Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm Res 66(1):59–65PubMed
60.
Zurück zum Zitat McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA et al (2007) Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res 23(1):30–40PubMedCentral McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA et al (2007) Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res 23(1):30–40PubMedCentral
61.
Zurück zum Zitat Josse J, Velard F, Gangloff SC (2015) Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol 5(November):1–17 Josse J, Velard F, Gangloff SC (2015) Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol 5(November):1–17
62.
Zurück zum Zitat Scianaro R, Insalaco A, Bracci Laudiero L, De Vito R, Pezzullo M et al (2014) Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol 12(1):30 Scianaro R, Insalaco A, Bracci Laudiero L, De Vito R, Pezzullo M et al (2014) Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol 12(1):30
63.
Zurück zum Zitat Levy R, Gérard L, Kuemmerle-Deschner J, Lachmann HJ, Koné-Paut I et al (2014) Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever registry. Ann Rheum Dis 74(11):2043–2049PubMed Levy R, Gérard L, Kuemmerle-Deschner J, Lachmann HJ, Koné-Paut I et al (2014) Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever registry. Ann Rheum Dis 74(11):2043–2049PubMed
64.
Zurück zum Zitat Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305PubMedPubMedCentral Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305PubMedPubMedCentral
65.
Zurück zum Zitat Hoffman HM, Gregory SG, Mueller JL, Tresierras M, Broide DH et al (2003) Fine structure mapping of CIAS1: identification of an ancestral haplotype and a common FCAS mutation, L353P. Hum Genet 112(2):209–216PubMed Hoffman HM, Gregory SG, Mueller JL, Tresierras M, Broide DH et al (2003) Fine structure mapping of CIAS1: identification of an ancestral haplotype and a common FCAS mutation, L353P. Hum Genet 112(2):209–216PubMed
66.
Zurück zum Zitat Cordero MD, Alcocer-Gómez E, Ryffel B (2018) Gain of function mutation and inflammasome driven diseases in human and mouse models. J Autoimmun 91:13–22PubMed Cordero MD, Alcocer-Gómez E, Ryffel B (2018) Gain of function mutation and inflammasome driven diseases in human and mouse models. J Autoimmun 91:13–22PubMed
67.
Zurück zum Zitat Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 20(3):319–325PubMed Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 20(3):319–325PubMed
68.
Zurück zum Zitat Goldbach-Mansky R (2011) Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr Rheumatol Rep 13(2):123–131PubMedPubMedCentral Goldbach-Mansky R (2011) Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr Rheumatol Rep 13(2):123–131PubMedPubMedCentral
69.
Zurück zum Zitat Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT et al (2002) De novoCIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348PubMedPubMedCentral Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT et al (2002) De novoCIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348PubMedPubMedCentral
70.
Zurück zum Zitat Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R (2007) Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol 37(2):145–152PubMed Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R (2007) Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol 37(2):145–152PubMed
71.
Zurück zum Zitat Yokoyama K, Ikeya M, Umeda K, Oda H, Nodomi S et al (2015) Enhanced chondrogenesis of induced pluripotent stem cells from patients with neonatal-onset multisystem inflammatory disease occurs via the caspase 1-independent cAMP/protein kinase A/CREB pathway. Arthritis Rheum 67(1):302–314 Yokoyama K, Ikeya M, Umeda K, Oda H, Nodomi S et al (2015) Enhanced chondrogenesis of induced pluripotent stem cells from patients with neonatal-onset multisystem inflammatory disease occurs via the caspase 1-independent cAMP/protein kinase A/CREB pathway. Arthritis Rheum 67(1):302–314
72.
Zurück zum Zitat Snouwaert JN, Nguyen MT, Repenning PW, Dye R, Livingston EW et al (2016) An NLRP3 mutation causes arthropathy and osteoporosis in humanized mice. Cell Rep 17(11):3077–3088PubMed Snouwaert JN, Nguyen MT, Repenning PW, Dye R, Livingston EW et al (2016) An NLRP3 mutation causes arthropathy and osteoporosis in humanized mice. Cell Rep 17(11):3077–3088PubMed
73.
Zurück zum Zitat Bonar SL, Brydges SD, Mueller JL, McGeough MD, Pena C et al (2012) Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 7(4):4–14 Bonar SL, Brydges SD, Mueller JL, McGeough MD, Pena C et al (2012) Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 7(4):4–14
74.
Zurück zum Zitat Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity. 30(6):860–874PubMedPubMedCentral Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity. 30(6):860–874PubMedPubMedCentral
75.
Zurück zum Zitat Wang C, Xu C-X, Alippe Y, Qu C, Xiao J et al (2017) Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells. Sci Rep 7(1):4880PubMedPubMedCentral Wang C, Xu C-X, Alippe Y, Qu C, Xiao J et al (2017) Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells. Sci Rep 7(1):4880PubMedPubMedCentral
76.
Zurück zum Zitat Qu C, Bonar SL, Hickman-Brecks CL, Abu-Amer S, McGeough MD et al (2015) NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J 29(4):1269–1279PubMed Qu C, Bonar SL, Hickman-Brecks CL, Abu-Amer S, McGeough MD et al (2015) NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J 29(4):1269–1279PubMed
77.
Zurück zum Zitat Xiao J, Wang C, Yao J-C, Alippe Y, Xu C et al (2018) Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol 16(11):e3000047PubMedPubMedCentral Xiao J, Wang C, Yao J-C, Alippe Y, Xu C et al (2018) Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol 16(11):e3000047PubMedPubMedCentral
78.
Zurück zum Zitat McGeough MD, Wree A, Inzaugarat ME, Haimovich A, Johnson CD et al (2017) TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest 127(12):4488–4497PubMedPubMedCentral McGeough MD, Wree A, Inzaugarat ME, Haimovich A, Johnson CD et al (2017) TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest 127(12):4488–4497PubMedPubMedCentral
79.
Zurück zum Zitat Brydges SD, Broderick L, McGeough MD, Pena CA, Mueller JL, Hoffman HM (2013) Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest 123(11):4695–4705PubMedPubMedCentral Brydges SD, Broderick L, McGeough MD, Pena CA, Mueller JL, Hoffman HM (2013) Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest 123(11):4695–4705PubMedPubMedCentral
80.
Zurück zum Zitat Canna SW, De Jesus AA, Gouni S, Brooks SR, Marrero B et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedPubMedCentral Canna SW, De Jesus AA, Gouni S, Brooks SR, Marrero B et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedPubMedCentral
81.
Zurück zum Zitat Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211(12):2385–2396PubMedPubMedCentral Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211(12):2385–2396PubMedPubMedCentral
82.
Zurück zum Zitat Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921PubMedPubMedCentral Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921PubMedPubMedCentral
83.
Zurück zum Zitat Ben-Chetrit E, Levy M (1998) Familial Mediterranean fever. Lancet. 351(9103):659–664PubMed Ben-Chetrit E, Levy M (1998) Familial Mediterranean fever. Lancet. 351(9103):659–664PubMed
84.
Zurück zum Zitat Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A (2010) Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 129(2):178–185PubMedPubMedCentral Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A (2010) Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 129(2):178–185PubMedPubMedCentral
85.
Zurück zum Zitat Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC et al (2014) Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 73(6):1202–1210PubMed Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC et al (2014) Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 73(6):1202–1210PubMed
86.
Zurück zum Zitat Baum R, Sharma S, Carpenter S, Li Q-Z, Busto P et al (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol 194(3):873–877PubMed Baum R, Sharma S, Carpenter S, Li Q-Z, Busto P et al (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol 194(3):873–877PubMed
87.
Zurück zum Zitat Jakobs C, Perner S, Hornung V (2015) AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10(6):e0131702PubMedPubMedCentral Jakobs C, Perner S, Hornung V (2015) AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10(6):e0131702PubMedPubMedCentral
88.
Zurück zum Zitat Ippagunta SK, Brand DD, Luo J, Boyd KL, Calabrese C et al (2010) Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem 285(16):12454–12462PubMedPubMedCentral Ippagunta SK, Brand DD, Luo J, Boyd KL, Calabrese C et al (2010) Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem 285(16):12454–12462PubMedPubMedCentral
89.
Zurück zum Zitat Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP-Y (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370PubMedPubMedCentral Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP-Y (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370PubMedPubMedCentral
90.
Zurück zum Zitat Alippe Y, Wang C, Ricci B, Xiao J, Qu C et al (2017) Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 7(1):6630PubMedPubMedCentral Alippe Y, Wang C, Ricci B, Xiao J, Qu C et al (2017) Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 7(1):6630PubMedPubMedCentral
91.
Zurück zum Zitat Youm YH, Grant RW, Mccabe LR, Albarado DC, Nguyen KY et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18(4):519–532PubMedPubMedCentral Youm YH, Grant RW, Mccabe LR, Albarado DC, Nguyen KY et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18(4):519–532PubMedPubMedCentral
92.
Zurück zum Zitat Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S et al (2009) Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol 47(2–3):175–184PubMedPubMedCentral Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S et al (2009) Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol 47(2–3):175–184PubMedPubMedCentral
93.
Zurück zum Zitat Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ (2013) Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms. J Orthop Res 31(10):1633–1642PubMedPubMedCentral Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ (2013) Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms. J Orthop Res 31(10):1633–1642PubMedPubMedCentral
94.
Zurück zum Zitat Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440(7081):237–241PubMed Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440(7081):237–241PubMed
95.
Zurück zum Zitat Schlesinger N, Thiele RG (2010) The pathogenesis of bone erosions in gouty arthritis. Ann Rheum Dis 69(11):1907–1912PubMed Schlesinger N, Thiele RG (2010) The pathogenesis of bone erosions in gouty arthritis. Ann Rheum Dis 69(11):1907–1912PubMed
96.
Zurück zum Zitat Pazar B, Ea H-K, Narayan S, Kolly L, Bagnoud N et al (2011) Basic calcium phosphate crystals induce monocyte/macrophage IL-1 secretion through the NLRP3 inflammasome in vitro. J Immunol 186(4):2495–2502PubMed Pazar B, Ea H-K, Narayan S, Kolly L, Bagnoud N et al (2011) Basic calcium phosphate crystals induce monocyte/macrophage IL-1 secretion through the NLRP3 inflammasome in vitro. J Immunol 186(4):2495–2502PubMed
97.
Zurück zum Zitat Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B et al (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci 108(36):14867–14872PubMedPubMedCentral Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B et al (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci 108(36):14867–14872PubMedPubMedCentral
98.
Zurück zum Zitat de Jesus AA, Goldbach-Mansky R (2013) Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol 147(3):155–174PubMedCentral de Jesus AA, Goldbach-Mansky R (2013) Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol 147(3):155–174PubMedCentral
99.
Zurück zum Zitat Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N et al (2010) Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62(1):258–267PubMed Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N et al (2010) Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62(1):258–267PubMed
100.
Zurück zum Zitat Laino ME, Marrocco R, Rigante D, Stabile A, Leone A et al (2011) Long-term response after 6-year treatment with anakinra and onset of focal bone erosion in neonatal-onset multisystem inflammatory disease (NOMID/CINCA). Rheumatol Int 31(12):1661–1664PubMed Laino ME, Marrocco R, Rigante D, Stabile A, Leone A et al (2011) Long-term response after 6-year treatment with anakinra and onset of focal bone erosion in neonatal-onset multisystem inflammatory disease (NOMID/CINCA). Rheumatol Int 31(12):1661–1664PubMed
101.
Zurück zum Zitat Sibley CH, Plass N, Snow J, Wiggs EA, Brewer CC et al (2012) Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum 64(7):2375–2386PubMedPubMedCentral Sibley CH, Plass N, Snow J, Wiggs EA, Brewer CC et al (2012) Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum 64(7):2375–2386PubMedPubMedCentral
102.
Zurück zum Zitat Maruotti N, Corrado A, Cantatore FP (2014) Osteoporosis and rheumatic diseases. Reumatismo. 66(2):125PubMed Maruotti N, Corrado A, Cantatore FP (2014) Osteoporosis and rheumatic diseases. Reumatismo. 66(2):125PubMed
103.
Zurück zum Zitat Quartier P, Allantaz F, Cimaz R, Pillet P, Messiaen C et al (2011) A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis 70(5):747–754PubMed Quartier P, Allantaz F, Cimaz R, Pillet P, Messiaen C et al (2011) A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis 70(5):747–754PubMed
104.
Zurück zum Zitat Tarp S, Amarilyo G, Foeldvari I, Christensen R, Woo JMP et al (2016) Efficacy and safety of biological agents for systemic juvenile idiopathic arthritis: a systematic review and meta-analysis of randomized trials. Rheumatology. 55(4):669–679PubMed Tarp S, Amarilyo G, Foeldvari I, Christensen R, Woo JMP et al (2016) Efficacy and safety of biological agents for systemic juvenile idiopathic arthritis: a systematic review and meta-analysis of randomized trials. Rheumatology. 55(4):669–679PubMed
105.
Zurück zum Zitat Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A et al (2016) NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med 213(6):877–885PubMedPubMedCentral Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A et al (2016) NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med 213(6):877–885PubMedPubMedCentral
106.
Zurück zum Zitat Man SM, Hopkins LJ, Nugent E, Cox S, Gluck IM et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci 111(20):7403–7408PubMedPubMedCentral Man SM, Hopkins LJ, Nugent E, Cox S, Gluck IM et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci 111(20):7403–7408PubMedPubMedCentral
107.
Zurück zum Zitat Xu H, Yang J, Gao W, Li L, Li P et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237–241PubMed Xu H, Yang J, Gao W, Li L, Li P et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237–241PubMed
108.
Zurück zum Zitat Haas D, Hoffmann GF (2006) Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis 1(1):13PubMedPubMedCentral Haas D, Hoffmann GF (2006) Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis 1(1):13PubMedPubMedCentral
109.
Zurück zum Zitat Lindor NM, Arsenault TM, Solomon H, Seidman CE, McEvoy MT (1997) A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc 72(7):611–615PubMed Lindor NM, Arsenault TM, Solomon H, Seidman CE, McEvoy MT (1997) A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc 72(7):611–615PubMed
110.
Zurück zum Zitat Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R et al (2002) Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet 11(8):961–969PubMed Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R et al (2002) Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet 11(8):961–969PubMed
111.
Zurück zum Zitat Ibrahim J-N, Jounblat R, Delwail A, Abou-Ghoch J, Salem N et al (2014) Ex vivo PBMC cytokine profile in familial Mediterranean fever patients: involvement of IL-1β, IL-1α and Th17-associated cytokines and decrease of Th1 and Th2 cytokines. Cytokine. 69(2):248–254PubMed Ibrahim J-N, Jounblat R, Delwail A, Abou-Ghoch J, Salem N et al (2014) Ex vivo PBMC cytokine profile in familial Mediterranean fever patients: involvement of IL-1β, IL-1α and Th17-associated cytokines and decrease of Th1 and Th2 cytokines. Cytokine. 69(2):248–254PubMed
112.
Zurück zum Zitat Chae JJ, Cho Y-H, Lee G-S, Cheng J, Liu PP et al (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 34(5):755–768PubMedPubMedCentral Chae JJ, Cho Y-H, Lee G-S, Cheng J, Liu PP et al (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 34(5):755–768PubMedPubMedCentral
113.
Zurück zum Zitat Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H et al (2018) GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J Exp Med 215(6):1519–1529PubMedPubMedCentral Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H et al (2018) GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J Exp Med 215(6):1519–1529PubMedPubMedCentral
114.
Zurück zum Zitat Siebert S, Tsoukas A, Robertson J, McInnes I (2015) Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 67(2):280–309PubMed Siebert S, Tsoukas A, Robertson J, McInnes I (2015) Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 67(2):280–309PubMed
115.
Zurück zum Zitat Redlich K, Smolen JS (2012) Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 11(3):234–250PubMed Redlich K, Smolen JS (2012) Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 11(3):234–250PubMed
116.
Zurück zum Zitat Zwerina J, Redlich K, Polzer K, Joosten L, Kronke G et al (2007) TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci 104(28):11742–11747PubMedPubMedCentral Zwerina J, Redlich K, Polzer K, Joosten L, Kronke G et al (2007) TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci 104(28):11742–11747PubMedPubMedCentral
117.
Zurück zum Zitat Wei S, Kitaura H, Zhou P, Patrick Ross F, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115(2):282–290PubMedPubMedCentral Wei S, Kitaura H, Zhou P, Patrick Ross F, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115(2):282–290PubMedPubMedCentral
118.
Zurück zum Zitat Kim S-K, Cho YJ, Choe J-Y (2018) NLRP3 inflammasomes and NLRP3 inflammasome-derived proinflammatory cytokines in peripheral blood mononuclear cells of patients with ankylosing spondylitis. Clin Chim Acta 486:269–274PubMed Kim S-K, Cho YJ, Choe J-Y (2018) NLRP3 inflammasomes and NLRP3 inflammasome-derived proinflammatory cytokines in peripheral blood mononuclear cells of patients with ankylosing spondylitis. Clin Chim Acta 486:269–274PubMed
119.
Zurück zum Zitat Amarasekara DS, Yu J, Rho J (2015) Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015:1–12 Amarasekara DS, Yu J, Rho J (2015) Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015:1–12
120.
Zurück zum Zitat Greenhill CJ, Jones GW, Nowell MA, Newton Z, Harvey AK et al (2014) Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther 16(4):419PubMedPubMedCentral Greenhill CJ, Jones GW, Nowell MA, Newton Z, Harvey AK et al (2014) Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther 16(4):419PubMedPubMedCentral
121.
Zurück zum Zitat Kolly L, Karababa M, Joosten LAB, Narayan S, Salvi R et al (2009) Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF. J Immunol 183(6):4003–4012PubMed Kolly L, Karababa M, Joosten LAB, Narayan S, Salvi R et al (2009) Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF. J Immunol 183(6):4003–4012PubMed
122.
Zurück zum Zitat Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 512(7512):69–73PubMed Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 512(7512):69–73PubMed
123.
Zurück zum Zitat Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ et al (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92(5):1069–1081PubMedPubMedCentral Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ et al (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92(5):1069–1081PubMedPubMedCentral
124.
Zurück zum Zitat Claro T, Widaa A, McDonnell C, Foster TJ, O’Brien FJ, Kerrigan SW (2013) Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology 159(Pt_1):147–154PubMed Claro T, Widaa A, McDonnell C, Foster TJ, O’Brien FJ, Kerrigan SW (2013) Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology 159(Pt_1):147–154PubMed
125.
Zurück zum Zitat Kassem A, Henning P, Lundberg P, Souza PPC, Lindholm C, Lerner UH (2015) Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J Biol Chem 290(33):20147–20158PubMedPubMedCentral Kassem A, Henning P, Lundberg P, Souza PPC, Lindholm C, Lerner UH (2015) Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J Biol Chem 290(33):20147–20158PubMedPubMedCentral
126.
Zurück zum Zitat Han X, Lin X, Yu X, Lin J, Kawai T et al (2013) Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-κB ligand. Infect Immun 81(5):1502–1509PubMedPubMedCentral Han X, Lin X, Yu X, Lin J, Kawai T et al (2013) Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-κB ligand. Infect Immun 81(5):1502–1509PubMedPubMedCentral
127.
Zurück zum Zitat Akiyama T, Miyamoto Y, Yoshimura K, Yamada A, Takami M et al (2014) Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain. J Biol Chem 289(22):15621–15630PubMedPubMedCentral Akiyama T, Miyamoto Y, Yoshimura K, Yamada A, Takami M et al (2014) Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain. J Biol Chem 289(22):15621–15630PubMedPubMedCentral
128.
Zurück zum Zitat Faienza MF, Ventura A, Marzano F, Cavallo L (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013:1–6 Faienza MF, Ventura A, Marzano F, Cavallo L (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013:1–6
129.
Zurück zum Zitat Weitzmann MN, Pacifici R (2006) Review series estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194PubMedPubMedCentral Weitzmann MN, Pacifici R (2006) Review series estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194PubMedPubMedCentral
130.
Zurück zum Zitat Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2007) Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22(5):724–729PubMed Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2007) Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22(5):724–729PubMed
131.
Zurück zum Zitat Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98(24):13960–13965PubMedPubMedCentral Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98(24):13960–13965PubMedPubMedCentral
132.
Zurück zum Zitat Franceschi C, Capri M, Monti D, Giunta S, Olivieri F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105PubMed Franceschi C, Capri M, Monti D, Giunta S, Olivieri F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105PubMed
133.
Zurück zum Zitat Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214PubMed Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214PubMed
134.
Zurück zum Zitat Kim H, Walsh MC, Takegahara N, Middleton SA, Shin HI et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7(1):1–11 Kim H, Walsh MC, Takegahara N, Middleton SA, Shin HI et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7(1):1–11
135.
Zurück zum Zitat Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L (2011) Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7(10):600–608PubMed Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L (2011) Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7(10):600–608PubMed
136.
Zurück zum Zitat Nich C, Takakubo Y, Pajarinen J, Gallo J, Konttinen YT et al (2016) The role of macrophages in the biological reaction to wear debris from artificial joints. J Long-Term Eff Med Implants 26(4):303–309PubMed Nich C, Takakubo Y, Pajarinen J, Gallo J, Konttinen YT et al (2016) The role of macrophages in the biological reaction to wear debris from artificial joints. J Long-Term Eff Med Implants 26(4):303–309PubMed
137.
Zurück zum Zitat MacMullan P, McMahon G, McCarthy G (2011) Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 78(4):358–363PubMed MacMullan P, McMahon G, McCarthy G (2011) Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 78(4):358–363PubMed
138.
Zurück zum Zitat Desai J, Steiger S, Anders H-J (2017) Molecular pathophysiology of gout. Trends Mol Med 23(8):756–768PubMed Desai J, Steiger S, Anders H-J (2017) Molecular pathophysiology of gout. Trends Mol Med 23(8):756–768PubMed
139.
Zurück zum Zitat Cheung HS (2000) Calcium crystal effects on the cells of the joint: implications for pathogenesis of disease. Curr Opin Rheumatol 12(3):223–227PubMed Cheung HS (2000) Calcium crystal effects on the cells of the joint: implications for pathogenesis of disease. Curr Opin Rheumatol 12(3):223–227PubMed
140.
Zurück zum Zitat So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13(11):639–647PubMed So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13(11):639–647PubMed
141.
Zurück zum Zitat Williams CJ, Qazi U, Bernstein M, Charniak A, Gohr C et al (2018) Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthr Cartil 26(6):797–806 Williams CJ, Qazi U, Bernstein M, Charniak A, Gohr C et al (2018) Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthr Cartil 26(6):797–806
142.
Zurück zum Zitat Nadra I, Boccaccini AR, Philippidis P, Whelan LC, McCarthy GM et al (2008) Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages. Atherosclerosis. 196(1):98–105PubMed Nadra I, Boccaccini AR, Philippidis P, Whelan LC, McCarthy GM et al (2008) Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages. Atherosclerosis. 196(1):98–105PubMed
143.
Zurück zum Zitat Narayan S, Pazar B, Ea H-K, Kolly L, Bagnoud N et al (2011) Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum 63(2):422–433PubMed Narayan S, Pazar B, Ea H-K, Kolly L, Bagnoud N et al (2011) Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum 63(2):422–433PubMed
144.
Zurück zum Zitat Ea H-K, Chobaz V, Nguyen C, Nasi S, van Lent P et al (2013) Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 8(2):e57352PubMedPubMedCentral Ea H-K, Chobaz V, Nguyen C, Nasi S, van Lent P et al (2013) Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 8(2):e57352PubMedPubMedCentral
145.
Zurück zum Zitat Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. Journal of Orthopaedic Research 24 (7):1358–1365PubMed Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. Journal of Orthopaedic Research 24 (7):1358–1365PubMed
Metadaten
Titel
Omnipresence of inflammasome activities in inflammatory bone diseases
verfasst von
Yael Alippe
Gabriel Mbalaviele
Publikationsdatum
13.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 5/2019
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00753-4

Weitere Artikel der Ausgabe 5/2019

Seminars in Immunopathology 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.