Skip to main content
Erschienen in: Esophagus 2/2021

31.07.2020 | Original Article

Oncogenic microRNA-301b regulates tumor repressor dystrobrevin alpha to facilitate cell growth, invasion and migration in esophageal cancer

verfasst von: Gui Fu, Zhidong Pei, Nasha Song

Erschienen in: Esophagus | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Background

Esophageal cancer (EC) ranks the eighth in morbidity and the sixth in mortality around the whole world, which is an aggressive malignancy. To authenticate potential therapeutic targets for EC is therefore imperative. Although miR-301b might display changed expression in esophageal adenocarcinoma by utilizing Taqman miRNA profiling analysis, much less is known about the impact of miR-301b in EC.

Methods and results

By analyzing the data of 187 cancer tissues and 13 normal samples from TCGA database, we discovered that miR-301b was highly expressed in EC tissues. Then, RT-qPCR determined that miR-301b was up-regulated in EC cell lines (ECA109, JAR, TE-1 and OE33). Besides, miR-301b expression level was higher in ESCC cell line-TE-1 cells and lower in ESCC cell line-ECA109 cells compared to other EC cell lines. Hence, ECA109 cell line was used to up-regulate miR-301b expression while TE-1 cell line was applied to down-regulate miR-301b expression in the subsequent experiments. Additionally, OE33, as an ECA cell line, was applied to upregulate miR-301b expression to reflect the influence of miR-301b overexpression on EC progression. More interestingly, miR-301b appeared to act as a promoting effect on the proliferation of EC cells, which was tested by CCK8. Dystrobrevin alpha (DTNA) was a targeting gene of miR-301b, which was predicted by the websites of miRanda, miRWalk and TargetScan. Additionally, DTNA was low expressed in EC tissues and was an independent predictor of EC. Meanwhile, the low expression of DTNA was related to worse overall survival in EC patients. The Pearson correlation coefficient analyzed that DTNA expression was negatively correlated with miR-301b. Furthermore, RT-qPCR and western blotting assays ulteriorly indicated that DTNA was negatively modulated by miR-301b. The facilitating impact of miR-301b re-expression on ECA109 and OE33 cell growth, invasion and migration was receded by DTNA over-expression, whilst the repressive effect of miR-301b ablation on TE-1 cell growth, invasion and migration was inversed by DTNA silencing. Overexpression of miR-301b accelerated EC cell growth, migration and invasion through targeting DTNA.

Conclusions

Above all, we concluded that miR-301b was concerned with the progression of EC via regulating DTNA, suggesting that miR-301b and its target gene, DTNA, might serve as predictive biomarkers for EC therapy.
Literatur
1.
Zurück zum Zitat Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, et al. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun. 2018;9:2605.CrossRef Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, et al. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun. 2018;9:2605.CrossRef
2.
Zurück zum Zitat Vingeliene S, Chan DSM, Vieira AR, Polemiti E, Stevens C, Abar L, et al. An update of the WCRF/AICR systematic literature review and meta-analysis on dietary and anthropometric factors and esophageal cancer risk. Ann Oncol. 2017;28:2409–19.CrossRef Vingeliene S, Chan DSM, Vieira AR, Polemiti E, Stevens C, Abar L, et al. An update of the WCRF/AICR systematic literature review and meta-analysis on dietary and anthropometric factors and esophageal cancer risk. Ann Oncol. 2017;28:2409–19.CrossRef
3.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef
4.
Zurück zum Zitat de Vos-Geelen J, Geurts SM, van Putten M, Valkenburg-van Iersel LB, Grabsch HI, Haj Mohammad N, et al. Trends in treatment and overall survival among patients with proximal esophageal cancer. World J Gastroenterol. 2019;25:6835–46.CrossRef de Vos-Geelen J, Geurts SM, van Putten M, Valkenburg-van Iersel LB, Grabsch HI, Haj Mohammad N, et al. Trends in treatment and overall survival among patients with proximal esophageal cancer. World J Gastroenterol. 2019;25:6835–46.CrossRef
5.
Zurück zum Zitat Samson P, Robinson C, Bradley J, Lockhart AC, Puri V, Broderick S, et al. Neoadjuvant chemotherapy versus chemoradiation prior to esophagectomy: impact on rate of complete pathologic response and survival in esophageal cancer patients. J Thorac Oncol. 2016;11:2227–37.CrossRef Samson P, Robinson C, Bradley J, Lockhart AC, Puri V, Broderick S, et al. Neoadjuvant chemotherapy versus chemoradiation prior to esophagectomy: impact on rate of complete pathologic response and survival in esophageal cancer patients. J Thorac Oncol. 2016;11:2227–37.CrossRef
6.
Zurück zum Zitat Wu J, Wang L, Du X, Sun Q, Wang Y, Li M, et al. alpha-solanine enhances the chemosensitivity of esophageal cancer cells by inducing microRNA138 expression. Oncol Rep. 2018;39:1163–72.PubMed Wu J, Wang L, Du X, Sun Q, Wang Y, Li M, et al. alpha-solanine enhances the chemosensitivity of esophageal cancer cells by inducing microRNA138 expression. Oncol Rep. 2018;39:1163–72.PubMed
7.
Zurück zum Zitat Zhang C, Zhang J, Wu Q, Xu B, Jin G, Qiao Y, et al. Sulforaphene induces apoptosis and inhibits the invasion of esophageal cancer cells through MSK2/CREB/Bcl-2 and cadherin pathway in vivo and in vitro. Cancer Cell Int. 2019;19:342.CrossRef Zhang C, Zhang J, Wu Q, Xu B, Jin G, Qiao Y, et al. Sulforaphene induces apoptosis and inhibits the invasion of esophageal cancer cells through MSK2/CREB/Bcl-2 and cadherin pathway in vivo and in vitro. Cancer Cell Int. 2019;19:342.CrossRef
8.
Zurück zum Zitat Zhang L, Ma J, Han Y, Liu J, Zhou W, Hong L, et al. Targeted therapy in esophageal cancer. Expert Rev Gastroenterol Hepatol. 2016;10:595–604.CrossRef Zhang L, Ma J, Han Y, Liu J, Zhou W, Hong L, et al. Targeted therapy in esophageal cancer. Expert Rev Gastroenterol Hepatol. 2016;10:595–604.CrossRef
9.
Zurück zum Zitat Gaur P, Kim MP, Dunkin BJ. Esophageal cancer: Recent advances in screening, targeted therapy, and management. J Carcinog. 2014;13:11–11.CrossRef Gaur P, Kim MP, Dunkin BJ. Esophageal cancer: Recent advances in screening, targeted therapy, and management. J Carcinog. 2014;13:11–11.CrossRef
10.
Zurück zum Zitat Xiang S, Chen H, Luo X, An B, Wu W, Cao S, et al. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J Exp Clin Cancer Res. 2018;37:184.CrossRef Xiang S, Chen H, Luo X, An B, Wu W, Cao S, et al. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J Exp Clin Cancer Res. 2018;37:184.CrossRef
11.
Zurück zum Zitat Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15:1–19.CrossRef Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15:1–19.CrossRef
12.
Zurück zum Zitat Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 2014;15:429–429.CrossRef Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 2014;15:429–429.CrossRef
13.
Zurück zum Zitat Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts. 2017;8:61–81.CrossRef Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts. 2017;8:61–81.CrossRef
14.
Zurück zum Zitat Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res. 2019;47:7753–66.CrossRef Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res. 2019;47:7753–66.CrossRef
15.
Zurück zum Zitat Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, et al. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie. 2019;156:148–57.CrossRef Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, et al. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie. 2019;156:148–57.CrossRef
16.
Zurück zum Zitat Zhang H-C, Tang K-F. Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 2017;6:1893–903.CrossRef Zhang H-C, Tang K-F. Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 2017;6:1893–903.CrossRef
17.
Zurück zum Zitat Phatak P, Burrows WM, Chesnick IE, Tulapurkar ME, Rao JN, Turner DJ, et al. MiR-199a-3p decreases esophageal cancer cell proliferation by targeting p21 activated kinase 4. Oncotarget. 2018;9:28391–407.CrossRef Phatak P, Burrows WM, Chesnick IE, Tulapurkar ME, Rao JN, Turner DJ, et al. MiR-199a-3p decreases esophageal cancer cell proliferation by targeting p21 activated kinase 4. Oncotarget. 2018;9:28391–407.CrossRef
18.
Zurück zum Zitat Lang B, Zhao S. miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncol Rep. 2018;39:71–80.PubMed Lang B, Zhao S. miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncol Rep. 2018;39:71–80.PubMed
19.
Zurück zum Zitat Funamizu N, Lacy CR, Parpart ST, Takai A, Hiyoshi Y, Yanaga K. MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int J Oncol. 2014;44:725–34.CrossRef Funamizu N, Lacy CR, Parpart ST, Takai A, Hiyoshi Y, Yanaga K. MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int J Oncol. 2014;44:725–34.CrossRef
20.
Zurück zum Zitat Li W, Zhao W, Lu Z, Zhang W, Yang X. Long Noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer. Oncol Res. 2018;26:1285–94.CrossRef Li W, Zhao W, Lu Z, Zhang W, Yang X. Long Noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer. Oncol Res. 2018;26:1285–94.CrossRef
21.
Zurück zum Zitat Su H, Wu Y, Fang Y, Shen L, Fei Z, Xie C, et al. MicroRNA-301a targets WNT1 to suppress cell proliferation and migration and enhance radiosensitivity in esophageal cancer cells. Oncol Rep. 2019;41:599–607.PubMed Su H, Wu Y, Fang Y, Shen L, Fei Z, Xie C, et al. MicroRNA-301a targets WNT1 to suppress cell proliferation and migration and enhance radiosensitivity in esophageal cancer cells. Oncol Rep. 2019;41:599–607.PubMed
22.
Zurück zum Zitat Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MAT, et al. MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Prev Res (Philadelphia, PA). 2013;6:196–205.CrossRef Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MAT, et al. MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Prev Res (Philadelphia, PA). 2013;6:196–205.CrossRef
23.
Zurück zum Zitat Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, et al. Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J. 2017;58:939–47.CrossRef Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, et al. Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J. 2017;58:939–47.CrossRef
24.
Zurück zum Zitat Liu J, Li H, Shen S, Sun L, Yuan Y, Xing C. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J Cancer. 2018;9:1754–64.CrossRef Liu J, Li H, Shen S, Sun L, Yuan Y, Xing C. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J Cancer. 2018;9:1754–64.CrossRef
25.
Zurück zum Zitat Qin G, Yang L, Ma Y, Liu J, Huo Q. The exploration of disease-specific gene regulatory networks in esophageal carcinoma and stomach adenocarcinoma. BMC Bioinform. 2019;20:717.CrossRef Qin G, Yang L, Ma Y, Liu J, Huo Q. The exploration of disease-specific gene regulatory networks in esophageal carcinoma and stomach adenocarcinoma. BMC Bioinform. 2019;20:717.CrossRef
26.
Zurück zum Zitat Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, et al. Human aging and cancer: role of miRNA in tumor microenvironment. Adv Exp Med Biol. 2018;1056:137–52.CrossRef Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, et al. Human aging and cancer: role of miRNA in tumor microenvironment. Adv Exp Med Biol. 2018;1056:137–52.CrossRef
27.
Zurück zum Zitat Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015;8:re3.CrossRef Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015;8:re3.CrossRef
28.
Zurück zum Zitat Wang X, Guo S, Zhao R, Liu Y, Yang G. STAT3-activated long non-coding RNA lung cancer associated transcript 1 drives cell proliferation, migration, and invasion in hepatoblastoma through regulation of the miR-301b/STAT3 axis. Hum Gene Ther. 2019;30:702–13.CrossRef Wang X, Guo S, Zhao R, Liu Y, Yang G. STAT3-activated long non-coding RNA lung cancer associated transcript 1 drives cell proliferation, migration, and invasion in hepatoblastoma through regulation of the miR-301b/STAT3 axis. Hum Gene Ther. 2019;30:702–13.CrossRef
29.
Zurück zum Zitat Zheng H, Bai L. Hypoxia induced microRNA-301b-3p overexpression promotes proliferation, migration and invasion of prostate cancer cells by targeting LRP1B. Exp Mol Pathol. 2019;111:104301–104301.CrossRef Zheng H, Bai L. Hypoxia induced microRNA-301b-3p overexpression promotes proliferation, migration and invasion of prostate cancer cells by targeting LRP1B. Exp Mol Pathol. 2019;111:104301–104301.CrossRef
31.
Zurück zum Zitat Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract. 2019;215:152667–152667.CrossRef Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract. 2019;215:152667–152667.CrossRef
32.
Zurück zum Zitat Fort RS, Mathó C, Oliveira-Rizzo C, Garat B, Sotelo-Silveira JR, Duhagon MA. An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol. 2018;7:10–10.CrossRef Fort RS, Mathó C, Oliveira-Rizzo C, Garat B, Sotelo-Silveira JR, Duhagon MA. An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol. 2018;7:10–10.CrossRef
33.
Zurück zum Zitat Song H, Li D, Wu T, Xie D, Hua K, Hu J, et al. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep. 2018;51:602–7.CrossRef Song H, Li D, Wu T, Xie D, Hua K, Hu J, et al. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep. 2018;51:602–7.CrossRef
34.
Zurück zum Zitat Liu J, Liu F, Li X, Song X, Zhou L, Jie J. Screening key genes and miRNAs in early-stage colon adenocarcinoma by RNA-sequencing. Tumour Biol. 2017;39:1010428317714899.PubMed Liu J, Liu F, Li X, Song X, Zhou L, Jie J. Screening key genes and miRNAs in early-stage colon adenocarcinoma by RNA-sequencing. Tumour Biol. 2017;39:1010428317714899.PubMed
35.
Zurück zum Zitat Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019;234:10726–40.CrossRef Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 2019;234:10726–40.CrossRef
36.
Zurück zum Zitat Chen M, Xia Z, Chen C, Hu W, Yuan Y. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anticancer Drugs. 2018;29:767–73.CrossRef Chen M, Xia Z, Chen C, Hu W, Yuan Y. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anticancer Drugs. 2018;29:767–73.CrossRef
Metadaten
Titel
Oncogenic microRNA-301b regulates tumor repressor dystrobrevin alpha to facilitate cell growth, invasion and migration in esophageal cancer
verfasst von
Gui Fu
Zhidong Pei
Nasha Song
Publikationsdatum
31.07.2020
Verlag
Springer Singapore
Erschienen in
Esophagus / Ausgabe 2/2021
Print ISSN: 1612-9059
Elektronische ISSN: 1612-9067
DOI
https://doi.org/10.1007/s10388-020-00764-3

Weitere Artikel der Ausgabe 2/2021

Esophagus 2/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.