Skip to main content
Erschienen in: Brain Structure and Function 4/2022

18.11.2021 | Review

One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system

verfasst von: Jessica Taubert, J. Brendan Ritchie, Leslie G. Ungerleider, Christopher I. Baker

Erschienen in: Brain Structure and Function | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Faces and bodies are often treated as distinct categories that are processed separately by face- and body-selective brain regions in the primate visual system. These regions occupy distinct regions of visual cortex and are often thought to constitute independent functional networks. Yet faces and bodies are part of the same object and their presence inevitably covary in naturalistic settings. Here, we re-evaluate both the evidence supporting the independent processing of faces and bodies and the organizational principles that have been invoked to explain this distinction. We outline four hypotheses ranging from completely separate networks to a single network supporting the perception of whole people or animals. The current evidence, especially in humans, is compatible with all of these hypotheses, making it presently unclear how the representation of faces and bodies is organized in the cortex.
Literatur
Zurück zum Zitat Afraz SR, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442(7103):692–695PubMedCrossRef Afraz SR, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442(7103):692–695PubMedCrossRef
Zurück zum Zitat Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc Natl Acad Sci 112(21):6730–6735PubMedPubMedCentralCrossRef Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc Natl Acad Sci 112(21):6730–6735PubMedPubMedCentralCrossRef
Zurück zum Zitat Almeida J, Freixo A, Tábuas-Pereira M, Herald SB, Valério D, Schu G, Duro D, Cunha G, Bukhari Q, Duchaine B, Santana I (2020) Face-specific perceptual distortions reveal a view-and orientation-independent face template. Curr Biol 30(20):4071–4077PubMedCrossRef Almeida J, Freixo A, Tábuas-Pereira M, Herald SB, Valério D, Schu G, Duro D, Cunha G, Bukhari Q, Duchaine B, Santana I (2020) Face-specific perceptual distortions reveal a view-and orientation-independent face template. Curr Biol 30(20):4071–4077PubMedCrossRef
Zurück zum Zitat Aparicio PL, Issa EB, DiCarlo JJ (2016) Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. J Neurosci 36(50):12729–12745PubMedPubMedCentralCrossRef Aparicio PL, Issa EB, DiCarlo JJ (2016) Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. J Neurosci 36(50):12729–12745PubMedPubMedCentralCrossRef
Zurück zum Zitat Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS (2017) Seeing faces is necessary for face-domain formation. Nat Neurosci 20(10):1404–1412PubMedPubMedCentralCrossRef Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS (2017) Seeing faces is necessary for face-domain formation. Nat Neurosci 20(10):1404–1412PubMedPubMedCentralCrossRef
Zurück zum Zitat Baeck A, Wagemans J, de Beeck HPO (2013) The distributed representation of random and meaningful object pairs in human occipitotemporal cortex: the weighted average as a general rule. Neuroimage 70:37–47PubMedCrossRef Baeck A, Wagemans J, de Beeck HPO (2013) The distributed representation of random and meaningful object pairs in human occipitotemporal cortex: the weighted average as a general rule. Neuroimage 70:37–47PubMedCrossRef
Zurück zum Zitat Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion–symptom mapping. Nat Neurosci 6(5):448–450PubMedCrossRef Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion–symptom mapping. Nat Neurosci 6(5):448–450PubMedCrossRef
Zurück zum Zitat Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15(7):991–1001PubMedCrossRef Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15(7):991–1001PubMedCrossRef
Zurück zum Zitat Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RB, Ungerleider LG (2011) Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J Neurosci 31(34):12229–12240PubMedPubMedCentralCrossRef Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RB, Ungerleider LG (2011) Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J Neurosci 31(34):12229–12240PubMedPubMedCentralCrossRef
Zurück zum Zitat Bernstein M, Oron J, Sadeh B, Yovel G (2014) An integrated face–body representation in the fusiform gyrus but not the lateral occipital cortex. J Cogn Neurosci 26(11):2469–2478PubMedCrossRef Bernstein M, Oron J, Sadeh B, Yovel G (2014) An integrated face–body representation in the fusiform gyrus but not the lateral occipital cortex. J Cogn Neurosci 26(11):2469–2478PubMedCrossRef
Zurück zum Zitat Biotti F, Gray KL, Cook R (2017) Impaired body perception in developmental prosopagnosia. Cortex 93:41–49PubMedCrossRef Biotti F, Gray KL, Cook R (2017) Impaired body perception in developmental prosopagnosia. Cortex 93:41–49PubMedCrossRef
Zurück zum Zitat Blom JD, Ter Meulen BC, Dool J (2021) A century of prosopometamorphopsia studies. Cortex 139:298–308PubMedCrossRef Blom JD, Ter Meulen BC, Dool J (2021) A century of prosopometamorphopsia studies. Cortex 139:298–308PubMedCrossRef
Zurück zum Zitat Bornstein MH, Mash C, Arterberry ME (2011) Young infants’ eye movements over “natural” scenes and “experimental” scenes. Infant Behav Dev 34(1):206–210PubMedCrossRef Bornstein MH, Mash C, Arterberry ME (2011) Young infants’ eye movements over “natural” scenes and “experimental” scenes. Infant Behav Dev 34(1):206–210PubMedCrossRef
Zurück zum Zitat Bracci S, Caramazza A, Peelen MV (2015) Representational similarity of body parts in human occipitotemporal cortex. J Neurosci 35(38):12977–12985PubMedPubMedCentralCrossRef Bracci S, Caramazza A, Peelen MV (2015) Representational similarity of body parts in human occipitotemporal cortex. J Neurosci 35(38):12977–12985PubMedPubMedCentralCrossRef
Zurück zum Zitat Bracci S, Ritchie JB, de Beeck HO (2017) On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia 105:153–164PubMedPubMedCentralCrossRef Bracci S, Ritchie JB, de Beeck HO (2017) On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia 105:153–164PubMedPubMedCentralCrossRef
Zurück zum Zitat Buiatti M, Di Giorgio E, Piazza M, Polloni C, Menna G, Taddei F, Baldo E, Vallortigara G (2019) Cortical route for facelike pattern processing in human newborns. Proc Natl Acad Sci 116(10):4625–4630PubMedPubMedCentralCrossRef Buiatti M, Di Giorgio E, Piazza M, Polloni C, Menna G, Taddei F, Baldo E, Vallortigara G (2019) Cortical route for facelike pattern processing in human newborns. Proc Natl Acad Sci 116(10):4625–4630PubMedPubMedCentralCrossRef
Zurück zum Zitat Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef
Zurück zum Zitat Conway BR (2018) The organization and operation of inferior temporal cortex. Ann Rev Vis Sci 4:381–402CrossRef Conway BR (2018) The organization and operation of inferior temporal cortex. Ann Rev Vis Sci 4:381–402CrossRef
Zurück zum Zitat Cox D, Meyers E, Sinha P (2004) Contextually evoked object-specific responses in human visual cortex. Science 304(5667):115–117PubMedCrossRef Cox D, Meyers E, Sinha P (2004) Contextually evoked object-specific responses in human visual cortex. Science 304(5667):115–117PubMedCrossRef
Zurück zum Zitat De Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Kriegeskorte N, Rees G (2016) Perception and processing of faces in the human brain is tuned to typical feature locations. J Neurosci 36(36):9289–9302PubMedPubMedCentralCrossRef De Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Kriegeskorte N, Rees G (2016) Perception and processing of faces in the human brain is tuned to typical feature locations. J Neurosci 36(36):9289–9302PubMedPubMedCentralCrossRef
Zurück zum Zitat Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe R (2017) Organization of high-level visual cortex in human infants. Nat Commun 8(1):1–10CrossRef Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe R (2017) Organization of high-level visual cortex in human infants. Nat Commun 8(1):1–10CrossRef
Zurück zum Zitat Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062PubMedPubMedCentralCrossRef Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062PubMedPubMedCentralCrossRef
Zurück zum Zitat Dorr M, Martinetz T, Gegenfurtner KR, Barth E (2010) Variability of eye movements when viewing dynamic natural scenes. J vis 10(10):28–28PubMedCrossRef Dorr M, Martinetz T, Gegenfurtner KR, Barth E (2010) Variability of eye movements when viewing dynamic natural scenes. J vis 10(10):28–28PubMedCrossRef
Zurück zum Zitat Downing PE, Peelen MV (2016) Body selectivity in occipitotemporal cortex: Causal evidence. Neuropsychologia 83:138–148PubMedCrossRef Downing PE, Peelen MV (2016) Body selectivity in occipitotemporal cortex: Causal evidence. Neuropsychologia 83:138–148PubMedCrossRef
Zurück zum Zitat Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473PubMedCrossRef Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473PubMedCrossRef
Zurück zum Zitat Duchaine B, Yovel G (2015) A revised neural framework for face processing. Ann Rev Vis Sci 1:393–416CrossRef Duchaine B, Yovel G (2015) A revised neural framework for face processing. Ann Rev Vis Sci 1:393–416CrossRef
Zurück zum Zitat Epstein RA, Baker CI (2019) Scene perception in the human brain. Ann Rev Vis Sci 5:373–397CrossRef Epstein RA, Baker CI (2019) Scene perception in the human brain. Ann Rev Vis Sci 5:373–397CrossRef
Zurück zum Zitat Fairhall SL, Ishai A (2007) Effective connectivity within the distributed cortical network for face perception. Cereb Cortex 17(10):2400–2406PubMedCrossRef Fairhall SL, Ishai A (2007) Effective connectivity within the distributed cortical network for face perception. Cereb Cortex 17(10):2400–2406PubMedCrossRef
Zurück zum Zitat Farroni T, Chiarelli AM, Lloyd-Fox S, Massaccesi S, Merla A, Di Gangi V, Mattarello T, Faraguna D, Johnson MH (2013) Infant cortex responds to other humans from shortly after birth. Sci Rep 3(1):1–5CrossRef Farroni T, Chiarelli AM, Lloyd-Fox S, Massaccesi S, Merla A, Di Gangi V, Mattarello T, Faraguna D, Johnson MH (2013) Infant cortex responds to other humans from shortly after birth. Sci Rep 3(1):1–5CrossRef
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47PubMedCrossRef
Zurück zum Zitat Feusner JD, Townsend J, Bystritsky A, Bookheimer S (2007) Visual information processing of faces in body dysmorphic disorder. Arch Gen Psychiatry 64(12):1417–1425PubMedCrossRef Feusner JD, Townsend J, Bystritsky A, Bookheimer S (2007) Visual information processing of faces in body dysmorphic disorder. Arch Gen Psychiatry 64(12):1417–1425PubMedCrossRef
Zurück zum Zitat Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Buelthoff I (2021) Separated and overlapping neural coding of face and body identity. Hum Brain Mapp 42(13):4242–4260PubMedPubMedCentralCrossRef Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Buelthoff I (2021) Separated and overlapping neural coding of face and body identity. Hum Brain Mapp 42(13):4242–4260PubMedPubMedCentralCrossRef
Zurück zum Zitat Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330(6005):845–851PubMedPubMedCentralCrossRef Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330(6005):845–851PubMedPubMedCentralCrossRef
Zurück zum Zitat Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368(4):467–486PubMedCrossRef Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368(4):467–486PubMedCrossRef
Zurück zum Zitat Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346PubMedCrossRef Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346PubMedCrossRef
Zurück zum Zitat Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197PubMedCrossRef Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197PubMedCrossRef
Zurück zum Zitat Gerlach C, Starrfelt R (2021) Patterns of perceptual performance in developmental prosopagnosia: an in-depth case series. Cogn Neuropsychol 38(1):27–49PubMedCrossRef Gerlach C, Starrfelt R (2021) Patterns of perceptual performance in developmental prosopagnosia: an in-depth case series. Cogn Neuropsychol 38(1):27–49PubMedCrossRef
Zurück zum Zitat Golomb JD, Kanwisher N (2012) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22(12):2794–2810PubMedCrossRef Golomb JD, Kanwisher N (2012) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22(12):2794–2810PubMedCrossRef
Zurück zum Zitat Gomez J, Barnett M, Grill-Spector K (2019) Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 3(6):611–624PubMedPubMedCentralCrossRef Gomez J, Barnett M, Grill-Spector K (2019) Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 3(6):611–624PubMedPubMedCentralCrossRef
Zurück zum Zitat Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4):544–549PubMedCrossRef Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4):544–549PubMedCrossRef
Zurück zum Zitat Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15(8):536–548PubMedPubMedCentralCrossRef Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15(8):536–548PubMedPubMedCentralCrossRef
Zurück zum Zitat Grimaldi P, Saleem KS, Tsao D (2016) Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90(6):1325–1342PubMedPubMedCentralCrossRef Grimaldi P, Saleem KS, Tsao D (2016) Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90(6):1325–1342PubMedPubMedCentralCrossRef
Zurück zum Zitat Gross CG, Rocha-Miranda CD, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(1):96–111PubMedCrossRef Gross CG, Rocha-Miranda CD, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(1):96–111PubMedCrossRef
Zurück zum Zitat Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35(6):1167–1175PubMedCrossRef Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35(6):1167–1175PubMedCrossRef
Zurück zum Zitat Guntupalli JS, Wheeler KG, Gobbini MI (2017) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCrossRef Guntupalli JS, Wheeler KG, Gobbini MI (2017) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCrossRef
Zurück zum Zitat Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh WM, Tootell RB, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109(52):E3640–E3648PubMedPubMedCentralCrossRef Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh WM, Tootell RB, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109(52):E3640–E3648PubMedPubMedCentralCrossRef
Zurück zum Zitat Handwerker DA, Ianni G, Gutierrez B, Roopchansingh V, Gonzalez-Castillo J, Chen G, Bandettini PA, Ungerleider LG, Pitcher D (2020) Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw Neurosci 4(3):746–760PubMedPubMedCentralCrossRef Handwerker DA, Ianni G, Gutierrez B, Roopchansingh V, Gonzalez-Castillo J, Chen G, Bandettini PA, Ungerleider LG, Pitcher D (2020) Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw Neurosci 4(3):746–760PubMedPubMedCentralCrossRef
Zurück zum Zitat Harry BB, Umla-Runge K, Lawrence AD, Graham KS, Downing PE (2016) Evidence for integrated visual face and body representations in the anterior temporal lobes. J Cogn Neurosci 28(8):1178–1193PubMedCrossRef Harry BB, Umla-Runge K, Lawrence AD, Graham KS, Downing PE (2016) Evidence for integrated visual face and body representations in the anterior temporal lobes. J Cogn Neurosci 28(8):1178–1193PubMedCrossRef
Zurück zum Zitat Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233PubMedCrossRef
Zurück zum Zitat Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiat 51(1):59–67PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiat 51(1):59–67PubMedCrossRef
Zurück zum Zitat Haxby JV, Gobbini MI, Nastase SA (2020) Naturalistic stimuli reveal a dominant role for agentic action in visual representation. Neuroimage 216:116561PubMedCrossRef Haxby JV, Gobbini MI, Nastase SA (2020) Naturalistic stimuli reveal a dominant role for agentic action in visual representation. Neuroimage 216:116561PubMedCrossRef
Zurück zum Zitat Henriksson L, Mur M, Kriegeskorte N (2015) Faciotopy—a face-feature map with face-like topology in the human occipital face area. Cortex 72:156–167PubMedPubMedCentralCrossRef Henriksson L, Mur M, Kriegeskorte N (2015) Faciotopy—a face-feature map with face-like topology in the human occipital face area. Cortex 72:156–167PubMedPubMedCentralCrossRef
Zurück zum Zitat Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3(1):80–84PubMedCrossRef Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3(1):80–84PubMedCrossRef
Zurück zum Zitat Hu Y, Baragchizadeh A, O’Toole AJ (2020) Integrating faces and bodies: Psychological and neural perspectives on whole person perception. Neurosci Biobehav Rev 112:472–486PubMedCrossRef Hu Y, Baragchizadeh A, O’Toole AJ (2020) Integrating faces and bodies: Psychological and neural perspectives on whole person perception. Neurosci Biobehav Rev 112:472–486PubMedCrossRef
Zurück zum Zitat Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35(3):1160–1172PubMedPubMedCentralCrossRef Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35(3):1160–1172PubMedPubMedCentralCrossRef
Zurück zum Zitat Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. Neuroimage 96:216–236PubMedCrossRef Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. Neuroimage 96:216–236PubMedCrossRef
Zurück zum Zitat Issa EB, Papanastassiou AM, DiCarlo JJ (2013) Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe. J Neurosci 33(38):15207–15219PubMedPubMedCentralCrossRef Issa EB, Papanastassiou AM, DiCarlo JJ (2013) Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe. J Neurosci 33(38):15207–15219PubMedPubMedCentralCrossRef
Zurück zum Zitat Jack RE, Schyns PG (2015) The human face as a dynamic tool for social communication. Curr Biol 25(14):R621–R634PubMedCrossRef Jack RE, Schyns PG (2015) The human face as a dynamic tool for social communication. Curr Biol 25(14):R621–R634PubMedCrossRef
Zurück zum Zitat Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M, Vignal JP, Vespignani H, Rossion B, Maillard L (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288PubMedCrossRef Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M, Vignal JP, Vespignani H, Rossion B, Maillard L (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288PubMedCrossRef
Zurück zum Zitat Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112PubMedCrossRef Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112PubMedCrossRef
Zurück zum Zitat Kaiser D, Strnad L, Seidl KN, Kastner S, Peelen MV (2014) Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face-and body-evoked activity patterns. J Neurophysiol 111(1):82–90PubMedCrossRef Kaiser D, Strnad L, Seidl KN, Kastner S, Peelen MV (2014) Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face-and body-evoked activity patterns. J Neurophysiol 111(1):82–90PubMedCrossRef
Zurück zum Zitat Kamps FS, Morris EJ, Dilks DD (2019) A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features. Neuroimage 184:90–100PubMedCrossRef Kamps FS, Morris EJ, Dilks DD (2019) A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features. Neuroimage 184:90–100PubMedCrossRef
Zurück zum Zitat Kamps FS, Hendrix CL, Brennan PA, Dilks DD (2020) Connectivity at the origins of domain specificity in the cortical face and place networks. Proc Natl Acad Sci 117(11):6163–6169PubMedPubMedCentralCrossRef Kamps FS, Hendrix CL, Brennan PA, Dilks DD (2020) Connectivity at the origins of domain specificity in the cortical face and place networks. Proc Natl Acad Sci 117(11):6163–6169PubMedPubMedCentralCrossRef
Zurück zum Zitat Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMedPubMedCentralCrossRef Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMedPubMedCentralCrossRef
Zurück zum Zitat Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol 97(6):4296–4309PubMedCrossRef Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol 97(6):4296–4309PubMedCrossRef
Zurück zum Zitat Kliger L, Yovel G (2020) The functional organization of high-level visual cortex determines the representation of complex visual stimuli. J Neurosci 40(39):7545–7558PubMedPubMedCentralCrossRef Kliger L, Yovel G (2020) The functional organization of high-level visual cortex determines the representation of complex visual stimuli. J Neurosci 40(39):7545–7558PubMedPubMedCentralCrossRef
Zurück zum Zitat Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M (2021) Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235:118017PubMedCrossRef Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M (2021) Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235:118017PubMedCrossRef
Zurück zum Zitat Kosakowski H, Cohen M, Takahashi A, Keil B, Kanwisher N, Saxe R (2021) Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. PsyArxiv. https://psyarxiv.com/7hqcu/. Kosakowski H, Cohen M, Takahashi A, Keil B, Kanwisher N, Saxe R (2021) Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. PsyArxiv. https://​psyarxiv.​com/​7hqcu/​.
Zurück zum Zitat Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef
Zurück zum Zitat Kumar S, Popivanov ID, Vogels R (2019) Transformation of visual representations across ventral stream body-selective patches. Cereb Cortex 29(1):215–229PubMedCrossRef Kumar S, Popivanov ID, Vogels R (2019) Transformation of visual representations across ventral stream body-selective patches. Cereb Cortex 29(1):215–229PubMedCrossRef
Zurück zum Zitat Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878PubMedPubMedCentralCrossRef Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878PubMedPubMedCentralCrossRef
Zurück zum Zitat Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Early visual experience and face processing. Nature 410(6831):890–890PubMedCrossRef Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Early visual experience and face processing. Nature 410(6831):890–890PubMedCrossRef
Zurück zum Zitat Leopold DA, Park SH (2020) Studying the visual brain in its natural rhythm. NeuroImage 216:116790PubMedCrossRef Leopold DA, Park SH (2020) Studying the visual brain in its natural rhythm. NeuroImage 216:116790PubMedCrossRef
Zurück zum Zitat Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center–periphery organization of human object areas. Nat Neurosci 4(5):533–539PubMedCrossRef Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center–periphery organization of human object areas. Nat Neurosci 4(5):533–539PubMedCrossRef
Zurück zum Zitat Lisboa IC, Miguel H, Sampaio A, Mouta S, Santos JA, Pereira AF (2020) Right STS responses to biological motion in infancy—an fNIRS study using point-light walkers. Neuropsychologia 149:107668PubMedCrossRef Lisboa IC, Miguel H, Sampaio A, Mouta S, Santos JA, Pereira AF (2020) Right STS responses to biological motion in infancy—an fNIRS study using point-light walkers. Neuropsychologia 149:107668PubMedCrossRef
Zurück zum Zitat Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T (2017) Development of the macaque face-patch system. Nat Commun 8(1):1–12CrossRef Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T (2017) Development of the macaque face-patch system. Nat Commun 8(1):1–12CrossRef
Zurück zum Zitat Malaspina M, Albonico A, Daini R (2019) Self-face and self-body advantages in congenital prosopagnosia: evidence for a common mechanism. Exp Brain Res 237(3):673–686PubMedCrossRef Malaspina M, Albonico A, Daini R (2019) Self-face and self-body advantages in congenital prosopagnosia: evidence for a common mechanism. Exp Brain Res 237(3):673–686PubMedCrossRef
Zurück zum Zitat McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9(5):605–610PubMedCrossRef McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9(5):605–610PubMedCrossRef
Zurück zum Zitat McKone E, Kanwisher N, Duchaine BC (2007) Can generic expertise explain special processing for faces? Trends Cogn Sci 11(1):8–15PubMedCrossRef McKone E, Kanwisher N, Duchaine BC (2007) Can generic expertise explain special processing for faces? Trends Cogn Sci 11(1):8–15PubMedCrossRef
Zurück zum Zitat Minnebusch DA, Daum I (2009) Neuropsychological mechanisms of visual face and body perception. Neurosci Biobehav Rev 33(7):1133–1144PubMedCrossRef Minnebusch DA, Daum I (2009) Neuropsychological mechanisms of visual face and body perception. Neurosci Biobehav Rev 33(7):1133–1144PubMedCrossRef
Zurück zum Zitat Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849PubMedCrossRef Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849PubMedCrossRef
Zurück zum Zitat Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–246PubMedCrossRef Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–246PubMedCrossRef
Zurück zum Zitat Moro V, Pernigo S, Avesani R, Bulgarelli C, Urgesi C, Candidi M, Aglioti SM (2012) Visual body recognition in a prosopagnosic patient. Neuropsychologia 50(1):104–117PubMedCrossRef Moro V, Pernigo S, Avesani R, Bulgarelli C, Urgesi C, Candidi M, Aglioti SM (2012) Visual body recognition in a prosopagnosic patient. Neuropsychologia 50(1):104–117PubMedCrossRef
Zurück zum Zitat Morris JP, Pelphrey KA, McCarthy G (2006) Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44(10):1919–1927PubMedPubMedCentralCrossRef Morris JP, Pelphrey KA, McCarthy G (2006) Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44(10):1919–1927PubMedPubMedCentralCrossRef
Zurück zum Zitat Mur M, Meys M, Bodurka J, Goebel R, Bandettini PA, Kriegeskorte N (2013) Human object-similarity judgments reflect and transcend the primate-IT object representation. Front Psychol 4:128PubMedPubMedCentralCrossRef Mur M, Meys M, Bodurka J, Goebel R, Bandettini PA, Kriegeskorte N (2013) Human object-similarity judgments reflect and transcend the primate-IT object representation. Front Psychol 4:128PubMedPubMedCentralCrossRef
Zurück zum Zitat Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N (2020) Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci 117(37):23011–23020CrossRef Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N (2020) Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci 117(37):23011–23020CrossRef
Zurück zum Zitat O’Neil EB, Hutchison RM, McLean DA, Köhler S (2014) Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion. Neuroimage 92:349–355PubMedCrossRef O’Neil EB, Hutchison RM, McLean DA, Köhler S (2014) Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion. Neuroimage 92:349–355PubMedCrossRef
Zurück zum Zitat Op de Beeck HP, Pillet I, Ritchie JB (2019) Factors determining where category-selective areas emerge in visual cortex. Trends Cogn Sci 23(9):784–797PubMedCrossRef Op de Beeck HP, Pillet I, Ritchie JB (2019) Factors determining where category-selective areas emerge in visual cortex. Trends Cogn Sci 23(9):784–797PubMedCrossRef
Zurück zum Zitat Orlov T, Makin TR, Zohary E (2010) Topographic representation of the human body in the occipitotemporal cortex. Neuron 68(3):586–600PubMedCrossRef Orlov T, Makin TR, Zohary E (2010) Topographic representation of the human body in the occipitotemporal cortex. Neuron 68(3):586–600PubMedCrossRef
Zurück zum Zitat Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26(4):1668–1683PubMedCrossRef Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26(4):1668–1683PubMedCrossRef
Zurück zum Zitat O’Toole AJ, Roark DA, Abdi H (2002) Recognizing moving faces: A psychological and neural synthesis. Trends Cogn Sci 6(6):261–266PubMedCrossRef O’Toole AJ, Roark DA, Abdi H (2002) Recognizing moving faces: A psychological and neural synthesis. Trends Cogn Sci 6(6):261–266PubMedCrossRef
Zurück zum Zitat Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19(1):50–53PubMedCrossRef Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19(1):50–53PubMedCrossRef
Zurück zum Zitat Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32(43):14915–14920PubMedPubMedCentralCrossRef Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32(43):14915–14920PubMedPubMedCentralCrossRef
Zurück zum Zitat Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608PubMedCrossRef Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608PubMedCrossRef
Zurück zum Zitat Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8(8):636–648PubMedCrossRef Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8(8):636–648PubMedCrossRef
Zurück zum Zitat Peelen MV, Glaser B, Vuilleumier P, Eliez S (2009) Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev Sci 12(6):F16–F25PubMedCrossRef Peelen MV, Glaser B, Vuilleumier P, Eliez S (2009) Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev Sci 12(6):F16–F25PubMedCrossRef
Zurück zum Zitat Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47(3):329–342PubMedCrossRef Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47(3):329–342PubMedCrossRef
Zurück zum Zitat Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci 102(19):6996–7001PubMedPubMedCentralCrossRef Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci 102(19):6996–7001PubMedPubMedCentralCrossRef
Zurück zum Zitat Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol 101(5):2581–2600PubMedPubMedCentralCrossRef Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol 101(5):2581–2600PubMedPubMedCentralCrossRef
Zurück zum Zitat Pitcher D, Ungerleider LG (2021) Evidence for a third visual pathway specialized for social perception. Trends Cogn Sci 25(2):100–110PubMedCrossRef Pitcher D, Ungerleider LG (2021) Evidence for a third visual pathway specialized for social perception. Trends Cogn Sci 25(2):100–110PubMedCrossRef
Zurück zum Zitat Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19(4):319–324PubMedCrossRef Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19(4):319–324PubMedCrossRef
Zurück zum Zitat Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56(4):2356–2363PubMedCrossRef Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56(4):2356–2363PubMedCrossRef
Zurück zum Zitat Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37(5):1156–1161PubMedPubMedCentralCrossRef Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37(5):1156–1161PubMedPubMedCentralCrossRef
Zurück zum Zitat Pitcher D, Ianni G, Ungerleider LG (2019) A functional dissociation of face-, body-and scene-selective brain areas based on their response to moving and static stimuli. Sci Rep 9(1):1–9CrossRef Pitcher D, Ianni G, Ungerleider LG (2019) A functional dissociation of face-, body-and scene-selective brain areas based on their response to moving and static stimuli. Sci Rep 9(1):1–9CrossRef
Zurück zum Zitat Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2012) Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 63(2):723–741PubMedCrossRef Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2012) Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 63(2):723–741PubMedCrossRef
Zurück zum Zitat Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2014) Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J Neurosci 34(1):95–111PubMedPubMedCentralCrossRef Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2014) Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J Neurosci 34(1):95–111PubMedPubMedCentralCrossRef
Zurück zum Zitat Popivanov ID, Schyns PG, Vogels R (2016) Stimulus features coded by single neurons of a macaque body category selective patch. Proc Natl Acad Sci 113(17):E2450–E2459PubMedPubMedCentralCrossRef Popivanov ID, Schyns PG, Vogels R (2016) Stimulus features coded by single neurons of a macaque body category selective patch. Proc Natl Acad Sci 113(17):E2450–E2459PubMedPubMedCentralCrossRef
Zurück zum Zitat Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W (2016) Effective connectivity reveals largely independent parallel networks of face and body patches. Curr Biol 26(24):3269–3279PubMedCrossRef Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W (2016) Effective connectivity reveals largely independent parallel networks of face and body patches. Curr Biol 26(24):3269–3279PubMedCrossRef
Zurück zum Zitat Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16(16):5205–5215PubMedPubMedCentralCrossRef Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16(16):5205–5215PubMedPubMedCentralCrossRef
Zurück zum Zitat Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18(6):2188–2199PubMedPubMedCentralCrossRef Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18(6):2188–2199PubMedPubMedCentralCrossRef
Zurück zum Zitat Ramot M, Walsh C, Martin A (2019) Multifaceted integration: memory for faces is subserved by widespread connections between visual, memory, auditory, and social networks. J Neurosci 39(25):4976–4985PubMedPubMedCentralCrossRef Ramot M, Walsh C, Martin A (2019) Multifaceted integration: memory for faces is subserved by widespread connections between visual, memory, auditory, and social networks. J Neurosci 39(25):4976–4985PubMedPubMedCentralCrossRef
Zurück zum Zitat Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, Parvizi J (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34(38):12828–12836PubMedPubMedCentralCrossRef Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, Parvizi J (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34(38):12828–12836PubMedPubMedCentralCrossRef
Zurück zum Zitat Reed CL, Stone VE, Bozova S, Tanaka J (2003) The body-inversion effect. Psychol Sci 14(4):302–308PubMedCrossRef Reed CL, Stone VE, Bozova S, Tanaka J (2003) The body-inversion effect. Psychol Sci 14(4):302–308PubMedCrossRef
Zurück zum Zitat Rivolta D, Lawson RP, Palermo R (2017) More than just a problem with faces: altered body perception in a group of congenital prosopagnosics. Quarterly Journal of Experimental Psychology 70(2):276–286CrossRef Rivolta D, Lawson RP, Palermo R (2017) More than just a problem with faces: altered body perception in a group of congenital prosopagnosics. Quarterly Journal of Experimental Psychology 70(2):276–286CrossRef
Zurück zum Zitat Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126(11):2381–2395PubMedCrossRef Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126(11):2381–2395PubMedCrossRef
Zurück zum Zitat Russ BE, Leopold DA (2015) Functional MRI mapping of dynamic visual features during natural viewing in the macaque. Neuroimage 109:84–94PubMedCrossRef Russ BE, Leopold DA (2015) Functional MRI mapping of dynamic visual features during natural viewing in the macaque. Neuroimage 109:84–94PubMedCrossRef
Zurück zum Zitat Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327CrossRef Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327CrossRef
Zurück zum Zitat Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S (2020) Face selective patches in marmoset frontal cortex. Nat Commun 11(1):1–8CrossRef Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S (2020) Face selective patches in marmoset frontal cortex. Nat Commun 11(1):1–8CrossRef
Zurück zum Zitat Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K, Kanwisher N (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci 114(46):12285–12290PubMedPubMedCentralCrossRef Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K, Kanwisher N (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci 114(46):12285–12290PubMedPubMedCentralCrossRef
Zurück zum Zitat Schmalzl L, Zopf R, Williams MA (2012) From head to toe: evidence for selective brain activation reflecting visual perception of whole individuals. Front Hum Neurosci 6:108PubMedPubMedCentralCrossRef Schmalzl L, Zopf R, Williams MA (2012) From head to toe: evidence for selective brain activation reflecting visual perception of whole individuals. Front Hum Neurosci 6:108PubMedPubMedCentralCrossRef
Zurück zum Zitat Schwiedrzik CM, Zarco W, Everling S, Freiwald WA (2015) Face patch resting state networks link face processing to social cognition. PLoS Biol 13(9):e1002245PubMedPubMedCentralCrossRef Schwiedrzik CM, Zarco W, Everling S, Freiwald WA (2015) Face patch resting state networks link face processing to social cognition. PLoS Biol 13(9):e1002245PubMedPubMedCentralCrossRef
Zurück zum Zitat Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893PubMedCrossRef Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893PubMedCrossRef
Zurück zum Zitat Shah P, Gaule A, Gaigg SB, Bird G, Cook R (2015) Probing short-term face memory in developmental prosopagnosia. Cortex 64:115–122PubMedCrossRef Shah P, Gaule A, Gaigg SB, Bird G, Cook R (2015) Probing short-term face memory in developmental prosopagnosia. Cortex 64:115–122PubMedCrossRef
Zurück zum Zitat Silson EH, Chan AWY, Reynolds RC, Kravitz DJ, Baker CI (2015) A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J Neurosci 35(34):11921–11935PubMedPubMedCentralCrossRef Silson EH, Chan AWY, Reynolds RC, Kravitz DJ, Baker CI (2015) A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J Neurosci 35(34):11921–11935PubMedPubMedCentralCrossRef
Zurück zum Zitat Silson EH, Groen II, Kravitz DJ, Baker CI (2016) Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J Vis 16(6):14–14PubMedPubMedCentralCrossRef Silson EH, Groen II, Kravitz DJ, Baker CI (2016) Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J Vis 16(6):14–14PubMedPubMedCentralCrossRef
Zurück zum Zitat Slaughter V, Stone VE, Reed C (2004) Perception of faces and bodies: similar or different? Curr Dir Psychol Sci 13(6):219–223CrossRef Slaughter V, Stone VE, Reed C (2004) Perception of faces and bodies: similar or different? Curr Dir Psychol Sci 13(6):219–223CrossRef
Zurück zum Zitat Song Y, Luo YL, Li X, Xu M, Liu J (2013) Representation of contextually related multiple objects in the human ventral visual pathway. J Cogn Neurosci 25(8):1261–1269PubMedCrossRef Song Y, Luo YL, Li X, Xu M, Liu J (2013) Representation of contextually related multiple objects in the human ventral visual pathway. J Cogn Neurosci 25(8):1261–1269PubMedCrossRef
Zurück zum Zitat Sonkusare S, Breakspear M, Guo C (2019) Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn Sci 23(8):699–714PubMedCrossRef Sonkusare S, Breakspear M, Guo C (2019) Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn Sci 23(8):699–714PubMedCrossRef
Zurück zum Zitat Sorger B, Goebel R, Schiltz C, Rossion B (2007) Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35(2):836–852PubMedCrossRef Sorger B, Goebel R, Schiltz C, Rossion B (2007) Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35(2):836–852PubMedCrossRef
Zurück zum Zitat Spiridon M, Fischl B, Kanwisher N (2006) Location and spatial profile of category-specific regions in human extrastriate cortex. Hum Brain Mapp 27(1):77–89PubMedCrossRef Spiridon M, Fischl B, Kanwisher N (2006) Location and spatial profile of category-specific regions in human extrastriate cortex. Hum Brain Mapp 27(1):77–89PubMedCrossRef
Zurück zum Zitat Suchan B, Bauser DS, Busch M, Schulte D, Grönemeyer D, Herpertz S, Vocks S (2013) Reduced connectivity between the left fusiform body area and the extrastriate body area in anorexia nervosa is associated with body image distortion. Behav Brain Res 241:80–85PubMedCrossRef Suchan B, Bauser DS, Busch M, Schulte D, Grönemeyer D, Herpertz S, Vocks S (2013) Reduced connectivity between the left fusiform body area and the extrastriate body area in anorexia nervosa is associated with body image distortion. Behav Brain Res 241:80–85PubMedCrossRef
Zurück zum Zitat Susilo T, Yovel G, Barton JJ, Duchaine B (2013) Face perception is category-specific: evidence from normal body perception in acquired prosopagnosia. Cognition 129(1):88–94PubMedCrossRef Susilo T, Yovel G, Barton JJ, Duchaine B (2013) Face perception is category-specific: evidence from normal body perception in acquired prosopagnosia. Cognition 129(1):88–94PubMedCrossRef
Zurück zum Zitat Susilo T, Yang H, Potter Z, Robbins R, Duchaine B (2015) Normal body perception despite the loss of right fusiform gyrus. J Cogn Neurosci 27(3):614–622PubMedCrossRef Susilo T, Yang H, Potter Z, Robbins R, Duchaine B (2015) Normal body perception despite the loss of right fusiform gyrus. J Cogn Neurosci 27(3):614–622PubMedCrossRef
Zurück zum Zitat Tarhan L, Konkle T (2020) Sociality and interaction envelope organize visual action representations. Nat Commun 11(1):1–11CrossRef Tarhan L, Konkle T (2020) Sociality and interaction envelope organize visual action representations. Nat Commun 11(1):1–11CrossRef
Zurück zum Zitat Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2015) The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J Neurophysiol 113(5):1644–1655PubMedCrossRef Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2015) The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J Neurophysiol 113(5):1644–1655PubMedCrossRef
Zurück zum Zitat Taubert J, Flessert M, Wardle SG, Basile BM, Murphy AP, Murray EA, Ungerleider LG (2018) Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc Natl Acad Sci 115(31):8043–8048PubMedPubMedCentralCrossRef Taubert J, Flessert M, Wardle SG, Basile BM, Murphy AP, Murray EA, Ungerleider LG (2018) Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc Natl Acad Sci 115(31):8043–8048PubMedPubMedCentralCrossRef
Zurück zum Zitat Taubert J, Japee S, Murphy AP, Tardiff CT, Koele EA, Kumar S, Leopold DA, Ungerleider LG (2020) Parallel processing of facial expression and head orientation in the macaque brain. J Neurosci 40(42):8119–8131PubMedPubMedCentralCrossRef Taubert J, Japee S, Murphy AP, Tardiff CT, Koele EA, Kumar S, Leopold DA, Ungerleider LG (2020) Parallel processing of facial expression and head orientation in the macaque brain. J Neurosci 40(42):8119–8131PubMedPubMedCentralCrossRef
Zurück zum Zitat Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cogn Neurosci 23(12):4122–4137PubMedCrossRef Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cogn Neurosci 23(12):4122–4137PubMedCrossRef
Zurück zum Zitat Thompson JC, Hardee JE, Panayiotou A, Crewther D, Puce A (2007) Common and distinct brain activation to viewing dynamic sequences of face and hand movements. Neuroimage 37(3):966–973PubMedCrossRef Thompson JC, Hardee JE, Panayiotou A, Crewther D, Puce A (2007) Common and distinct brain activation to viewing dynamic sequences of face and hand movements. Neuroimage 37(3):966–973PubMedCrossRef
Zurück zum Zitat Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674PubMedPubMedCentralCrossRef Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674PubMedPubMedCentralCrossRef
Zurück zum Zitat Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8):832–838PubMedCrossRef Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8):832–838PubMedCrossRef
Zurück zum Zitat van den Hurk J, Van Baelen M, Op de Beeck HP (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114(22):E4501–E4510PubMedPubMedCentral van den Hurk J, Van Baelen M, Op de Beeck HP (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114(22):E4501–E4510PubMedPubMedCentral
Zurück zum Zitat van Koningsbruggen MG, Peelen MV, Downing PE (2013) A causal role for the extrastriate body area in detecting people in real-world scenes. J Neurosci 33(16):7003–7010PubMedPubMedCentralCrossRef van Koningsbruggen MG, Peelen MV, Downing PE (2013) A causal role for the extrastriate body area in detecting people in real-world scenes. J Neurosci 33(16):7003–7010PubMedPubMedCentralCrossRef
Zurück zum Zitat Vangeneugden J, Peelen MV, Tadin D, Battelli L (2014) Distinct neural mechanisms for body form and body motion discriminations. J Neurosci 34(2):574–585PubMedPubMedCentralCrossRef Vangeneugden J, Peelen MV, Tadin D, Battelli L (2014) Distinct neural mechanisms for body form and body motion discriminations. J Neurosci 34(2):574–585PubMedPubMedCentralCrossRef
Zurück zum Zitat Vinken K, Vogels R (2019) A behavioral face preference deficit in a monkey with an incomplete face patch system. Neuroimage 189:415–424PubMedCrossRef Vinken K, Vogels R (2019) A behavioral face preference deficit in a monkey with an incomplete face patch system. Neuroimage 189:415–424PubMedCrossRef
Zurück zum Zitat Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45(1):174–194PubMedCrossRef Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45(1):174–194PubMedCrossRef
Zurück zum Zitat Wachsmuth E, Oram MW, Perrett DI (1994) Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex 4(5):509–522PubMedCrossRef Wachsmuth E, Oram MW, Perrett DI (1994) Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex 4(5):509–522PubMedCrossRef
Zurück zum Zitat Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383PubMedCrossRef Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383PubMedCrossRef
Zurück zum Zitat Webster MJ, Ungerleider LG, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMedPubMedCentralCrossRef Webster MJ, Ungerleider LG, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMedPubMedCentralCrossRef
Zurück zum Zitat Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52(4):1559–1573PubMedCrossRef Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52(4):1559–1573PubMedCrossRef
Zurück zum Zitat Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77(1):74–97PubMedCrossRef Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77(1):74–97PubMedCrossRef
Zurück zum Zitat Zhang H, Japee S, Stacy A, Flessert M, Ungerleider LG (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. NeuroImage 218:116878PubMedCrossRef Zhang H, Japee S, Stacy A, Flessert M, Ungerleider LG (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. NeuroImage 218:116878PubMedCrossRef
Zurück zum Zitat Zhu Q, Zhang J, Luo YL, Dilks DD, Liu J (2011) Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci 31(28):10323–10330PubMedPubMedCentralCrossRef Zhu Q, Zhang J, Luo YL, Dilks DD, Liu J (2011) Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci 31(28):10323–10330PubMedPubMedCentralCrossRef
Metadaten
Titel
One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system
verfasst von
Jessica Taubert
J. Brendan Ritchie
Leslie G. Ungerleider
Christopher I. Baker
Publikationsdatum
18.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2022
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02420-7

Weitere Artikel der Ausgabe 4/2022

Brain Structure and Function 4/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.