Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2016

03.06.2016 | Original Article

One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI

verfasst von: Hossein Arabi, Habib Zaidi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT generation approach.

Methods

The proposed approach consists of only one online registration between the target and reference images, regardless of the number of atlas images (N), while for the remaining atlas images, the pre-computed transformation matrices to the reference image are used to align them to the target image. The performance characteristics of the proposed method were evaluated and compared with conventional atlas-based attenuation map generation strategies (direct registration of the entire atlas images followed by voxel-wise weighting (VWW) and arithmetic averaging atlas fusion). To this end, four different positron emission tomography (PET) attenuation maps were generated via arithmetic averaging and VWW scheme using both direct registration and ORMA approaches as well as the 3-class attenuation map obtained from the Philips Ingenuity TF PET/MRI scanner commonly used in the clinical setting. The evaluation was performed based on the accuracy of extracted whole-body bones by the different attenuation maps and by quantitative analysis of resulting PET images compared to CT-based attenuation-corrected PET images serving as reference.

Results

The comparison of validation metrics regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application of the ORMA approach modestly compromised the accuracy, yielding a Dice similarity measure of 0.76 ± 0.05 for ORMA-VWW and 0.55 ± 0.03 for ORMA-averaging. The results of quantitative PET analysis followed the same trend with less significant differences in terms of SUV bias, whereas massive improvements were observed compared to PET images corrected for attenuation using the 3-class attenuation map. The maximum absolute bias achieved by VWW and VWW-ORMA methods was 06.4 ± 5.5 in the lung and 07.9 ± 4.8 in the bone, respectively.

Conclusions

The proposed algorithm is capable of generating decent attenuation maps. The quantitative analysis revealed a good correlation between PET images corrected for attenuation using the proposed pseudo-CT generation approach and the corresponding CT images. The computational time is reduced by a factor of 1/N at the expense of a modest decrease in quantitative accuracy, thus allowing us to achieve a reasonable compromise between computing time and quantitative performance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.CrossRefPubMed Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.CrossRefPubMed
2.
Zurück zum Zitat Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89.CrossRefPubMed Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89.CrossRefPubMed
3.
Zurück zum Zitat Wiesmuller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:12–21.CrossRefPubMed Wiesmuller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:12–21.CrossRefPubMed
4.
Zurück zum Zitat Becker M, Zaidi H. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol. 2014;87:20130677. Becker M, Zaidi H. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol. 2014;87:20130677.
5.
Zurück zum Zitat Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer patients: evidence from studies in more than 2300 patients. J Nucl Med. 2016;57:420–30.CrossRefPubMed Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer patients: evidence from studies in more than 2300 patients. J Nucl Med. 2016;57:420–30.CrossRefPubMed
6.
Zurück zum Zitat Bezrukov I, Mantlik F, Schmidt H, Scholkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.CrossRefPubMed Bezrukov I, Mantlik F, Schmidt H, Scholkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.CrossRefPubMed
7.
Zurück zum Zitat Mehranian A, Arabi H, Zaidi H. Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys. 2016;43:1130–55.CrossRefPubMed Mehranian A, Arabi H, Zaidi H. Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys. 2016;43:1130–55.CrossRefPubMed
8.
Zurück zum Zitat Zaidi H, Montandon M-L, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys. 2003;30:937–48.CrossRefPubMed Zaidi H, Montandon M-L, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys. 2003;30:937–48.CrossRefPubMed
9.
Zurück zum Zitat Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed
10.
Zurück zum Zitat Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.CrossRefPubMed Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.CrossRefPubMed
11.
Zurück zum Zitat Montandon M-L, Zaidi H. Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage. 2005;25:278–86.CrossRefPubMed Montandon M-L, Zaidi H. Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage. 2005;25:278–86.CrossRefPubMed
12.
Zurück zum Zitat Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and Atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRefPubMed Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and Atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRefPubMed
13.
Zurück zum Zitat Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRefPubMed Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRefPubMed
14.
Zurück zum Zitat Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed
15.
Zurück zum Zitat Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined Ultrashort-Echo-Time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRefPubMed Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined Ultrashort-Echo-Time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRefPubMed
16.
Zurück zum Zitat Delso G, Wiesinger F, Sacolick L, Kaushik S, Shanbhag D, Hullner M, et al. Clinical evaluation of zero echo time MRI for the segmentation of the skull. J Nucl Med. 2015;56:417–22.CrossRefPubMed Delso G, Wiesinger F, Sacolick L, Kaushik S, Shanbhag D, Hullner M, et al. Clinical evaluation of zero echo time MRI for the segmentation of the skull. J Nucl Med. 2015;56:417–22.CrossRefPubMed
17.
Zurück zum Zitat Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imag. 2012;31:2224–33. Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imag. 2012;31:2224–33.
18.
Zurück zum Zitat Mehranian A, Zaidi H. Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging. 2015;34:1808–21.CrossRefPubMed Mehranian A, Zaidi H. Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging. 2015;34:1808–21.CrossRefPubMed
19.
Zurück zum Zitat Izquierdo-Garcia D, Hansen AE, Forster S, Benoit D, Schachoff S, Furst S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55:1825–30.CrossRefPubMedPubMedCentral Izquierdo-Garcia D, Hansen AE, Forster S, Benoit D, Schachoff S, Furst S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55:1825–30.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys. 2010;37:2101–9.CrossRefPubMed Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys. 2010;37:2101–9.CrossRefPubMed
21.
Zurück zum Zitat Fei B, Yang X, Nye JA, Aarsvold JN, Raghunath N, Cervo M, et al. MRPET quantification tools: registration, segmentation, classification, and MR-based attenuation correction. Med Phys. 2012;39:6443–54.CrossRefPubMedPubMedCentral Fei B, Yang X, Nye JA, Aarsvold JN, Raghunath N, Cervo M, et al. MRPET quantification tools: registration, segmentation, classification, and MR-based attenuation correction. Med Phys. 2012;39:6443–54.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and Atlas registration. J Nucl Med. 2008;49:1875–83.CrossRefPubMed Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and Atlas registration. J Nucl Med. 2008;49:1875–83.CrossRefPubMed
23.
Zurück zum Zitat Malone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med. 2011;52:1142–9.CrossRefPubMed Malone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med. 2011;52:1142–9.CrossRefPubMed
24.
Zurück zum Zitat Burgos N, Cardoso M, Thielemans K, Modat M, Schott J, Duncan J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33:2332–41.CrossRefPubMed Burgos N, Cardoso M, Thielemans K, Modat M, Schott J, Duncan J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33:2332–41.CrossRefPubMed
25.
Zurück zum Zitat Sjölund J, Forsberg D, Andersson M, Knutsson H. Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Phys Med Biol. 2015;60:825–39.CrossRefPubMed Sjölund J, Forsberg D, Andersson M, Knutsson H. Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Phys Med Biol. 2015;60:825–39.CrossRefPubMed
26.
Zurück zum Zitat Mehranian A, Arabi H, Zaidi H. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI. Neuroimage. 2016;130:123–33.CrossRefPubMed Mehranian A, Arabi H, Zaidi H. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI. Neuroimage. 2016;130:123–33.CrossRefPubMed
27.
Zurück zum Zitat Bezrukov I, Schmidt H, Mantlik F, Schwenzer N, Brendle C, Scholkopf B, et al. MR-based attenuation correction methods for improved PET quantification in lesions within bone and susceptibility artifact regions. J Nucl Med. 2013;54:1768–74.CrossRefPubMed Bezrukov I, Schmidt H, Mantlik F, Schwenzer N, Brendle C, Scholkopf B, et al. MR-based attenuation correction methods for improved PET quantification in lesions within bone and susceptibility artifact regions. J Nucl Med. 2013;54:1768–74.CrossRefPubMed
28.
Zurück zum Zitat Hermosillo G, Raykar V, Zhou X. Learning to locate cortical bone in MRI. In: Wang F, Shen D, Yan P, Suzuki K, editors. Machine learning in medical imaging. Berlin: Springer; 2012. p. 168–75. Hermosillo G, Raykar V, Zhou X. Learning to locate cortical bone in MRI. In: Wang F, Shen D, Yan P, Suzuki K, editors. Machine learning in medical imaging. Berlin: Springer; 2012. p. 168–75.
29.
Zurück zum Zitat Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Theberge J, et al. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys. 2013;40:082509 Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Theberge J, et al. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys. 2013;40:082509
30.
Zurück zum Zitat Uh J, Merchant TE, Li Y, Li X, Hua C. MRI-based treatment planning with pseudo CT generated through atlas registration. Med Phys. 2014;41:051711–8.CrossRefPubMed Uh J, Merchant TE, Li Y, Li X, Hua C. MRI-based treatment planning with pseudo CT generated through atlas registration. Med Phys. 2014;41:051711–8.CrossRefPubMed
31.
Zurück zum Zitat Arabi H, Zaidi H. Comparison of atlas-based bone segmentation methods in whole-body PET/MRI. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Seattle, WA, USA; 2014. Arabi H, Zaidi H. Comparison of atlas-based bone segmentation methods in whole-body PET/MRI. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Seattle, WA, USA; 2014.
32.
Zurück zum Zitat Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.CrossRefPubMedPubMedCentral Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed
34.
Zurück zum Zitat Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol. 2015;17:264–76.CrossRefPubMed Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol. 2015;17:264–76.CrossRefPubMed
35.
Zurück zum Zitat Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Analy Machine Intell. 1990;12:629–39.CrossRef Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Analy Machine Intell. 1990;12:629–39.CrossRef
36.
Zurück zum Zitat Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.CrossRefPubMedPubMedCentral Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL. Medical Image Processing, analysis and visualization in clinical research. Proceedings 14th IEEE Symposium on Computer-Based Medical Systems, CBMS. 2001. pp. 381–6. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL. Medical Image Processing, analysis and visualization in clinical research. Proceedings 14th IEEE Symposium on Computer-Based Medical Systems, CBMS. 2001. pp. 381–6.
38.
Zurück zum Zitat Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W. PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging. 2003;22:120–8.CrossRefPubMed Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W. PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging. 2003;22:120–8.CrossRefPubMed
39.
Zurück zum Zitat Park H, Bland PH, Hero 3rd AO, Meyer CR. Least biased target selection in probabilistic atlas construction. Med Image Comput Comput Assist Interv. 2005;8:419–26.PubMed Park H, Bland PH, Hero 3rd AO, Meyer CR. Least biased target selection in probabilistic atlas construction. Med Image Comput Comput Assist Interv. 2005;8:419–26.PubMed
40.
Zurück zum Zitat Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Analy Machine Intell. 1989;11:567–85.CrossRef Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Analy Machine Intell. 1989;11:567–85.CrossRef
41.
Zurück zum Zitat Young FW, Hamer RM. Multidimensional scaling: history, theory, and applications. New York: Taylor & Francis; 1987. Young FW, Hamer RM. Multidimensional scaling: history, theory, and applications. New York: Taylor & Francis; 1987.
42.
Zurück zum Zitat Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009;28:1266–77.CrossRefPubMed Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009;28:1266–77.CrossRefPubMed
43.
Zurück zum Zitat Burgos N, Cardoso MJ, Modat M, Pedemonte S, Dickson J, Barnes A, et al. Attenuation correction synthesis for hybrid PET-MR scanners. Med Image Comput Comput Assist Interv. 2013;16:147–54.PubMed Burgos N, Cardoso MJ, Modat M, Pedemonte S, Dickson J, Barnes A, et al. Attenuation correction synthesis for hybrid PET-MR scanners. Med Image Comput Comput Assist Interv. 2013;16:147–54.PubMed
44.
Zurück zum Zitat Yushkevich PA, Wang H, Pluta J, Das SR, Craige C, Avants BB, et al. Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. Neuroimage. 2010;53:1208–24.CrossRefPubMedPubMedCentral Yushkevich PA, Wang H, Pluta J, Das SR, Craige C, Avants BB, et al. Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. Neuroimage. 2010;53:1208–24.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302.CrossRef
46.
Zurück zum Zitat Xia Y, Fripp J, Chandra SS, Schwarz R, Engstrom C, Crozier S. Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol. 2013;58:7375–90.CrossRefPubMed Xia Y, Fripp J, Chandra SS, Schwarz R, Engstrom C, Crozier S. Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol. 2013;58:7375–90.CrossRefPubMed
47.
Zurück zum Zitat Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage. 2006;33:115–26.CrossRefPubMed Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage. 2006;33:115–26.CrossRefPubMed
48.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.CrossRefPubMed
49.
Zurück zum Zitat Lötjönen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010;49:2352–65.CrossRefPubMed Lötjönen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010;49:2352–65.CrossRefPubMed
50.
Zurück zum Zitat Rohlfing T, Brandt R, Menzel R, Maurer Jr CR. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage. 2004;21:1428–42.CrossRefPubMed Rohlfing T, Brandt R, Menzel R, Maurer Jr CR. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage. 2004;21:1428–42.CrossRefPubMed
Metadaten
Titel
One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI
verfasst von
Hossein Arabi
Habib Zaidi
Publikationsdatum
03.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2016
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3422-5

Weitere Artikel der Ausgabe 11/2016

European Journal of Nuclear Medicine and Molecular Imaging 11/2016 Zur Ausgabe