Skip to main content
Erschienen in: Brain Structure and Function 1/2018

07.10.2017 | Short Communication

Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR)

verfasst von: Glenn D. R. Watson, Kevin D. Alloway

Erschienen in: Brain Structure and Function | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The superior colliculus activates the zona incerta (ZI), which sends GABAergic projections to the posteromedial (POm) thalamic nucleus. Consistent with this circuit, we previously showed that stimulation of the superior colliculus activates ZI and causes inhibition of neuronal activity in POm (Watson et al., J Neurosci 35:9463–9476, 2015). Other studies, however, have shown that collicular stimulation activates the intralaminar nuclei of the thalamus. The present study extends these reports by showing that unilateral collicular stimulation causes bilateral activation of Pf that is concomitant with bilateral inhibition of POm. The opposing influences of the superior colliculus on Pf and POm are significant, because both these thalamic nuclei innervate the striatum, which is involved in behavioral selection. In view of data indicating that thalamostriatal projections from Pf and other intralaminar nuclei increase the sensitivity of the indirect pathway to corticostriatal inputs (Ding et al., Neuron 67:294–307, 2010), we tested whether POm stimulation might exert an opposing influence on the basal ganglia circuitry. Consistent with POm projections to the dorsolateral striatum (DLS), which is necessary for the expression of sensorimotor habits, we found that POm stimulation activates DLS and causes inhibition of neuronal activity in the lateral part of the substantia nigra pars reticulata, which is a major target of DLS and the direct pathway. These findings are discussed with respect to clinical reports indicating that deep brain stimulation in ZI is effective in reducing the symptoms of Parkinson’s disease.
Literatur
Zurück zum Zitat Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375CrossRefPubMed Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375CrossRefPubMed
Zurück zum Zitat Alloway KD, Smith JB, Watson GDR (2014) Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 111:36–50CrossRefPubMed Alloway KD, Smith JB, Watson GDR (2014) Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 111:36–50CrossRefPubMed
Zurück zum Zitat Bartho P, Freund TF, Acsady L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014CrossRefPubMed Bartho P, Freund TF, Acsady L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014CrossRefPubMed
Zurück zum Zitat Blomstedt P, Fytagoridis A, Astrom M, Linder J, Forsgren L (2012) Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor. Parkinsonism Relat Disord 18:1062–1066CrossRefPubMed Blomstedt P, Fytagoridis A, Astrom M, Linder J, Forsgren L (2012) Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor. Parkinsonism Relat Disord 18:1062–1066CrossRefPubMed
Zurück zum Zitat Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, HobokenCrossRef Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, HobokenCrossRef
Zurück zum Zitat Caire F, Ranoux D, Guehl D, Burband Cuny E (2013) A systematic review of studies on anatomical position of electrode contacts for chronic subthalamic stimulation in Parkinson’s disease. Acta Neurochir 155:1647–1654CrossRefPubMed Caire F, Ranoux D, Guehl D, Burband Cuny E (2013) A systematic review of studies on anatomical position of electrode contacts for chronic subthalamic stimulation in Parkinson’s disease. Acta Neurochir 155:1647–1654CrossRefPubMed
Zurück zum Zitat Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatosensory area of the mouse. J Comp Neurol 265:409–427CrossRefPubMed Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatosensory area of the mouse. J Comp Neurol 265:409–427CrossRefPubMed
Zurück zum Zitat DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed
Zurück zum Zitat Deschênes M, Bourassa J, Parent A (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res 701:288–292CrossRefPubMed Deschênes M, Bourassa J, Parent A (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res 701:288–292CrossRefPubMed
Zurück zum Zitat Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8:329–343CrossRefPubMed Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8:329–343CrossRefPubMed
Zurück zum Zitat Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307CrossRefPubMedPubMedCentral Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307CrossRefPubMedPubMedCentral
Zurück zum Zitat Freeze BS, Kravitz AV, Hammack Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projections neurons. J Neurosci 33:18531–18539CrossRefPubMedPubMedCentral Freeze BS, Kravitz AV, Hammack Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projections neurons. J Neurosci 33:18531–18539CrossRefPubMedPubMedCentral
Zurück zum Zitat Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252CrossRefPubMed Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252CrossRefPubMed
Zurück zum Zitat Gangaroosa G, Espallergues J, Mailly P, De Buindel D, Kerchove d’Exaerde A, Herve D, Girault JA, Valjent E, Krieger P (2013) Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front Neural Circuits 7:124 Gangaroosa G, Espallergues J, Mailly P, De Buindel D, Kerchove d’Exaerde A, Herve D, Girault JA, Valjent E, Krieger P (2013) Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front Neural Circuits 7:124
Zurück zum Zitat Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodriguez-Oroz MC (2016) Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson’s disease: a new approach for active contact localization. J Neurosurg 125:1068–1079CrossRefPubMed Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodriguez-Oroz MC (2016) Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson’s disease: a new approach for active contact localization. J Neurosurg 125:1068–1079CrossRefPubMed
Zurück zum Zitat Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, New York, pp 455–508CrossRef Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, New York, pp 455–508CrossRef
Zurück zum Zitat Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57CrossRefPubMed Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57CrossRefPubMed
Zurück zum Zitat Grunwerg BS, Krauthamer GM (1992) Sensory responses of intralaminar thalamic neurons activated by the superior colliculus. Exp Brain Res 88:541–550CrossRefPubMed Grunwerg BS, Krauthamer GM (1992) Sensory responses of intralaminar thalamic neurons activated by the superior colliculus. Exp Brain Res 88:541–550CrossRefPubMed
Zurück zum Zitat Hikosaka O, Sakamoto M, Miyashita N (1993) Effects of caudate nucleus stimulation on substantia nigra cell activity in the monkey. Exp Brain Res 95:457–472CrossRefPubMed Hikosaka O, Sakamoto M, Miyashita N (1993) Effects of caudate nucleus stimulation on substantia nigra cell activity in the monkey. Exp Brain Res 95:457–472CrossRefPubMed
Zurück zum Zitat Krauthamer GM, Krol JG, Grunwerg BS (1992) Effect of superior colliculus lesions on sensory unit responses in the intralaminar thalamus of the rat. Brain Res 576:277–286CrossRefPubMed Krauthamer GM, Krol JG, Grunwerg BS (1992) Effect of superior colliculus lesions on sensory unit responses in the intralaminar thalamus of the rat. Brain Res 576:277–286CrossRefPubMed
Zurück zum Zitat Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626CrossRefPubMedPubMedCentral Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626CrossRefPubMedPubMedCentral
Zurück zum Zitat Krout KE, Loewy AD, Westby GWM, Redgrave P (2001) Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 431:198–216CrossRefPubMed Krout KE, Loewy AD, Westby GWM, Redgrave P (2001) Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 431:198–216CrossRefPubMed
Zurück zum Zitat Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384CrossRefPubMed Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384CrossRefPubMed
Zurück zum Zitat Lukins TR, Tisch S, Jonker B (2014) The latest evidence on target selection in deep brain stimulation for Parkinson’s disease. J Clin Neurosci 21:22–27CrossRefPubMed Lukins TR, Tisch S, Jonker B (2014) The latest evidence on target selection in deep brain stimulation for Parkinson’s disease. J Clin Neurosci 21:22–27CrossRefPubMed
Zurück zum Zitat May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378CrossRefPubMed May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378CrossRefPubMed
Zurück zum Zitat Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15CrossRefPubMed Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15CrossRefPubMed
Zurück zum Zitat Mowery TM, Harold J, Alloway KD (2011) Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits. J Neurophysiol 105:2225–2238CrossRefPubMedPubMedCentral Mowery TM, Harold J, Alloway KD (2011) Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits. J Neurophysiol 105:2225–2238CrossRefPubMedPubMedCentral
Zurück zum Zitat Ohno S, Kuramoto E, Furuta T, Hioka H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, Kaneko T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857CrossRefPubMed Ohno S, Kuramoto E, Furuta T, Hioka H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, Kaneko T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857CrossRefPubMed
Zurück zum Zitat Power BD, Mitrofanis J (2001) Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 451:33–44CrossRef Power BD, Mitrofanis J (2001) Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 451:33–44CrossRef
Zurück zum Zitat Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440CrossRefPubMed Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440CrossRefPubMed
Zurück zum Zitat Sippy T, Lapray D, Crochet S, Petersen CCH (2015) Celltype-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88:298–305CrossRefPubMedPubMedCentral Sippy T, Lapray D, Crochet S, Petersen CCH (2015) Celltype-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88:298–305CrossRefPubMedPubMedCentral
Zurück zum Zitat Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527CrossRefPubMed Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527CrossRefPubMed
Zurück zum Zitat Smith JB, Mowery TM, Alloway KD (2012) Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits. J Neurophysiol 108:160–174CrossRefPubMedPubMedCentral Smith JB, Mowery TM, Alloway KD (2012) Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits. J Neurophysiol 108:160–174CrossRefPubMedPubMedCentral
Zurück zum Zitat Thorn CA, Graybiel AM (2010) Pausing to regroup: thalamic gating of cortico-basal ganglia networks. Neuron 67:175–178CrossRefPubMed Thorn CA, Graybiel AM (2010) Pausing to regroup: thalamic gating of cortico-basal ganglia networks. Neuron 67:175–178CrossRefPubMed
Zurück zum Zitat Tulloch IF, Arbuthnott GW, Wright AK (1978) Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing methods. J Anat 127:425–441PubMedPubMedCentral Tulloch IF, Arbuthnott GW, Wright AK (1978) Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing methods. J Anat 127:425–441PubMedPubMedCentral
Zurück zum Zitat Watson GDR, Smith JB, Alloway KD (2015) The zona incerta regulates communication between the superior colliculus and the posteromedial thalamus: implications for thalamic interactions with the dorsolateral striatum. J Neurosci 35:9463–9476CrossRefPubMedPubMedCentral Watson GDR, Smith JB, Alloway KD (2015) The zona incerta regulates communication between the superior colliculus and the posteromedial thalamus: implications for thalamic interactions with the dorsolateral striatum. J Neurosci 35:9463–9476CrossRefPubMedPubMedCentral
Zurück zum Zitat Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of the dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189CrossRefPubMed Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of the dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189CrossRefPubMed
Zurück zum Zitat Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196CrossRefPubMed Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196CrossRefPubMed
Metadaten
Titel
Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR)
verfasst von
Glenn D. R. Watson
Kevin D. Alloway
Publikationsdatum
07.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1534-8

Weitere Artikel der Ausgabe 1/2018

Brain Structure and Function 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.