Skip to main content
main-content
Erschienen in: Brain Structure and Function 9/2021

27.05.2021 | Original Article

Optic flow selectivity in the macaque parieto-occipital sulcus

verfasst von: Sabrina Pitzalis, Fadila Hadj-Bouziane, Giulia Dal Bò, Carole Guedj, Francesca Strappini, Martine Meunier, Alessandro Farnè, Patrizia Fattori, Claudio Galletti

Erschienen in: Brain Structure and Function | Ausgabe 9/2021

Einloggen, um Zugang zu erhalten

Abstract

In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330–343, 2017, but see Fan et al. J Neurosci. 35:16303–16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411–424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139–141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.
Literatur
Zurück zum Zitat Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Van Essen D, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99(100):509–524 PubMedCrossRef Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Van Essen D, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99(100):509–524 PubMedCrossRef
Zurück zum Zitat Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681–2692 PubMedPubMedCentralCrossRef Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681–2692 PubMedPubMedCentralCrossRef
Zurück zum Zitat Antal A, Baudewig J, Paulus W, Dechent P (2008) The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis Neurosci 25(01):17–26 PubMedCrossRef Antal A, Baudewig J, Paulus W, Dechent P (2008) The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis Neurosci 25(01):17–26 PubMedCrossRef
Zurück zum Zitat Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004a) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7:1190–1192 PubMedCrossRef Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004a) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7:1190–1192 PubMedCrossRef
Zurück zum Zitat Beauchamp MS, Lee KE, Argall BD, Martin A (2004b) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823 PubMedCrossRef Beauchamp MS, Lee KE, Argall BD, Martin A (2004b) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823 PubMedCrossRef
Zurück zum Zitat Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in human superior temporal sulcus. Neuroimage 41:1011–1020 PubMedCrossRef Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in human superior temporal sulcus. Neuroimage 41:1011–1020 PubMedCrossRef
Zurück zum Zitat Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495 PubMedCrossRef Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495 PubMedCrossRef
Zurück zum Zitat Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296 PubMedCrossRef Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296 PubMedCrossRef
Zurück zum Zitat Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384 PubMedCrossRef Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384 PubMedCrossRef
Zurück zum Zitat Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973 PubMedCrossRef Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973 PubMedCrossRef
Zurück zum Zitat Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106:1240–1249 PubMedPubMedCentralCrossRef Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106:1240–1249 PubMedPubMedCentralCrossRef
Zurück zum Zitat Cardin V, Hemsworth L, Smith AT (2012a) Adaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow. J Neurophysiol 108(3):794–801 PubMedPubMedCentralCrossRef Cardin V, Hemsworth L, Smith AT (2012a) Adaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow. J Neurophysiol 108(3):794–801 PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen A, DeAngelis GC, Angelaki DE (2011a) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31:12036–12052 PubMedPubMedCentralCrossRef Chen A, DeAngelis GC, Angelaki DE (2011a) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31:12036–12052 PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen A, DeAngelis GC, Angelaki DE (2011b) Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. J Neurosci 31:11617–11627 PubMedPubMedCentralCrossRef Chen A, DeAngelis GC, Angelaki DE (2011b) Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. J Neurosci 31:11617–11627 PubMedPubMedCentralCrossRef
Zurück zum Zitat Claeys KG, Lindsey DT, De Schutter E, Orban GA (2003) A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron 40(3):631–642 PubMedCrossRef Claeys KG, Lindsey DT, De Schutter E, Orban GA (2003) A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron 40(3):631–642 PubMedCrossRef
Zurück zum Zitat Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173 PubMedCrossRef Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173 PubMedCrossRef
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I segmentation and surface reconstruction. Neuroimage 9:179–194 PubMedCrossRef Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I segmentation and surface reconstruction. Neuroimage 9:179–194 PubMedCrossRef
Zurück zum Zitat DeAngelis GC, Angelaki DE (2012) Visual-Vestibular integration for self-motion perception. The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton, pp 629–650 DeAngelis GC, Angelaki DE (2012) Visual-Vestibular integration for self-motion perception. The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton, pp 629–650
Zurück zum Zitat Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248:164–189 PubMedCrossRef Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248:164–189 PubMedCrossRef
Zurück zum Zitat Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S (2021) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92 PubMedCrossRef Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S (2021) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92 PubMedCrossRef
Zurück zum Zitat Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827 PubMedCrossRef Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827 PubMedCrossRef
Zurück zum Zitat Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345 PubMedCrossRef Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345 PubMedCrossRef
Zurück zum Zitat Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359 PubMedCrossRef Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359 PubMedCrossRef
Zurück zum Zitat Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136 PubMedCrossRef Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136 PubMedCrossRef
Zurück zum Zitat Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296 PubMedCrossRef Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296 PubMedCrossRef
Zurück zum Zitat Field DT, Inman LA, Li L (2015) Visual processing of optic flow and motor control in the human posterior cingulate sulcus. Cortex 71:377–389 PubMedCrossRef Field DT, Inman LA, Li L (2015) Visual processing of optic flow and motor control in the human posterior cingulate sulcus. Cortex 71:377–389 PubMedCrossRef
Zurück zum Zitat Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012a) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22(4):865–876 PubMedCrossRef Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012a) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22(4):865–876 PubMedCrossRef
Zurück zum Zitat Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207 PubMedCrossRef Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207 PubMedCrossRef
Zurück zum Zitat Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112(10):2481–2491 PubMedCrossRef Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112(10):2481–2491 PubMedCrossRef
Zurück zum Zitat Furl N, Hadj-Bouziane F, Liu N, Averbeck BB, Ungerleider LG (2012) Dynamic and static facial expressions decoded from motion-sensitive areas in the macaque monkey. J Neurosci 32(45):15952–15962 Furl N, Hadj-Bouziane F, Liu N, Averbeck BB, Ungerleider LG (2012) Dynamic and static facial expressions decoded from motion-sensitive areas in the macaque monkey. J Neurosci 32(45):15952–15962
Zurück zum Zitat Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727 PubMedCrossRef Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727 PubMedCrossRef
Zurück zum Zitat Galletti C, Battaglini PP, Fattori P (1990) ‘Real-motion’ cells in area V3A of macaque visual cortex. Exp Brain Res 82:67–76 PubMedCrossRef Galletti C, Battaglini PP, Fattori P (1990) ‘Real-motion’ cells in area V3A of macaque visual cortex. Exp Brain Res 82:67–76 PubMedCrossRef
Zurück zum Zitat Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52 PubMedCrossRef Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52 PubMedCrossRef
Zurück zum Zitat Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11:3922–3936 PubMedCrossRef Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11:3922–3936 PubMedCrossRef
Zurück zum Zitat Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588 PubMedCrossRef Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588 PubMedCrossRef
Zurück zum Zitat Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170 PubMedCrossRef Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170 PubMedCrossRef
Zurück zum Zitat Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638 PubMedCrossRef Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638 PubMedCrossRef
Zurück zum Zitat Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Cuturi LF, MacNeilage PR, Smith AT (2016) Multisensory integration in self motion perception. Multisens Res 29(6–7):525–556 CrossRef Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Cuturi LF, MacNeilage PR, Smith AT (2016) Multisensory integration in self motion perception. Multisens Res 29(6–7):525–556 CrossRef
Zurück zum Zitat Hadj-Bouziane F, Bell AH, Knusten TA, Ungerleider LG, Tootell RB (2008) Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex. Proc Natl Acad Sci USA 105(14):5591–5596 PubMedPubMedCentralCrossRef Hadj-Bouziane F, Bell AH, Knusten TA, Ungerleider LG, Tootell RB (2008) Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex. Proc Natl Acad Sci USA 105(14):5591–5596 PubMedPubMedCentralCrossRef
Zurück zum Zitat Hagler DJ Jr, Sereno MI (2006) Spatial maps in frontal and prefrontal cortex. Neuroimage 29:567–577 PubMedCrossRef Hagler DJ Jr, Sereno MI (2006) Spatial maps in frontal and prefrontal cortex. Neuroimage 29:567–577 PubMedCrossRef
Zurück zum Zitat Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33:1093–1103 PubMedCrossRef Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33:1093–1103 PubMedCrossRef
Zurück zum Zitat Hejja-Brichard Y, Rima S, Rapha E, Durand J-B, Cottereau BR (2020) Stereomotion processing in the nonhuman primate. Cereb Cortex 30:4528–4543 PubMedCrossRef Hejja-Brichard Y, Rima S, Rapha E, Durand J-B, Cottereau BR (2020) Stereomotion processing in the nonhuman primate. Cereb Cortex 30:4528–4543 PubMedCrossRef
Zurück zum Zitat Helfrich RF, Becker HG, Haarmeier T (2013) Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 26(2):247–263 PubMedCrossRef Helfrich RF, Becker HG, Haarmeier T (2013) Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 26(2):247–263 PubMedCrossRef
Zurück zum Zitat Huang RS, Chen CF, Sereno MI (2015) Neural substrates underlying the passive observation and active control of translational egomotion. J Neurosci 35(10):4258–4267 PubMedPubMedCentralCrossRef Huang RS, Chen CF, Sereno MI (2015) Neural substrates underlying the passive observation and active control of translational egomotion. J Neurosci 35(10):4258–4267 PubMedPubMedCentralCrossRef
Zurück zum Zitat Kleinschmidt A, Thilo KV, Büchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16(4):873–882 PubMedCrossRef Kleinschmidt A, Thilo KV, Büchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16(4):873–882 PubMedCrossRef
Zurück zum Zitat Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787 PubMedCrossRef Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787 PubMedCrossRef
Zurück zum Zitat Lagae L, Maes H, Raiguel S, Xiao D-K, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71:1597–1626 PubMedCrossRef Lagae L, Maes H, Raiguel S, Xiao D-K, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71:1597–1626 PubMedCrossRef
Zurück zum Zitat Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16(19):6265–6285 PubMedPubMedCentralCrossRef Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16(19):6265–6285 PubMedPubMedCentralCrossRef
Zurück zum Zitat Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69 PubMedCrossRef Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69 PubMedCrossRef
Zurück zum Zitat Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328 PubMedCrossRef Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328 PubMedCrossRef
Zurück zum Zitat Nakhla N, Korkian Y, Krause MR, Pack CC (2021) Neural selectivity for visual motion in Macaque Area V3A. eNeuro 8(1):1–14 CrossRef Nakhla N, Korkian Y, Krause MR, Pack CC (2021) Neural selectivity for visual motion in Macaque Area V3A. eNeuro 8(1):1–14 CrossRef
Zurück zum Zitat Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26(22):5929–5947 PubMedPubMedCentralCrossRef Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26(22):5929–5947 PubMedPubMedCentralCrossRef
Zurück zum Zitat Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6(2):99–116 PubMedCrossRef Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6(2):99–116 PubMedCrossRef
Zurück zum Zitat Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci USA 89(7):2595–2599 PubMedPubMedCentralCrossRef Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci USA 89(7):2595–2599 PubMedPubMedCentralCrossRef
Zurück zum Zitat Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768 PubMedCrossRef Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768 PubMedCrossRef
Zurück zum Zitat Palmer SM, Rosa MG (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405 PubMedCrossRef Palmer SM, Rosa MG (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405 PubMedCrossRef
Zurück zum Zitat Paolini M, Distler C, Bremmer F, Lappe M, Hoffmann K-P (2000) Responses to continuously changing optic flow in area MST. J Neurophysiol 84(2):730–743 PubMedCrossRef Paolini M, Distler C, Bremmer F, Lappe M, Hoffmann K-P (2000) Responses to continuously changing optic flow in area MST. J Neurophysiol 84(2):730–743 PubMedCrossRef
Zurück zum Zitat Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973 PubMedPubMedCentralCrossRef Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973 PubMedPubMedCentralCrossRef
Zurück zum Zitat Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20(2):411–424 PubMedCrossRef Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20(2):411–424 PubMedCrossRef
Zurück zum Zitat Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F (2012) Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS ONE 7(4):e3577 CrossRef Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F (2012) Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS ONE 7(4):e3577 CrossRef
Zurück zum Zitat Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F (2013a) Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 67:89–100 PubMedCrossRef Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F (2013a) Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 67:89–100 PubMedCrossRef
Zurück zum Zitat Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G (2013c) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241 PubMedPubMedCentralCrossRef Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G (2013c) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241 PubMedPubMedCentralCrossRef
Zurück zum Zitat Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013d) The human homologue of macaque area V6A. Neuroimage 82:517–530 PubMedCrossRef Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013d) The human homologue of macaque area V6A. Neuroimage 82:517–530 PubMedCrossRef
Zurück zum Zitat Pitzalis S, Fattori P, Galletti C (2015) The human cortical areas V6 and V6A. Vis Neurosci 32:E007 PubMedCrossRef Pitzalis S, Fattori P, Galletti C (2015) The human cortical areas V6 and V6A. Vis Neurosci 32:E007 PubMedCrossRef
Zurück zum Zitat Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092 PubMedCrossRef Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092 PubMedCrossRef
Zurück zum Zitat Previc FH, Liotti M, Blakemore C, Beer J, Fox P (2000) Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Exp Brain Res 131(4):393–405 PubMedCrossRef Previc FH, Liotti M, Blakemore C, Beer J, Fox P (2000) Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Exp Brain Res 131(4):393–405 PubMedCrossRef
Zurück zum Zitat Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area Pec. Cereb Cortex 12:639–646 PubMedCrossRef Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area Pec. Cereb Cortex 12:639–646 PubMedCrossRef
Zurück zum Zitat Raffi M, Maioli MG, Squatrito S (2011) Optic flow direction coding in area PEc of the behaving monkey. Neuroscience 194:136–149 PubMedCrossRef Raffi M, Maioli MG, Squatrito S (2011) Optic flow direction coding in area PEc of the behaving monkey. Neuroscience 194:136–149 PubMedCrossRef
Zurück zum Zitat Rosa MG, Tweedale R (2001) The dorsomedial visual areas in new world and old world monkeys: homology and function. Eur J Neurosci 13(3):421–427 PubMedCrossRef Rosa MG, Tweedale R (2001) The dorsomedial visual areas in new world and old world monkeys: homology and function. Eur J Neurosci 13(3):421–427 PubMedCrossRef
Zurück zum Zitat Rushton SK, Warren PA (2005) Moving observers, relative retinal motion and the detection of object movement. Curr Biol 15(14):R542–R543 PubMedCrossRef Rushton SK, Warren PA (2005) Moving observers, relative retinal motion and the detection of object movement. Curr Biol 15(14):R542–R543 PubMedCrossRef
Zurück zum Zitat Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1):145–157 PubMedPubMedCentralCrossRef Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1):145–157 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343 PubMedCrossRef Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343 PubMedCrossRef
Zurück zum Zitat Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620 PubMedCrossRef Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620 PubMedCrossRef
Zurück zum Zitat Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893 PubMedCrossRef Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893 PubMedCrossRef
Zurück zum Zitat Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354 PubMedCrossRef Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354 PubMedCrossRef
Zurück zum Zitat Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7(4):327–346 PubMedCrossRef Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7(4):327–346 PubMedCrossRef
Zurück zum Zitat Smith T, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569 PubMedCrossRef Smith T, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569 PubMedCrossRef
Zurück zum Zitat Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22(5):1068–1077 PubMedCrossRef Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22(5):1068–1077 PubMedCrossRef
Zurück zum Zitat Sousa AP, Pinon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308(4):665–682 PubMedCrossRef Sousa AP, Pinon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308(4):665–682 PubMedCrossRef
Zurück zum Zitat Strappini F, Pitzalis S, Snyder AZ, McAvoy MP, Sereno MI, Corbetta M, Shulman GL (2015) Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. Brain Struct Funct 220(5):2587–2601 PubMedCrossRef Strappini F, Pitzalis S, Snyder AZ, McAvoy MP, Sereno MI, Corbetta M, Shulman GL (2015) Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. Brain Struct Funct 220(5):2587–2601 PubMedCrossRef
Zurück zum Zitat Strappini F, Gilboa E, Pitzalis S, Kay K, McAvoy M, Nehorai A, Snyder AZ (2017) Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Hum Brain Mapp 38(3):1438–1459 PubMedCrossRef Strappini F, Gilboa E, Pitzalis S, Kay K, McAvoy M, Nehorai A, Snyder AZ (2017) Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Hum Brain Mapp 38(3):1438–1459 PubMedCrossRef
Zurück zum Zitat Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S (2020) A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 225:2091–2110 ( in press) PubMedPubMedCentralCrossRef Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S (2020) A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 225:2091–2110 ( in press) PubMedPubMedCentralCrossRef
Zurück zum Zitat Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370 PubMedCrossRef Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370 PubMedCrossRef
Zurück zum Zitat Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):626–641 PubMedCrossRef Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):626–641 PubMedCrossRef
Zurück zum Zitat Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1):134–144 PubMedPubMedCentralCrossRef Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1):134–144 PubMedPubMedCentralCrossRef
Zurück zum Zitat Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. J Neurophysiol 62:642–656 PubMedCrossRef Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. J Neurophysiol 62:642–656 PubMedCrossRef
Zurück zum Zitat Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69(1):128–142 PubMedCrossRef Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69(1):128–142 PubMedCrossRef
Zurück zum Zitat Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995a) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230 PubMedPubMedCentralCrossRef Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995a) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230 PubMedPubMedCentralCrossRef
Zurück zum Zitat Tootell RBH, Reppas JB, Dale AM, Malach R, Look RB, Jiang HJ, Brady TJ, Rosen BR (1995b) Visual motion aftereffect in human cortical area MT/V5 revealed by functional magnetic resonance imaging. Nature 375:139–141 PubMedCrossRef Tootell RBH, Reppas JB, Dale AM, Malach R, Look RB, Jiang HJ, Brady TJ, Rosen BR (1995b) Visual motion aftereffect in human cortical area MT/V5 revealed by functional magnetic resonance imaging. Nature 375:139–141 PubMedCrossRef
Zurück zum Zitat Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7076–7078 CrossRef Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7076–7078 CrossRef
Zurück zum Zitat Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220(6):3307–3321 PubMedCrossRef Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220(6):3307–3321 PubMedCrossRef
Zurück zum Zitat Van Essen DC, Maunsell HR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326 PubMedCrossRef Van Essen DC, Maunsell HR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326 PubMedCrossRef
Zurück zum Zitat Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577 PubMedCrossRef Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577 PubMedCrossRef
Zurück zum Zitat Wada A, Sakano Y, Ando H (2016) Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation. Front Psychol 7:309 PubMedPubMedCentralCrossRef Wada A, Sakano Y, Ando H (2016) Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation. Front Psychol 7:309 PubMedPubMedCentralCrossRef
Zurück zum Zitat Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194 PubMedCrossRef Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194 PubMedCrossRef
Zurück zum Zitat Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757 PubMedCrossRef Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757 PubMedCrossRef
Zurück zum Zitat Warren PA, Rushton SK (2008) Evidence for flow-parsing in radial flow displays. Vis Res 48(5):655–663 PubMedCrossRef Warren PA, Rushton SK (2008) Evidence for flow-parsing in radial flow displays. Vis Res 48(5):655–663 PubMedCrossRef
Metadaten
Titel
Optic flow selectivity in the macaque parieto-occipital sulcus
verfasst von
Sabrina Pitzalis
Fadila Hadj-Bouziane
Giulia Dal Bò
Carole Guedj
Francesca Strappini
Martine Meunier
Alessandro Farnè
Patrizia Fattori
Claudio Galletti
Publikationsdatum
27.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02293-w

Weitere Artikel der Ausgabe 9/2021

Brain Structure and Function 9/2021 Zur Ausgabe

Neu im Fachgebiet Neurologie

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Neurologie und bleiben Sie gut informiert – ganz bequem per eMail.