Skip to main content
Erschienen in: Neurological Sciences 3/2021

22.07.2020 | Original Article

Optical coherence tomography angiography findings in Huntington’s disease

verfasst von: Laura Giovanna Di Maio, Daniela Montorio, Silvio Peluso, Pasquale Dolce, Elena Salvatore, Giuseppe De Michele, Gilda Cennamo

Erschienen in: Neurological Sciences | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the retinal and choriocapillaris vascular networks in macular region and the central choroidal thickness (CCT) in patients affected by Huntington disease (HD), using optical coherence tomography angiography (OCTA) and enhanced depth imaging spectral-domain OCT (EDI SD-OCT).

Methods

We assessed the vessel density (VD) in superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) using OCTA, while CCT was measured by EDI SD-OCT.

Results

Sixteen HD patients (32 eyes) and thirteen healthy controls (26 eyes) were enrolled in this prospective study. No significant difference in retinal and choriocapillaris VD was found between HD patients and controls while CCT turned to be thinner in patients respect to controls. There were no significant relationships between OCTA findings and neurological parameters.

Conclusion

The changes in choroidal structure provide useful information regarding the possible neurovascular involvement in the physiopathology of HD. Choroidal vascular network could be a useful parameter to evaluate the vascular impairment that occurs in this neurodegenerative disease.
Literatur
2.
Zurück zum Zitat Tabrizi SJ, Ghosh R, Blair R, Leavitt BR (2019) Huntingtin lowering strategies for disease modification in Huntington's disease. Neuron 101:801–819CrossRef Tabrizi SJ, Ghosh R, Blair R, Leavitt BR (2019) Huntingtin lowering strategies for disease modification in Huntington's disease. Neuron 101:801–819CrossRef
3.
Zurück zum Zitat Zeun P, Scahill RI, Tabrizi SJ, Wild EJ (2019) Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 97:67–80CrossRef Zeun P, Scahill RI, Tabrizi SJ, Wild EJ (2019) Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 97:67–80CrossRef
4.
Zurück zum Zitat Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee M, Flotte T, Gregory K, Puliafito C (1991) Optical coherence tomography. Science 254:1178–1181CrossRef Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee M, Flotte T, Gregory K, Puliafito C (1991) Optical coherence tomography. Science 254:1178–1181CrossRef
5.
Zurück zum Zitat Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429CrossRef Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429CrossRef
6.
Zurück zum Zitat Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31:362–373CrossRef Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31:362–373CrossRef
7.
Zurück zum Zitat Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH (2015) Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 262:2457–2465CrossRef Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH (2015) Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 262:2457–2465CrossRef
8.
Zurück zum Zitat Andrade C, Beato J, Monteiro A, Costa A, Penas S, Guimarães J (2016) Spectral-domain optical coherence tomography as a potential biomarker in Huntington's disease. Mov Disord 31:377–783CrossRef Andrade C, Beato J, Monteiro A, Costa A, Penas S, Guimarães J (2016) Spectral-domain optical coherence tomography as a potential biomarker in Huntington's disease. Mov Disord 31:377–783CrossRef
9.
Zurück zum Zitat Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, Hsiao HY, Chen CC, Chern Y, Chang C (2013) Neurovascular abnormalities in humans and mice with Huntington's disease. Exp Neurol 250:20–30CrossRef Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, Hsiao HY, Chen CC, Chern Y, Chang C (2013) Neurovascular abnormalities in humans and mice with Huntington's disease. Exp Neurol 250:20–30CrossRef
10.
Zurück zum Zitat Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78:160–177CrossRef Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78:160–177CrossRef
11.
Zurück zum Zitat Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348CrossRef Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348CrossRef
12.
Zurück zum Zitat London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9:44–53CrossRef London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9:44–53CrossRef
13.
Zurück zum Zitat Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109CrossRef Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109CrossRef
14.
Zurück zum Zitat Kniestedt C, Stamper RL (2003) Visual acuity and its measurement. Ophthalmol Clin N Am 16:155–170CrossRef Kniestedt C, Stamper RL (2003) Visual acuity and its measurement. Ophthalmol Clin N Am 16:155–170CrossRef
15.
Zurück zum Zitat Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, Cianflone A, Moccia M, Brescia Morra V (2018) Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 24:1706–1714CrossRef Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, Cianflone A, Moccia M, Brescia Morra V (2018) Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 24:1706–1714CrossRef
16.
Zurück zum Zitat Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRef Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRef
17.
Zurück zum Zitat Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRef Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRef
18.
Zurück zum Zitat Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12CrossRef Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12CrossRef
20.
Zurück zum Zitat Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef
21.
Zurück zum Zitat Paulus W, Schwarz G, Werner A, Lange H, Bayer A, Hofschuster M, Müller N, Zrenner E (1993) Impairment of retinal increment thresholds in Huntington's disease. Ann Neurol 34(4):574–578CrossRef Paulus W, Schwarz G, Werner A, Lange H, Bayer A, Hofschuster M, Müller N, Zrenner E (1993) Impairment of retinal increment thresholds in Huntington's disease. Ann Neurol 34(4):574–578CrossRef
22.
Zurück zum Zitat Li M, Yasumura D, Ma AA, Matthes MT, Yang H, Nielson G et al (2013) Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease. PLoS One 8:e56026CrossRef Li M, Yasumura D, Ma AA, Matthes MT, Yang H, Nielson G et al (2013) Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease. PLoS One 8:e56026CrossRef
23.
Zurück zum Zitat Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J, Hannan AJ, Kalloniatis M, Fletcher EL (2012) Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington’s disease. Neurobiol Dis 45:887–896CrossRef Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J, Hannan AJ, Kalloniatis M, Fletcher EL (2012) Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington’s disease. Neurobiol Dis 45:887–896CrossRef
24.
Zurück zum Zitat Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel J-L, Devys D (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet 11:3351–3359CrossRef Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel J-L, Devys D (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet 11:3351–3359CrossRef
25.
Zurück zum Zitat Johnson MA, Gelderblom H, Rüther K, Priller J, Bernstein SL (2014) Evidence that Huntington’s disease affects retinal structure and function. Invest Ophthalmol Vis Sci 55:1644 Johnson MA, Gelderblom H, Rüther K, Priller J, Bernstein SL (2014) Evidence that Huntington’s disease affects retinal structure and function. Invest Ophthalmol Vis Sci 55:1644
26.
Zurück zum Zitat Gatto E, Parisi V, Persi G, Rey EF, Cesarini M, Etcheverry JS et al (2018) Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci 128:1157–1162CrossRef Gatto E, Parisi V, Persi G, Rey EF, Cesarini M, Etcheverry JS et al (2018) Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci 128:1157–1162CrossRef
27.
Zurück zum Zitat Sevim DG, Unlu M, Gultekin M, Karaca C (2018) Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker. Int Ophthalmol 39:611–621CrossRef Sevim DG, Unlu M, Gultekin M, Karaca C (2018) Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker. Int Ophthalmol 39:611–621CrossRef
28.
Zurück zum Zitat Mironov V, Hritz MA, LaManna JC, Hudetz AG, Harik SI (1994) Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80CrossRef Mironov V, Hritz MA, LaManna JC, Hudetz AG, Harik SI (1994) Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80CrossRef
29.
Zurück zum Zitat Sekhon LH, Morgan MK, SpenceI (197) Normal perfusion pressure breakthrough: the role of capillaries. J. Neurosurg. 86: 519–524 Sekhon LH, Morgan MK, SpenceI (197) Normal perfusion pressure breakthrough: the role of capillaries. J. Neurosurg. 86: 519–524
30.
Zurück zum Zitat Wolf RC, Gron G, Sambataro F, Vasic N, Wolf ND, Thomann PA et al (2011) Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington's disease. J Cereb Blood Flow Metab 31:1908–1918CrossRef Wolf RC, Gron G, Sambataro F, Vasic N, Wolf ND, Thomann PA et al (2011) Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington's disease. J Cereb Blood Flow Metab 31:1908–1918CrossRef
31.
Zurück zum Zitat Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 122:1667–1678CrossRef Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 122:1667–1678CrossRef
32.
Zurück zum Zitat Duran-Vilaregut J, del Valle J, Manich G, Camins A, Pallas M, Vilaplana J, Pelegri C (2011) Role of matrix metalloproteinase-9 (MMP-9) in striatal blood–brain barrier disruption in a 3-nitropropionic acid model of Huntington's disease. Neuropathol Appl Neurobiol 37:525–537CrossRef Duran-Vilaregut J, del Valle J, Manich G, Camins A, Pallas M, Vilaplana J, Pelegri C (2011) Role of matrix metalloproteinase-9 (MMP-9) in striatal blood–brain barrier disruption in a 3-nitropropionic acid model of Huntington's disease. Neuropathol Appl Neurobiol 37:525–537CrossRef
Metadaten
Titel
Optical coherence tomography angiography findings in Huntington’s disease
verfasst von
Laura Giovanna Di Maio
Daniela Montorio
Silvio Peluso
Pasquale Dolce
Elena Salvatore
Giuseppe De Michele
Gilda Cennamo
Publikationsdatum
22.07.2020
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 3/2021
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04611-2

Weitere Artikel der Ausgabe 3/2021

Neurological Sciences 3/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.