Skip to main content
Erschienen in: European Radiology 7/2016

29.10.2015 | Chest

Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients

verfasst von: Sang Min Lee, Joon Beom Seo, Sang Min Lee, Namkug Kim, Sang Young Oh, Yeon-Mok Oh

Erschienen in: European Radiology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To investigate the optimal threshold of subtraction method for quantification of air trapping on co-registered CT in COPD patients in correlation with pulmonary function parameters.

Methods

From June 2005 to October 2010, 174 patients were included in our study. Inspiration and expiration CT were performed followed by non-rigid registration using in-house software. The subtraction value per voxel between inspiration and registered expiration CT was obtained, and volume fraction of air trapping (air trapping index, ATI), using variable thresholds was calculated. ATI, expiration/inspiration ratio of mean lung density (E/I MLD) and the percentage of lung voxels below −856 HU on expiration CT (Exp−856) were correlated with FEF25–75% and RV/TLC.

Results

The highest correlation coefficient with FEF25–75% was −0.656, using the threshold of 80 HU. As for RV/TLC, the highest correlation coefficient was 0.664, using the threshold of 30 HU. When plotting the relationship between subtraction thresholds and FEF25–75% and RV/TLC, the threshold of 60 HU was most suitable (r = −0.649 and 0.651). Those correlation coefficients were comparable to the results with E/I MLD (r = −0.670 and 0.657) and Exp−856 (r = −0.604 and 0.565).

Conclusions

The optimal threshold for quantification of air trapping was 60 HU and showed comparable correlations with pulmonary function parameters.

Key Points

The optimal CT threshold of subtraction method for air trapping was 60 HU.
ATI with 60 HU threshold was comparable to E/I MLD and Exp −856 .
Emphysema may substantially contribute to air trapping with statistical significance (P < 0.001).
Literatur
1.
Zurück zum Zitat Global Initiative for Chronic Obstructive Pulmonary Disease (2015) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Available via http://www.goldcopd.org/ Global Initiative for Chronic Obstructive Pulmonary Disease (2015) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Available via http://​www.​goldcopd.​org/​
2.
Zurück zum Zitat Bergin C, Muller N, Nichols DM et al (1986) The diagnosis of emphysema. A computed tomographic-pathologic correlation. Am Rev Respir Dis 133:541–546PubMed Bergin C, Muller N, Nichols DM et al (1986) The diagnosis of emphysema. A computed tomographic-pathologic correlation. Am Rev Respir Dis 133:541–546PubMed
3.
Zurück zum Zitat Muller NL, Staples CA, Miller RR, Abboud RT (1988) “Density mask”. An objective method to quantitate emphysema using computed tomography. Chest 94:782–787CrossRefPubMed Muller NL, Staples CA, Miller RR, Abboud RT (1988) “Density mask”. An objective method to quantitate emphysema using computed tomography. Chest 94:782–787CrossRefPubMed
4.
Zurück zum Zitat Gevenois PA, De Vuyst P, de Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192CrossRefPubMed Gevenois PA, De Vuyst P, de Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192CrossRefPubMed
5.
Zurück zum Zitat Nakano Y, Sakai H, Muro S et al (1999) Comparison of low attenuation areas on computed tomographic scans between inner and outer segments of the lung in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function. Thorax 54:384–389CrossRefPubMedPubMedCentral Nakano Y, Sakai H, Muro S et al (1999) Comparison of low attenuation areas on computed tomographic scans between inner and outer segments of the lung in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function. Thorax 54:384–389CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lee YK, Oh YM, Lee JH et al (2008) Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165CrossRefPubMed Lee YK, Oh YM, Lee JH et al (2008) Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165CrossRefPubMed
7.
Zurück zum Zitat Nakano Y, Wong JC, de Jong PA et al (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146CrossRefPubMed Nakano Y, Wong JC, de Jong PA et al (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146CrossRefPubMed
8.
Zurück zum Zitat Hasegawa M, Nasuhara Y, Onodera Y et al (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315CrossRefPubMed Hasegawa M, Nasuhara Y, Onodera Y et al (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315CrossRefPubMed
9.
Zurück zum Zitat Achenbach T, Weinheimer O, Biedermann A et al (2008) MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol 18:2731–2738CrossRefPubMed Achenbach T, Weinheimer O, Biedermann A et al (2008) MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol 18:2731–2738CrossRefPubMed
10.
Zurück zum Zitat Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Nakajima Y (2008) Airway dimensions at inspiratory and expiratory multisection CT in chronic obstructive pulmonary disease: correlation with airflow limitation. Radiology 248:1042–1049CrossRefPubMed Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Nakajima Y (2008) Airway dimensions at inspiratory and expiratory multisection CT in chronic obstructive pulmonary disease: correlation with airflow limitation. Radiology 248:1042–1049CrossRefPubMed
11.
Zurück zum Zitat Hogg JC, Chu F, Utokaparch S et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653CrossRefPubMed Hogg JC, Chu F, Utokaparch S et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653CrossRefPubMed
12.
Zurück zum Zitat Lee KW, Chung SY, Yang I, Lee Y, Ko EY, Park MJ (2000) Correlation of aging and smoking with air trapping at thin-section CT of the lung in asymptomatic subjects. Radiology 214:831–836CrossRefPubMed Lee KW, Chung SY, Yang I, Lee Y, Ko EY, Park MJ (2000) Correlation of aging and smoking with air trapping at thin-section CT of the lung in asymptomatic subjects. Radiology 214:831–836CrossRefPubMed
13.
Zurück zum Zitat Tanaka N, Matsumoto T, Miura G et al (2003) Air trapping at CT: high prevalence in asymptomatic subjects with normal pulmonary function. Radiology 227:776–785CrossRefPubMed Tanaka N, Matsumoto T, Miura G et al (2003) Air trapping at CT: high prevalence in asymptomatic subjects with normal pulmonary function. Radiology 227:776–785CrossRefPubMed
14.
Zurück zum Zitat Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722CrossRefPubMed Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722CrossRefPubMed
15.
Zurück zum Zitat Newman KB, Lynch DA, Newman LS, Ellegood D, Newell JD Jr (1994) Quantitative computed tomography detects air trapping due to asthma. Chest 106:105–109CrossRefPubMed Newman KB, Lynch DA, Newman LS, Ellegood D, Newell JD Jr (1994) Quantitative computed tomography detects air trapping due to asthma. Chest 106:105–109CrossRefPubMed
16.
Zurück zum Zitat Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA (2012) Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol 199:336–340CrossRefPubMed Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA (2012) Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol 199:336–340CrossRefPubMed
17.
Zurück zum Zitat Schroeder JD, McKenzie AS, Zach JA et al (2013) Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 201:W460–W470CrossRefPubMedPubMedCentral Schroeder JD, McKenzie AS, Zach JA et al (2013) Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 201:W460–W470CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Galban CJ, Han MK, Boes JL et al (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715CrossRefPubMedPubMedCentral Galban CJ, Han MK, Boes JL et al (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kim EY, Seo JB, Lee HJ et al (2015) Detailed analysis of the density change on chest CT of COPD using non-rigid registration of inspiration/expiration CT scans. Eur Radiol 25:541–549CrossRefPubMed Kim EY, Seo JB, Lee HJ et al (2015) Detailed analysis of the density change on chest CT of COPD using non-rigid registration of inspiration/expiration CT scans. Eur Radiol 25:541–549CrossRefPubMed
20.
Zurück zum Zitat Park TS, Lee JS, Seo JB et al (2014) Study design and outcomes of Korean Obstructive Lung Disease (KOLD) Cohort Study. Tuberc Respir Dis (Seoul) 76:169–174CrossRef Park TS, Lee JS, Seo JB et al (2014) Study design and outcomes of Korean Obstructive Lung Disease (KOLD) Cohort Study. Tuberc Respir Dis (Seoul) 76:169–174CrossRef
21.
Zurück zum Zitat Miller MR, Crapo R, Hankinson J et al (2005) General considerations for lung function testing. Eur Respir J 26:153–161CrossRefPubMed Miller MR, Crapo R, Hankinson J et al (2005) General considerations for lung function testing. Eur Respir J 26:153–161CrossRefPubMed
22.
Zurück zum Zitat Akira M, Toyokawa K, Inoue Y, Arai T (2009) Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment. AJR Am J Roentgenol 192:267–272CrossRefPubMed Akira M, Toyokawa K, Inoue Y, Arai T (2009) Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment. AJR Am J Roentgenol 192:267–272CrossRefPubMed
23.
Zurück zum Zitat Mets OM, Murphy K, Zanen P et al (2012) The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. Eur Radiol 22:120–128CrossRefPubMed Mets OM, Murphy K, Zanen P et al (2012) The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. Eur Radiol 22:120–128CrossRefPubMed
24.
Zurück zum Zitat McFadden ER Jr, Linden DA (1972) A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med 52:725–737CrossRefPubMed McFadden ER Jr, Linden DA (1972) A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med 52:725–737CrossRefPubMed
25.
Zurück zum Zitat Burgel PR (2011) The role of small airways in obstructive airway diseases. Eur Respir Rev 20:23–33CrossRefPubMed Burgel PR (2011) The role of small airways in obstructive airway diseases. Eur Respir Rev 20:23–33CrossRefPubMed
26.
Zurück zum Zitat Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Watanabe N, Nakajima Y (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769CrossRefPubMed Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Watanabe N, Nakajima Y (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769CrossRefPubMed
Metadaten
Titel
Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients
verfasst von
Sang Min Lee
Joon Beom Seo
Sang Min Lee
Namkug Kim
Sang Young Oh
Yeon-Mok Oh
Publikationsdatum
29.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 7/2016
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4070-z

Weitere Artikel der Ausgabe 7/2016

European Radiology 7/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.