Skip to main content
Erschienen in: Medical Oncology 9/2017

01.09.2017 | Review Article

Optimizing tumor immune response through combination of radiation and immunotherapy

verfasst von: Alissar El Chediak, Ali Shamseddine, Larry Bodgi, Jean-Pierre Obeid, Fady Geara, Youssef H. Zeidan

Erschienen in: Medical Oncology | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Radiation therapy and immunotherapy are two highly evolving modalities for the treatment of solid tumors. Immunotherapeutic drugs can either stimulate the immune system via immunogenic pathways or target co-inhibitory checkpoints. An augmented tumor cell recognition by host immune cells can be achieved post-irradiation, as irradiated tissues can release chemical signals which are sensed by the immune system resulting in its activation. Different strategies combining both treatment modalities were tested in order to achieve a better therapeutic response and longer tumor control. Both regimens act synergistically to one another with complimentary mechanisms. In this review, we explore the scientific basis behind such a combination, starting initially with a brief historical overview behind utilizing radiation and immunotherapies for solid tumors, followed by the different types of these two modalities, and the biological concept behind their synergistic effect. We also shed light on the common side effects and toxicities associated with radiation and immunotherapy. Finally, we discuss previous clinical trials tackling this multimodality combination and highlight future ongoing research.
Literatur
1.
2.
Zurück zum Zitat Helmy KY, et al. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–20.PubMedCrossRef Helmy KY, et al. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–20.PubMedCrossRef
4.
5.
Zurück zum Zitat Sylvester RJ. Bacillus Calmette–Guérin treatment of non-muscle invasive bladder cancer. Int J Urol. 2011;18(2):113–20.PubMedCrossRef Sylvester RJ. Bacillus Calmette–Guérin treatment of non-muscle invasive bladder cancer. Int J Urol. 2011;18(2):113–20.PubMedCrossRef
6.
Zurück zum Zitat Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.PubMedCrossRef Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.PubMedCrossRef
7.
Zurück zum Zitat Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10(3):281–7.PubMedCrossRef Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10(3):281–7.PubMedCrossRef
8.
Zurück zum Zitat Boon T, et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.PubMedCrossRef Boon T, et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.PubMedCrossRef
9.
Zurück zum Zitat Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.PubMedCrossRef Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.PubMedCrossRef
10.
Zurück zum Zitat Urbanski M, Cone RE. Appearance of T lymphocyte-derived proteins specific for the immunizing antigen in serum during a humoral immune response. J Immunol. 1992;148(9):2840–4.PubMed Urbanski M, Cone RE. Appearance of T lymphocyte-derived proteins specific for the immunizing antigen in serum during a humoral immune response. J Immunol. 1992;148(9):2840–4.PubMed
11.
Zurück zum Zitat Sologuren I, Rodríguez-Gallego C, Lara PC. Immune effects of high dose radiation treatment: implications of ionizing radiation on the development of bystander and abscopal effects. Transl Cancer Res. 2014;3(1):18–31. Sologuren I, Rodríguez-Gallego C, Lara PC. Immune effects of high dose radiation treatment: implications of ionizing radiation on the development of bystander and abscopal effects. Transl Cancer Res. 2014;3(1):18–31.
12.
Zurück zum Zitat Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70.PubMedCrossRef Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70.PubMedCrossRef
15.
Zurück zum Zitat Tesniere A, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008;15(1):3–12.PubMedCrossRef Tesniere A, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008;15(1):3–12.PubMedCrossRef
16.
Zurück zum Zitat Lumniczky K, Safrany G. Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res. 2006;12(2):118–24.PubMedCrossRef Lumniczky K, Safrany G. Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res. 2006;12(2):118–24.PubMedCrossRef
17.
Zurück zum Zitat Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 2005;437(7055):141–6.PubMedCrossRef Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 2005;437(7055):141–6.PubMedCrossRef
18.
Zurück zum Zitat Dunn GP, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–9.PubMedCrossRef Dunn GP, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–9.PubMedCrossRef
19.
Zurück zum Zitat Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.PubMedCrossRef Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.PubMedCrossRef
21.
Zurück zum Zitat Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccines Immunother. 2014;10(11):3313–21.CrossRef Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccines Immunother. 2014;10(11):3313–21.CrossRef
22.
Zurück zum Zitat Willemsen RA, et al. T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol. 2005;174(12):7853–8.PubMedCrossRef Willemsen RA, et al. T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol. 2005;174(12):7853–8.PubMedCrossRef
23.
Zurück zum Zitat Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother. 2008;57(11):1719–26.PubMedCrossRef Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother. 2008;57(11):1719–26.PubMedCrossRef
24.
Zurück zum Zitat Aptsiauri N, et al. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007;601:123–31.PubMedCrossRef Aptsiauri N, et al. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007;601:123–31.PubMedCrossRef
25.
Zurück zum Zitat Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother. 2011;60(8):1161–71.PubMedCrossRef Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother. 2011;60(8):1161–71.PubMedCrossRef
26.
Zurück zum Zitat Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20(Suppl 4):A40–5.PubMedCrossRef Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20(Suppl 4):A40–5.PubMedCrossRef
27.
Zurück zum Zitat Gajewski TF, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.PubMedCrossRef Gajewski TF, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.PubMedCrossRef
29.
Zurück zum Zitat Dany M, et al. Advances in immunotherapy for melanoma management. Hum Vaccine Immunother. 2016;12(10):2501–11.CrossRef Dany M, et al. Advances in immunotherapy for melanoma management. Hum Vaccine Immunother. 2016;12(10):2501–11.CrossRef
31.
Zurück zum Zitat Linsley PS, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.PubMedCrossRef Linsley PS, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.PubMedCrossRef
32.
Zurück zum Zitat Michielin O, Hoeller C. Gaining momentum: new options and opportunities for the treatment of advanced melanoma. Cancer Treat Rev. 2015;41(8):660–70.PubMedCrossRef Michielin O, Hoeller C. Gaining momentum: new options and opportunities for the treatment of advanced melanoma. Cancer Treat Rev. 2015;41(8):660–70.PubMedCrossRef
34.
Zurück zum Zitat Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.PubMedPubMedCentralCrossRef Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Hurley KE, Chapman PB. Helping melanoma patients decide whether to choose adjuvant high-dose interferon-alpha2b. Oncologist. 2005;10(9):739–42.PubMedCrossRef Hurley KE, Chapman PB. Helping melanoma patients decide whether to choose adjuvant high-dose interferon-alpha2b. Oncologist. 2005;10(9):739–42.PubMedCrossRef
36.
Zurück zum Zitat Yang JC, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol. 2003;21(16):3127–32.PubMedPubMedCentralCrossRef Yang JC, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol. 2003;21(16):3127–32.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. 2014;88(5):986–97.PubMedPubMedCentralCrossRef Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. 2014;88(5):986–97.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Begley CG, et al. Human B lymphocytes express the p75 component of the interleukin 2 receptor. Leuk Res. 1990;14(3):263–71.PubMedCrossRef Begley CG, et al. Human B lymphocytes express the p75 component of the interleukin 2 receptor. Leuk Res. 1990;14(3):263–71.PubMedCrossRef
39.
Zurück zum Zitat Wagner TC, et al. Interferon receptor expression regulates the antiproliferative effects of interferons on cancer cells and solid tumors. Int J Cancer. 2004;111(1):32–42.PubMedCrossRef Wagner TC, et al. Interferon receptor expression regulates the antiproliferative effects of interferons on cancer cells and solid tumors. Int J Cancer. 2004;111(1):32–42.PubMedCrossRef
41.
Zurück zum Zitat Markman M, et al. Phase 2 trial of interferon-beta as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology. 2004;66(5):343–6.PubMedCrossRef Markman M, et al. Phase 2 trial of interferon-beta as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology. 2004;66(5):343–6.PubMedCrossRef
42.
Zurück zum Zitat Haji-Fatahaliha M, et al. CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol. 2016;44(6):1339–49.PubMed Haji-Fatahaliha M, et al. CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol. 2016;44(6):1339–49.PubMed
43.
Zurück zum Zitat Eckert F, et al. Beyond checkpoint inhibition – Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35.CrossRef Eckert F, et al. Beyond checkpoint inhibition – Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35.CrossRef
44.
Zurück zum Zitat Lugade AA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.PubMedCrossRef Lugade AA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.PubMedCrossRef
45.
46.
Zurück zum Zitat Griffiths DJ. Introduction to electrodynamics. 3rd ed. Upper Saddle River: Prentice Hall; 1999. p. xv. Griffiths DJ. Introduction to electrodynamics. 3rd ed. Upper Saddle River: Prentice Hall; 1999. p. xv.
47.
Zurück zum Zitat Laugier A. The first century of radiotherapy in France. Bull Acad Natl Med. 1996;180(1):143–60.PubMed Laugier A. The first century of radiotherapy in France. Bull Acad Natl Med. 1996;180(1):143–60.PubMed
48.
Zurück zum Zitat Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47.PubMedCrossRef Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47.PubMedCrossRef
49.
Zurück zum Zitat Thwaites DI, Tuohy JB. Back to the future: the history and development of the clinical linear accelerator. Phys Med Biol. 2006;51(13):R343–62.PubMedCrossRef Thwaites DI, Tuohy JB. Back to the future: the history and development of the clinical linear accelerator. Phys Med Biol. 2006;51(13):R343–62.PubMedCrossRef
50.
Zurück zum Zitat Purdy JA. 3D treatment planning and intensity-modulated radiation therapy. Oncology (Williston Park). 1999;13(10 Suppl 5):155–68. Purdy JA. 3D treatment planning and intensity-modulated radiation therapy. Oncology (Williston Park). 1999;13(10 Suppl 5):155–68.
51.
Zurück zum Zitat Galvin JM, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys. 2004;58(5):1616–34.PubMedCrossRef Galvin JM, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys. 2004;58(5):1616–34.PubMedCrossRef
52.
Zurück zum Zitat Macia IGM. Radiobiology of stereotactic body radiation therapy (SBRT). Rep Pract Oncol Radiother. 2017;22(2):86–95.CrossRef Macia IGM. Radiobiology of stereotactic body radiation therapy (SBRT). Rep Pract Oncol Radiother. 2017;22(2):86–95.CrossRef
53.
Zurück zum Zitat Bhattacharya IS, et al. Stereotactic body radiotherapy (SBRT) in the management of extracranial oligometastatic (OM) disease. Br J Radiol. 1048;2015(88):20140712. Bhattacharya IS, et al. Stereotactic body radiotherapy (SBRT) in the management of extracranial oligometastatic (OM) disease. Br J Radiol. 1048;2015(88):20140712.
54.
Zurück zum Zitat Greco C, et al. Spinal metastases: from conventional fractionated radiotherapy to single-dose SBRT. Rep Pract Oncol Radiother. 2015;20(6):454–63.PubMedPubMedCentralCrossRef Greco C, et al. Spinal metastases: from conventional fractionated radiotherapy to single-dose SBRT. Rep Pract Oncol Radiother. 2015;20(6):454–63.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Linskey ME, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010;96(1):45–68.PubMedCrossRef Linskey ME, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010;96(1):45–68.PubMedCrossRef
56.
Zurück zum Zitat Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol. 2014;24(2):140–7.PubMedCrossRef Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol. 2014;24(2):140–7.PubMedCrossRef
57.
Zurück zum Zitat Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.PubMedCrossRef Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.PubMedCrossRef
58.
Zurück zum Zitat Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014;6(4):303–18.PubMedPubMedCentral Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014;6(4):303–18.PubMedPubMedCentral
59.
Zurück zum Zitat Jaffray DA, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.PubMedCrossRef Jaffray DA, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.PubMedCrossRef
60.
Zurück zum Zitat Huntzinger C, et al. Dynamic targeting image-guided radiotherapy. Med Dosim. 2006;31(2):113–25.PubMedCrossRef Huntzinger C, et al. Dynamic targeting image-guided radiotherapy. Med Dosim. 2006;31(2):113–25.PubMedCrossRef
61.
Zurück zum Zitat Fields EC, Weiss E. A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer. Radiat Oncol. 2016;11:15.PubMedPubMedCentralCrossRef Fields EC, Weiss E. A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer. Radiat Oncol. 2016;11:15.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Pollard JM, et al. The future of image-guided radiotherapy will be MR guided. Br J Radiol. 1073;2017(90):20160667. Pollard JM, et al. The future of image-guided radiotherapy will be MR guided. Br J Radiol. 1073;2017(90):20160667.
64.
65.
Zurück zum Zitat Bernstein MB, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol. 2016;13(8):516–24.PubMedCrossRef Bernstein MB, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol. 2016;13(8):516–24.PubMedCrossRef
66.
Zurück zum Zitat Shabason JE, Minn AJ. Radiation and immune checkpoint blockade: from bench to clinic. Semin Radiat Oncol. 2017;27(3):289–98.PubMedCrossRef Shabason JE, Minn AJ. Radiation and immune checkpoint blockade: from bench to clinic. Semin Radiat Oncol. 2017;27(3):289–98.PubMedCrossRef
67.
Zurück zum Zitat Fadul CE, et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother. 2011;34(4):382–9.PubMedPubMedCentralCrossRef Fadul CE, et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother. 2011;34(4):382–9.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Sampson JH, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.PubMedPubMedCentralCrossRef Sampson JH, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.PubMedPubMedCentralCrossRef Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Heery CR, et al. Samarium-153-EDTMP (Quadramet(R)) with or without vaccine in metastatic castration-resistant prostate cancer: a randomized Phase 2 trial. Oncotarget. 2016;7(42):69014–23.PubMedPubMedCentralCrossRef Heery CR, et al. Samarium-153-EDTMP (Quadramet(R)) with or without vaccine in metastatic castration-resistant prostate cancer: a randomized Phase 2 trial. Oncotarget. 2016;7(42):69014–23.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Tang C, et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–96.PubMedCrossRef Tang C, et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–96.PubMedCrossRef
72.
Zurück zum Zitat Raj S, et al. Long-term clinical responses of neoadjuvant dendritic cell infusions and radiation in soft tissue sarcoma. Sarcoma. 2015;2015:614736.PubMedPubMedCentralCrossRef Raj S, et al. Long-term clinical responses of neoadjuvant dendritic cell infusions and radiation in soft tissue sarcoma. Sarcoma. 2015;2015:614736.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Hiniker SM, et al. A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma. Int J Radiat Oncol Biol Phys. 2016;96(3):578–88.PubMedCrossRef Hiniker SM, et al. A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma. Int J Radiat Oncol Biol Phys. 2016;96(3):578–88.PubMedCrossRef
74.
Zurück zum Zitat Kiess AP, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75.PubMedPubMedCentralCrossRef Kiess AP, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ahmed KA, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27(3):434–41.PubMedCrossRef Ahmed KA, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27(3):434–41.PubMedCrossRef
76.
Zurück zum Zitat Alatrash G, et al. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf. 2013;12(5):631–45.PubMedCrossRef Alatrash G, et al. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf. 2013;12(5):631–45.PubMedCrossRef
77.
Zurück zum Zitat Roberts CM, et al. Radiation pneumonitis: a possible lymphocyte-mediated hypersensitivity reaction. Ann Intern Med. 1993;118(9):696–700.PubMedCrossRef Roberts CM, et al. Radiation pneumonitis: a possible lymphocyte-mediated hypersensitivity reaction. Ann Intern Med. 1993;118(9):696–700.PubMedCrossRef
78.
Zurück zum Zitat Morgan GW, Breit SN. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys. 1995;31(2):361–9.PubMedCrossRef Morgan GW, Breit SN. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys. 1995;31(2):361–9.PubMedCrossRef
79.
Zurück zum Zitat Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE. 2016;11(7):e0160221.PubMedPubMedCentralCrossRef Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE. 2016;11(7):e0160221.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Shaverdian N, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.PubMedCrossRef Shaverdian N, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.PubMedCrossRef
82.
Zurück zum Zitat Qadeer MA, Vargo JJ. Approaches to the prevention and management of radiation colitis. Curr Gastroenterol Rep. 2008;10(5):507–13.PubMedCrossRef Qadeer MA, Vargo JJ. Approaches to the prevention and management of radiation colitis. Curr Gastroenterol Rep. 2008;10(5):507–13.PubMedCrossRef
83.
Zurück zum Zitat Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol. 2014;11(2):91–9.PubMedCrossRef Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol. 2014;11(2):91–9.PubMedCrossRef
84.
Zurück zum Zitat Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.PubMedCrossRef Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.PubMedCrossRef
85.
86.
Zurück zum Zitat Slovin SF, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.PubMedPubMedCentralCrossRef Slovin SF, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.PubMedPubMedCentralCrossRef
87.
88.
Zurück zum Zitat Taube JM, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.PubMedPubMedCentralCrossRef Taube JM, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.PubMedCrossRef Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.PubMedCrossRef
94.
Zurück zum Zitat Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRef Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRef
96.
Zurück zum Zitat Hoos A, et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother. 2007;30(1):1–15.PubMedCrossRef Hoos A, et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother. 2007;30(1):1–15.PubMedCrossRef
97.
Zurück zum Zitat Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol. 2004;22(22):4442–5.PubMedCrossRef Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol. 2004;22(22):4442–5.PubMedCrossRef
98.
99.
100.
Zurück zum Zitat Chow LQM, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.CrossRef Chow LQM, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.CrossRef
101.
Zurück zum Zitat Sheikh NA, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–47.PubMedCrossRef Sheikh NA, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–47.PubMedCrossRef
102.
Zurück zum Zitat Ku GY, et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer. 2010;116(7):1767–75.PubMedPubMedCentralCrossRef Ku GY, et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer. 2010;116(7):1767–75.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40:10–24.PubMedCrossRef Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40:10–24.PubMedCrossRef
105.
Zurück zum Zitat Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.PubMedCrossRef Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.PubMedCrossRef
106.
Zurück zum Zitat Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC. The optimal partnership of radiation and immunotherapy: From preclinical studies to clinical translation. Radiat Res. 2014;182:170–81.PubMedPubMedCentralCrossRef Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC. The optimal partnership of radiation and immunotherapy: From preclinical studies to clinical translation. Radiat Res. 2014;182:170–81.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.PubMedCrossRef Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.PubMedCrossRef
109.
Zurück zum Zitat Shi W, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1bb antibody (bms-469492) treatment. Anticancer Res. 2006;26:3445–53.PubMed Shi W, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1bb antibody (bms-469492) treatment. Anticancer Res. 2006;26:3445–53.PubMed
110.
111.
Zurück zum Zitat Demaria S, et al. Immune-mediated inhibition of metastases after treatment with local radiation and ctla-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11:728–34.PubMed Demaria S, et al. Immune-mediated inhibition of metastases after treatment with local radiation and ctla-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11:728–34.PubMed
113.
Zurück zum Zitat Ruocco MG, et al. Suppressing t cell motility induced by anti–ctla-4 monotherapy improves antitumor effects. J Clin Invest. 2012;122:3718–30.PubMedPubMedCentralCrossRef Ruocco MG, et al. Suppressing t cell motility induced by anti–ctla-4 monotherapy improves antitumor effects. J Clin Invest. 2012;122:3718–30.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Yoshimoto Y, et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by ctla-4 blockade in a mouse model. PloS One. 2014;9:e92572.CrossRef Yoshimoto Y, et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by ctla-4 blockade in a mouse model. PloS One. 2014;9:e92572.CrossRef
115.
Zurück zum Zitat Zeng J, et al. Anti-pd-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.PubMedPubMedCentralCrossRef Zeng J, et al. Anti-pd-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Victor CT-S, et al. Radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.PubMedCentralCrossRef Victor CT-S, et al. Radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.PubMedCentralCrossRef
Metadaten
Titel
Optimizing tumor immune response through combination of radiation and immunotherapy
verfasst von
Alissar El Chediak
Ali Shamseddine
Larry Bodgi
Jean-Pierre Obeid
Fady Geara
Youssef H. Zeidan
Publikationsdatum
01.09.2017
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 9/2017
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-017-1025-z

Weitere Artikel der Ausgabe 9/2017

Medical Oncology 9/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.