Skip to main content
Erschienen in: Brain Structure and Function 5/2014

01.09.2014 | Original Article

Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus

verfasst von: Nina Patzke, Olatunbosun Olaleye, Mark Haagensen, Patrick R. Hof, Amadi O. Ihunwo, Paul R. Manger

Erschienen in: Brain Structure and Function | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Elephants are thought to possess excellent long-term spatial–temporal and social memory, both memory types being at least in part hippocampus dependent. Although the hippocampus has been extensively studied in common laboratory mammalian species and humans, much less is known about comparative hippocampal neuroanatomy, and specifically that of the elephant. Moreover, the data available regarding hippocampal size of the elephant are inconsistent. The aim of the current study was to re-examine hippocampal size and provide a detailed neuroanatomical description of the hippocampus in the African elephant. In order to examine the hippocampal size the perfusion-fixed brains of three wild-caught adult male African elephants, aged 20–30 years, underwent MRI scanning. For the neuroanatomical description brain sections containing the hippocampus were stained for Nissl, myelin, calbindin, calretinin, parvalbumin and doublecortin. This study demonstrates that the elephant hippocampus is not unduly enlarged, nor specifically unusual in its internal morphology. The elephant hippocampus has a volume of 10.84 ± 0.33 cm³ and is slightly larger than the human hippocampus (10.23 cm3). Histological analysis revealed the typical trilaminated architecture of the dentate gyrus (DG) and the cornu ammonis (CA), although the molecular layer of the dentate gyrus appears to have supernumerary sublaminae compared to other mammals. The three main architectonic fields of the cornu ammonis (CA1, CA2, and CA3) could be clearly distinguished. Doublecortin immunostaining revealed the presence of adult neurogenesis in the elephant hippocampus. Thus, the elephant exhibits, for the most part, what might be considered a typically mammalian hippocampus in terms of both size and architecture.
Literatur
Zurück zum Zitat Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308PubMedCrossRef Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308PubMedCrossRef
Zurück zum Zitat Barinka F, Druga R (2010) Calretinin expression in the mammalian neocortex: a review. Physiol Rev 59:665–677 Barinka F, Druga R (2010) Calretinin expression in the mammalian neocortex: a review. Physiol Rev 59:665–677
Zurück zum Zitat Bartkowska K, Turlejski K, Grabiec M, Ghazaryan A, Yavruoyan E, Djavadian RL (2010) Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea). Brain Behav Evol 76:128–143PubMedCrossRef Bartkowska K, Turlejski K, Grabiec M, Ghazaryan A, Yavruoyan E, Djavadian RL (2010) Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea). Brain Behav Evol 76:128–143PubMedCrossRef
Zurück zum Zitat Bates LA, Sayialel KN, Njiraini N, Poole JH, Moss C, Byrne RW (2008) African elephants have expectations about the locations of out-of-sight family members. Biol Lett 4:34–36PubMedCentralPubMedCrossRef Bates LA, Sayialel KN, Njiraini N, Poole JH, Moss C, Byrne RW (2008) African elephants have expectations about the locations of out-of-sight family members. Biol Lett 4:34–36PubMedCentralPubMedCrossRef
Zurück zum Zitat Blasco-Ibáñez JM, Freund TF (1997) Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7:307–320PubMedCrossRef Blasco-Ibáñez JM, Freund TF (1997) Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7:307–320PubMedCrossRef
Zurück zum Zitat Bonfanti L, Rossi F, Zupanc GK (2011) Towards a comparative understanding of adult neurogenesis. Eur J Neurosci 34:845–846PubMedCrossRef Bonfanti L, Rossi F, Zupanc GK (2011) Towards a comparative understanding of adult neurogenesis. Eur J Neurosci 34:845–846PubMedCrossRef
Zurück zum Zitat Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRef Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRef
Zurück zum Zitat Byrne RW, Bates LA, Moss CJ (2009) Elephant cognition in primate perspective. Comp Cog Behav Rev 4:1–15 Byrne RW, Bates LA, Moss CJ (2009) Elephant cognition in primate perspective. Comp Cog Behav Rev 4:1–15
Zurück zum Zitat Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377PubMedCentralPubMedCrossRef Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377PubMedCentralPubMedCrossRef
Zurück zum Zitat Deller T, Adelmann G, Nitsch R, Frotscher M (1996) The alvear pathway of the rat hippocampus. Cell Tissue Res 286:293–303PubMedCrossRef Deller T, Adelmann G, Nitsch R, Frotscher M (1996) The alvear pathway of the rat hippocampus. Cell Tissue Res 286:293–303PubMedCrossRef
Zurück zum Zitat Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5:e311PubMedCentralPubMedCrossRef Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5:e311PubMedCentralPubMedCrossRef
Zurück zum Zitat Fujise N, Liu Y, Hori N, Kosaka T (1998) Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Neuroscience 82:181–200PubMedCrossRef Fujise N, Liu Y, Hori N, Kosaka T (1998) Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Neuroscience 82:181–200PubMedCrossRef
Zurück zum Zitat Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMed Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMed
Zurück zum Zitat Gravett N, Bhagwandin A, Fuxe K, Manger PR (2009) Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. J Chem Neuroanat 38:57–74PubMedCrossRef Gravett N, Bhagwandin A, Fuxe K, Manger PR (2009) Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. J Chem Neuroanat 38:57–74PubMedCrossRef
Zurück zum Zitat Gulyás AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus-I. A new type of neuron specifically associated with the mossy fiber system. Neuroscience 48:1–27PubMedCrossRef Gulyás AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus-I. A new type of neuron specifically associated with the mossy fiber system. Neuroscience 48:1–27PubMedCrossRef
Zurück zum Zitat Hakeem AY, Hof PR, Sherwood CC, Switzer RC, Rasmussen LE, Allman JM (2005) Brain of the African elephant (Loxodonta africana): neuroanatomy from magnetic resonance images. Anat Rec 287:1117–1127CrossRef Hakeem AY, Hof PR, Sherwood CC, Switzer RC, Rasmussen LE, Allman JM (2005) Brain of the African elephant (Loxodonta africana): neuroanatomy from magnetic resonance images. Anat Rec 287:1117–1127CrossRef
Zurück zum Zitat Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98PubMedCrossRef Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98PubMedCrossRef
Zurück zum Zitat Haug H (1970) Der makroskopische Aufbau des Grosshirns; Qualitative und quantitative Untersuchungen an den Gehirnen des Menschen, der Delphinoideae und des Elefanten. Ergebn Anat Entwicklungesch 43:3–70 Haug H (1970) Der makroskopische Aufbau des Grosshirns; Qualitative und quantitative Untersuchungen an den Gehirnen des Menschen, der Delphinoideae und des Elefanten. Ergebn Anat Entwicklungesch 43:3–70
Zurück zum Zitat Healy SD, de Kort SR, Clayton NS (2005) The hippocampus spatial memory and food hoarding: a puzzle revisited. Trends Ecol Evol 20:17–22PubMedCrossRef Healy SD, de Kort SR, Clayton NS (2005) The hippocampus spatial memory and food hoarding: a puzzle revisited. Trends Ecol Evol 20:17–22PubMedCrossRef
Zurück zum Zitat Hof PR, Rosenthal RE, Fiskum G (1996) Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus. J Chem Neuroanat 11:1–12PubMedCrossRef Hof PR, Rosenthal RE, Fiskum G (1996) Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus. J Chem Neuroanat 11:1–12PubMedCrossRef
Zurück zum Zitat Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116PubMedCrossRef Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116PubMedCrossRef
Zurück zum Zitat Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 72:347–362PubMed Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 72:347–362PubMed
Zurück zum Zitat Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736PubMed Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736PubMed
Zurück zum Zitat Krzywkowski P, Jacobowitz DM, Lamour Y (1995) Calretinin-containing pathways in the rat forebrain. Brain Res 705:273–294PubMedCrossRef Krzywkowski P, Jacobowitz DM, Lamour Y (1995) Calretinin-containing pathways in the rat forebrain. Brain Res 705:273–294PubMedCrossRef
Zurück zum Zitat Kupsky WJ, Marchant GH, Cook K, Shoshani J (2001) Morphologic analysis of the hippocampal formation in Elephas maximus and Loxodonta africana with comparison to that of human. In: Cavarretta G, Gioia P, Mussi M, Palombo MR (eds) Proceedings of the 1st International Congress of “La Terra degli Elefanti”, The World of Elephants. Consiglio Nazionale delle Ricerche, Roma, pp 643–647 Kupsky WJ, Marchant GH, Cook K, Shoshani J (2001) Morphologic analysis of the hippocampal formation in Elephas maximus and Loxodonta africana with comparison to that of human. In: Cavarretta G, Gioia P, Mussi M, Palombo MR (eds) Proceedings of the 1st International Congress of “La Terra degli Elefanti”, The World of Elephants. Consiglio Nazionale delle Ricerche, Roma, pp 643–647
Zurück zum Zitat Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307PubMedCrossRef Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307PubMedCrossRef
Zurück zum Zitat Liu Y, Fujise N, Kosaka T (1996) Distribution of calretinin immunoreactivity in the mouse dentate gyrus. I. General description. Exp Brain Res 108:389–403PubMedCrossRef Liu Y, Fujise N, Kosaka T (1996) Distribution of calretinin immunoreactivity in the mouse dentate gyrus. I. General description. Exp Brain Res 108:389–403PubMedCrossRef
Zurück zum Zitat Lucas JR, Brodin A, de Kort SR, Clayton NS (2004) Does hippocampal size correlate with degree of caching specialization? Proc Biol Sci 271:2423–2429PubMedCentralPubMedCrossRef Lucas JR, Brodin A, de Kort SR, Clayton NS (2004) Does hippocampal size correlate with degree of caching specialization? Proc Biol Sci 271:2423–2429PubMedCentralPubMedCrossRef
Zurück zum Zitat Manger PR, Pillay P, Maseko BC, Bhagwandin A, Gravett N, Moon D, Jillani NE, Hemingway J (2009) Acquisition of the brain of the African elephant (Loxodonta africana): perfusion-fixation and dissection. J Neurosci Methods 179:16–21PubMedCrossRef Manger PR, Pillay P, Maseko BC, Bhagwandin A, Gravett N, Moon D, Jillani NE, Hemingway J (2009) Acquisition of the brain of the African elephant (Loxodonta africana): perfusion-fixation and dissection. J Neurosci Methods 179:16–21PubMedCrossRef
Zurück zum Zitat Maseko BC, Spocter MA, Haagensen M, Manger PR (2011) Volumetric analysis of the African elephant ventricular system. Anat Rec 298:1412–1417CrossRef Maseko BC, Spocter MA, Haagensen M, Manger PR (2011) Volumetric analysis of the African elephant ventricular system. Anat Rec 298:1412–1417CrossRef
Zurück zum Zitat Maseko BC, Jacobs B, Spocter MA, Sherwood CC, Hof PR, Manger PR (2013) Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex. Brain Behav Evol 81:40–55PubMedCrossRef Maseko BC, Jacobs B, Spocter MA, Sherwood CC, Hof PR, Manger PR (2013) Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex. Brain Behav Evol 81:40–55PubMedCrossRef
Zurück zum Zitat Maskey D, Pradhan J, Oh CK, Kim MJ (2012) Changes in the distribution of calbindin D28-k, parvalbumin, and calretinin in the hippocampus of the circling mouse. Brain Res 1437:58–68PubMedCrossRef Maskey D, Pradhan J, Oh CK, Kim MJ (2012) Changes in the distribution of calbindin D28-k, parvalbumin, and calretinin in the hippocampus of the circling mouse. Brain Res 1437:58–68PubMedCrossRef
Zurück zum Zitat McComb K, Moss C, Sayailel S, Baker L (2000) Unusually extensive networks of vocal recognition in African elephants. Anim Behav 59:1103–1109PubMedCrossRef McComb K, Moss C, Sayailel S, Baker L (2000) Unusually extensive networks of vocal recognition in African elephants. Anim Behav 59:1103–1109PubMedCrossRef
Zurück zum Zitat McComb K, Reby D, Baker L, Moss C, Sayailel S (2003) Longdistance communication of acoustic cues to social identity in African elephants. Anim Behav 65:317–329CrossRef McComb K, Reby D, Baker L, Moss C, Sayailel S (2003) Longdistance communication of acoustic cues to social identity in African elephants. Anim Behav 65:317–329CrossRef
Zurück zum Zitat Morris R (2007) Theories of hippocampal function. In: Anderson P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The Hippocampus Book. Oxford Press, New York, pp 581–715 Morris R (2007) Theories of hippocampal function. In: Anderson P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The Hippocampus Book. Oxford Press, New York, pp 581–715
Zurück zum Zitat Ngwenya A, Patzke N, Ihunwo AO, Manger PR (2011) Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb. Brain Struct Funct 216:403–416PubMedCrossRef Ngwenya A, Patzke N, Ihunwo AO, Manger PR (2011) Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb. Brain Struct Funct 216:403–416PubMedCrossRef
Zurück zum Zitat Nitsch R, Leranth C (1993) Calretinin immunoreactivity in the monkey hippocampal formation-II. Intrinsic GABAergic and hypothalamic non-GABAergic systems: an experimental tracing and co-existence study. Neuroscience 55:797–812PubMedCrossRef Nitsch R, Leranth C (1993) Calretinin immunoreactivity in the monkey hippocampal formation-II. Intrinsic GABAergic and hypothalamic non-GABAergic systems: an experimental tracing and co-existence study. Neuroscience 55:797–812PubMedCrossRef
Zurück zum Zitat Nitsch R, Ohm TG (1995) Calretinin immunoreactive structures in the human hippocampal formation. J Comp Neurol 360:475–487PubMedCrossRef Nitsch R, Ohm TG (1995) Calretinin immunoreactive structures in the human hippocampal formation. J Comp Neurol 360:475–487PubMedCrossRef
Zurück zum Zitat Poole JH, Payne K, Langbauer WR, Moss CJ (1988) The social contexts of some very low frequency calls of African elephants. Behav Ecol Sociobiol 22:385–392CrossRef Poole JH, Payne K, Langbauer WR, Moss CJ (1988) The social contexts of some very low frequency calls of African elephants. Behav Ecol Sociobiol 22:385–392CrossRef
Zurück zum Zitat Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107PubMedCrossRef Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107PubMedCrossRef
Zurück zum Zitat Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246PubMedCrossRef Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246PubMedCrossRef
Zurück zum Zitat Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70PubMedCrossRef Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70PubMedCrossRef
Zurück zum Zitat Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216PubMedCentralPubMedCrossRef Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216PubMedCentralPubMedCrossRef
Zurück zum Zitat Salwiczek LH, Watanabe A, Clayton NS (2010) Ten years of research into avian models of episodic-like memory and its implications for developmental and comparative cognition. Behav Brain Res 215:221–234PubMedCrossRef Salwiczek LH, Watanabe A, Clayton NS (2010) Ten years of research into avian models of episodic-like memory and its implications for developmental and comparative cognition. Behav Brain Res 215:221–234PubMedCrossRef
Zurück zum Zitat Seress L, Gulyás AI, Freund TF (1991) Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. J Comp Neurol 313:162–177PubMedCrossRef Seress L, Gulyás AI, Freund TF (1991) Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. J Comp Neurol 313:162–177PubMedCrossRef
Zurück zum Zitat Seress L, Abrahám H, Czéh B, Fuchs E, Léránth C (2008) Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman primates and humans. Hippocampus 18:425–434PubMedCrossRef Seress L, Abrahám H, Czéh B, Fuchs E, Léránth C (2008) Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman primates and humans. Hippocampus 18:425–434PubMedCrossRef
Zurück zum Zitat Shoshani J, Kupsky WJ, Marchant GH (2006) Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res Bull 70:124–157PubMedCrossRef Shoshani J, Kupsky WJ, Marchant GH (2006) Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res Bull 70:124–157PubMedCrossRef
Zurück zum Zitat Skinner JD, Chimimba CT (2005) The Mammals of the Southern African Subregion, 3rd edn. Cambridge University Press, Cape TownCrossRef Skinner JD, Chimimba CT (2005) The Mammals of the Southern African Subregion, 3rd edn. Cambridge University Press, Cape TownCrossRef
Zurück zum Zitat Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280:183–196PubMedCrossRef Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280:183–196PubMedCrossRef
Zurück zum Zitat Sloviter RS, Sollas AL, Barbaro NM, Laxer KD (1991) Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol 308:381–396PubMedCrossRef Sloviter RS, Sollas AL, Barbaro NM, Laxer KD (1991) Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol 308:381–396PubMedCrossRef
Zurück zum Zitat Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29PubMedCrossRef Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29PubMedCrossRef
Zurück zum Zitat Vidya TNC, Sukumar R (2005) Social and reproductive behaviour in elephants. Curr Sci 89:1200–1207 Vidya TNC, Sukumar R (2005) Social and reproductive behaviour in elephants. Curr Sci 89:1200–1207
Zurück zum Zitat von Heimendahl M, Rao RP, Brecht M (2012) Weak and nondiscriminative responses to conspecifics in the rat hippocampus. J Neurosci 32:2129–2141CrossRef von Heimendahl M, Rao RP, Brecht M (2012) Weak and nondiscriminative responses to conspecifics in the rat hippocampus. J Neurosci 32:2129–2141CrossRef
Zurück zum Zitat Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, Olivier A, Melanson D, Leroux G (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743–1750PubMedCrossRef Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, Olivier A, Melanson D, Leroux G (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743–1750PubMedCrossRef
Zurück zum Zitat Western D, Lindsay WK (1984) Seasonal herd dynamics of a savanna elephant population. Afr J Ecol 22:229–244CrossRef Western D, Lindsay WK (1984) Seasonal herd dynamics of a savanna elephant population. Afr J Ecol 22:229–244CrossRef
Zurück zum Zitat Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedCrossRef Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedCrossRef
Metadaten
Titel
Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus
verfasst von
Nina Patzke
Olatunbosun Olaleye
Mark Haagensen
Patrick R. Hof
Amadi O. Ihunwo
Paul R. Manger
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2014
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0587-6

Weitere Artikel der Ausgabe 5/2014

Brain Structure and Function 5/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.