Skip to main content
Erschienen in: Inflammation 6/2014

01.12.2014

Orientin Inhibits High Glucose-Induced Vascular Inflammation In Vitro and In Vivo

verfasst von: Sae-Kwang Ku, Soyoung Kwak, Jong-Sup Bae

Erschienen in: Inflammation | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Vascular inflammation plays a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Orientin, a C-glycosyl flavonoid, is known to have anxiolytic and antioxidative activity. In this study, we assessed whether orientin can suppress vascular inflammation induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Our data indicate that HG markedly increased vascular permeability, monocyte adhesion, the expression of cell adhesion molecules (CAMs), the formation of reactive oxygen species (ROS), and the activation of nuclear factor kappa B (NF-κB). Remarkably, the vascular inflammatory effects of HG were attenuated by pretreatment with orientin. Since vascular inflammation induced by HG is critical in the development of diabetic complications, our results suggest that orientin may have significant benefits in the treatment of diabetic complications and atherosclerosis.
Literatur
1.
Zurück zum Zitat Whiting, D.R., L. Guariguata, C. Weil, and J. Shaw. 2011. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94: 311–321.PubMedCrossRef Whiting, D.R., L. Guariguata, C. Weil, and J. Shaw. 2011. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94: 311–321.PubMedCrossRef
2.
Zurück zum Zitat Grundy, S.M., I.J. Benjamin, G.L. Burke, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.PubMedCrossRef Grundy, S.M., I.J. Benjamin, G.L. Burke, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.PubMedCrossRef
3.
Zurück zum Zitat Thomas, J.E., and J.M. Foody. 2007. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. Journal of the Cardiometabolic Syndrome 2: 108–113.PubMedCrossRef Thomas, J.E., and J.M. Foody. 2007. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. Journal of the Cardiometabolic Syndrome 2: 108–113.PubMedCrossRef
4.
Zurück zum Zitat Roglic, G., N. Unwin, P.H. Bennett, et al. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28: 2130–2135.PubMedCrossRef Roglic, G., N. Unwin, P.H. Bennett, et al. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28: 2130–2135.PubMedCrossRef
6.
Zurück zum Zitat Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.PubMedCrossRef Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.PubMedCrossRef
7.
Zurück zum Zitat Li, G.Q., A. Kam, K.H. Wong, et al. 2012. Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology 771: 396–413.PubMed Li, G.Q., A. Kam, K.H. Wong, et al. 2012. Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology 771: 396–413.PubMed
8.
Zurück zum Zitat Kumar, S., and A.K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013: 162750.PubMedCentralPubMed Kumar, S., and A.K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013: 162750.PubMedCentralPubMed
9.
Zurück zum Zitat Dietrych-Szostak, D., and W. Oleszek. 1999. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. Journal of Agricultural and Food Chemistry 47: 4384–4387.PubMedCrossRef Dietrych-Szostak, D., and W. Oleszek. 1999. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. Journal of Agricultural and Food Chemistry 47: 4384–4387.PubMedCrossRef
10.
Zurück zum Zitat Soulimani, R., C. Younos, S. Jarmouni, D. Bousta, R. Misslin, and F. Mortier. 1997. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. Journal of Ethnopharmacology 57: 11–20.PubMedCrossRef Soulimani, R., C. Younos, S. Jarmouni, D. Bousta, R. Misslin, and F. Mortier. 1997. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. Journal of Ethnopharmacology 57: 11–20.PubMedCrossRef
11.
Zurück zum Zitat Li, Y.L., S.C. Ma, Y.T. Yang, S.M. Ye, and P.P. But. 2002. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology 79: 365–368.PubMedCrossRef Li, Y.L., S.C. Ma, Y.T. Yang, S.M. Ye, and P.P. But. 2002. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology 79: 365–368.PubMedCrossRef
12.
Zurück zum Zitat Budzianowski, J., G. Pakulski, and J. Robak. 1991. Studies on antioxidative activity of some C-glycosylflavones. Polish Journal of Pharmacology and Pharmacy 43: 395–401.PubMed Budzianowski, J., G. Pakulski, and J. Robak. 1991. Studies on antioxidative activity of some C-glycosylflavones. Polish Journal of Pharmacology and Pharmacy 43: 395–401.PubMed
13.
Zurück zum Zitat Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-d-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.PubMedCrossRef Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-d-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.PubMedCrossRef
14.
Zurück zum Zitat Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.PubMedCentralPubMedCrossRef Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.PubMedCrossRef Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.PubMedCrossRef
16.
Zurück zum Zitat Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 10: 1145–1151.PubMedCentralPubMedCrossRef Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 10: 1145–1151.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.PubMedCrossRef Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.PubMedCrossRef
18.
Zurück zum Zitat Bae, J.S., W. Lee, J.O. Nam, J.E. Kim, S.W. Kim, and I.S. Kim. 2014. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. American Journal of Respiratory and Critical Care Medicine 189: 779–786.PubMedCrossRef Bae, J.S., W. Lee, J.O. Nam, J.E. Kim, S.W. Kim, and I.S. Kim. 2014. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. American Journal of Respiratory and Critical Care Medicine 189: 779–786.PubMedCrossRef
19.
Zurück zum Zitat Lee, W., S.K. Ku, D. Lee, T. Lee, and J.S. Bae. 2014. Emodin-6-O-beta-d-glucoside inhibits high-glucose-induced vascular inflammation. Inflammation 37: 306–313.PubMedCrossRef Lee, W., S.K. Ku, D. Lee, T. Lee, and J.S. Bae. 2014. Emodin-6-O-beta-d-glucoside inhibits high-glucose-induced vascular inflammation. Inflammation 37: 306–313.PubMedCrossRef
20.
Zurück zum Zitat Mackman, N., K. Brand, and T.S. Edgington. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. The Journal of Experimental Medicine 174: 1517–1526.PubMedCrossRef Mackman, N., K. Brand, and T.S. Edgington. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. The Journal of Experimental Medicine 174: 1517–1526.PubMedCrossRef
21.
Zurück zum Zitat Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48: 937–942.PubMedCrossRef Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48: 937–942.PubMedCrossRef
22.
Zurück zum Zitat Wardle, E.N. 1994. Vascular permeability in diabetics and implications for therapy. Diabetes Research and Clinical Practice 23: 135–139.PubMedCrossRef Wardle, E.N. 1994. Vascular permeability in diabetics and implications for therapy. Diabetes Research and Clinical Practice 23: 135–139.PubMedCrossRef
23.
Zurück zum Zitat Hamuro, M., J. Polan, M. Natarajan, and S. Mohan. 2002. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 162: 277–287.PubMedCrossRef Hamuro, M., J. Polan, M. Natarajan, and S. Mohan. 2002. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 162: 277–287.PubMedCrossRef
24.
Zurück zum Zitat Morigi, M., S. Angioletti, B. Imberti, et al. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. The Journal of Clinical Investigation 101: 1905–1915.PubMedCentralPubMedCrossRef Morigi, M., S. Angioletti, B. Imberti, et al. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. The Journal of Clinical Investigation 101: 1905–1915.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Boisvert, W.A. 2004. Modulation of atherogenesis by chemokines. Trends in Cardiovascular Medicine 14: 161–165.PubMedCrossRef Boisvert, W.A. 2004. Modulation of atherogenesis by chemokines. Trends in Cardiovascular Medicine 14: 161–165.PubMedCrossRef
26.
Zurück zum Zitat Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International. Supplement 77: S3–S12.PubMedCrossRef Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International. Supplement 77: S3–S12.PubMedCrossRef
27.
Zurück zum Zitat Han, H.J., Y.J. Lee, S.H. Park, J.H. Lee, and M. Taub. 2005. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. American Journal of Physiology. Renal Physiology 288: F988–F996.PubMedCrossRef Han, H.J., Y.J. Lee, S.H. Park, J.H. Lee, and M. Taub. 2005. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. American Journal of Physiology. Renal Physiology 288: F988–F996.PubMedCrossRef
28.
Zurück zum Zitat Rimbach, G., G. Valacchi, R. Canali, and F. Virgili. 2000. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Molecular Cell Biology Research Communications 3: 238–242.PubMedCrossRef Rimbach, G., G. Valacchi, R. Canali, and F. Virgili. 2000. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Molecular Cell Biology Research Communications 3: 238–242.PubMedCrossRef
29.
Zurück zum Zitat Uemura, S., H. Matsushita, W. Li, et al. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research 88: 1291–1298.PubMedCrossRef Uemura, S., H. Matsushita, W. Li, et al. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research 88: 1291–1298.PubMedCrossRef
30.
Zurück zum Zitat Kannel, W.B., and D.L. McGee. 1979. Diabetes and cardiovascular disease. The Framingham study. JAMA 241: 2035–2038.PubMedCrossRef Kannel, W.B., and D.L. McGee. 1979. Diabetes and cardiovascular disease. The Framingham study. JAMA 241: 2035–2038.PubMedCrossRef
31.
Zurück zum Zitat Nannipieri, M., L. Rizzo, A. Rapuano, A. Pilo, G. Penno, and R. Navalesi. 1995. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18: 1–9.PubMedCrossRef Nannipieri, M., L. Rizzo, A. Rapuano, A. Pilo, G. Penno, and R. Navalesi. 1995. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18: 1–9.PubMedCrossRef
32.
Zurück zum Zitat Tooke, J.E. 1995. Microvascular function in human diabetes. A physiological perspective. Diabetes 44: 721–726.PubMedCrossRef Tooke, J.E. 1995. Microvascular function in human diabetes. A physiological perspective. Diabetes 44: 721–726.PubMedCrossRef
33.
Zurück zum Zitat Gerrity, R.G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. The American Journal of Pathology 103: 181–190.PubMedCentralPubMed Gerrity, R.G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. The American Journal of Pathology 103: 181–190.PubMedCentralPubMed
34.
Zurück zum Zitat Esposito, C., G. Fasoli, A.R. Plati, et al. 2001. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney International 59: 1842–1849.PubMedCrossRef Esposito, C., G. Fasoli, A.R. Plati, et al. 2001. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney International 59: 1842–1849.PubMedCrossRef
35.
Zurück zum Zitat Lopes-Virella, M.F., and G. Virella. 1992. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 41(Suppl 2): 86–91.PubMedCrossRef Lopes-Virella, M.F., and G. Virella. 1992. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 41(Suppl 2): 86–91.PubMedCrossRef
36.
Zurück zum Zitat Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.PubMedCrossRef Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.PubMedCrossRef
37.
Zurück zum Zitat Kado, S., T. Wakatsuki, M. Yamamoto, and N. Nagata. 2001. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68: 727–737.PubMedCrossRef Kado, S., T. Wakatsuki, M. Yamamoto, and N. Nagata. 2001. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68: 727–737.PubMedCrossRef
38.
Zurück zum Zitat Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews. Immunology 6: 508–519.PubMedCrossRef Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews. Immunology 6: 508–519.PubMedCrossRef
39.
Zurück zum Zitat Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.PubMedCrossRef Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.PubMedCrossRef
Metadaten
Titel
Orientin Inhibits High Glucose-Induced Vascular Inflammation In Vitro and In Vivo
verfasst von
Sae-Kwang Ku
Soyoung Kwak
Jong-Sup Bae
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9950-x

Weitere Artikel der Ausgabe 6/2014

Inflammation 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.