Skip to main content
Erschienen in: Current Osteoporosis Reports 4/2018

29.06.2018 | Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Origin of Reparative Stem Cells in Fracture Healing

verfasst von: Beth C. Bragdon, Chelsea S. Bahney

Erschienen in: Current Osteoporosis Reports | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair.

Recent Findings

Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing.

Summary

Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Literatur
5.
Zurück zum Zitat Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 2001;19:255–65.PubMedCrossRef Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 2001;19:255–65.PubMedCrossRef
7.
Zurück zum Zitat Tavassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968;161:54–6.PubMedCrossRef Tavassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968;161:54–6.PubMedCrossRef
9.
Zurück zum Zitat Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19–29.PubMed Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19–29.PubMed
10.
Zurück zum Zitat Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.PubMed Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.PubMed
11.
Zurück zum Zitat Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263–72.PubMed Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263–72.PubMed
12.
Zurück zum Zitat Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40.PubMedCrossRef Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40.PubMedCrossRef
13.
Zurück zum Zitat Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.PubMedCrossRef Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.PubMedCrossRef
14.
Zurück zum Zitat Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–90.PubMed Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–90.PubMed
16.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef
19.
Zurück zum Zitat Miura Y, Fitzsimmons JS, Commisso CN, Gallay SH, O’Driscoll SW. Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1). Clin Orthop Relat Res. 1994, 271–280. Miura Y, Fitzsimmons JS, Commisso CN, Gallay SH, O’Driscoll SW. Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1). Clin Orthop Relat Res. 1994, 271–280.
27.
Zurück zum Zitat • Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, et al. No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports. 2016;6:897–913. https://doi.org/10.1016/j.stemcr.2016.05.011. This study suggests that there are tissue-specific progenitor cell populations that are not perioscytes but do contribute to pericyte fate. PubMedPubMedCentralCrossRef • Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, et al. No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports. 2016;6:897–913. https://​doi.​org/​10.​1016/​j.​stemcr.​2016.​05.​011. This study suggests that there are tissue-specific progenitor cell populations that are not perioscytes but do contribute to pericyte fate. PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Ozaki A, Tsunoda M, Kinoshita S, Saura R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000;5:64–70.PubMedCrossRef Ozaki A, Tsunoda M, Kinoshita S, Saura R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000;5:64–70.PubMedCrossRef
73.
Zurück zum Zitat Utvag SE, Grundnes O, Reikeraos O. Effects of periosteal stripping on healing of segmental fractures in rats. J Orthop Trauma. 1996;10:279–84.PubMedCrossRef Utvag SE, Grundnes O, Reikeraos O. Effects of periosteal stripping on healing of segmental fractures in rats. J Orthop Trauma. 1996;10:279–84.PubMedCrossRef
80.
82.
99.
100.
Zurück zum Zitat Roach HI. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix. Bone Miner. 1992;19:1–20.PubMedCrossRef Roach HI. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix. Bone Miner. 1992;19:1–20.PubMedCrossRef
102.
Zurück zum Zitat Roach HI, Erenpreisa J. The phenotypic switch from chondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Connect Tissue Res. 1996;35:85–91.PubMedCrossRef Roach HI, Erenpreisa J. The phenotypic switch from chondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Connect Tissue Res. 1996;35:85–91.PubMedCrossRef
103.
Zurück zum Zitat Roach HI, Erenpreisa J, Aigner T. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol. 1995;131:483–94.PubMedCrossRef Roach HI, Erenpreisa J, Aigner T. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol. 1995;131:483–94.PubMedCrossRef
105.
Zurück zum Zitat Holtzer H, Abbott J, Lash J, Holtzer S. The loss of phenotypic traits by differentiated cells in vitro. I. Dedifferentiation of cartilage cells. Proc Natl Acad Sci U S A. 1960;46:1533–42.PubMedPubMedCentralCrossRef Holtzer H, Abbott J, Lash J, Holtzer S. The loss of phenotypic traits by differentiated cells in vitro. I. Dedifferentiation of cartilage cells. Proc Natl Acad Sci U S A. 1960;46:1533–42.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.PubMedCrossRef Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.PubMedCrossRef
109.
Zurück zum Zitat Emmerson, E. et al. SOX2 regulates acinar cell development in the salivary gland. Elife. 2017;6, doi: 10.7554/eLife.26620. Emmerson, E. et al. SOX2 regulates acinar cell development in the salivary gland. Elife. 2017;6, doi: 10.7554/eLife.26620.
114.
Zurück zum Zitat Roach HI, Clarke NM. Physiological cell death of chondrocytes in vivo is not confined to apoptosis. New observations on the mammalian growth plate. J Bone Joint Surg Br Vol. 2000;82:601–13.CrossRef Roach HI, Clarke NM. Physiological cell death of chondrocytes in vivo is not confined to apoptosis. New observations on the mammalian growth plate. J Bone Joint Surg Br Vol. 2000;82:601–13.CrossRef
125.
126.
Zurück zum Zitat Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures. Contemp Orthop. 1995;30:489–93.PubMed Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures. Contemp Orthop. 1995;30:489–93.PubMed
132.
Zurück zum Zitat Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24:742–6.PubMedCrossRef Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24:742–6.PubMedCrossRef
146.
Zurück zum Zitat A., M. Satellite cells of skeletal muscle fibers. J Biochem Biophys Cytol. 1961;9:493–398.CrossRef A., M. Satellite cells of skeletal muscle fibers. J Biochem Biophys Cytol. 1961;9:493–398.CrossRef
147.
Zurück zum Zitat Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102:777–86.PubMedCrossRef Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102:777–86.PubMedCrossRef
157.
Zurück zum Zitat Davis KM, Griffin KS, Chu TG, Wenke JC, Corona BT, McKinley T, et al. Muscle-bone interactions during fracture healing. J Musculoskelet Neuronal Interact. 2015;15:1–9.PubMedPubMedCentral Davis KM, Griffin KS, Chu TG, Wenke JC, Corona BT, McKinley T, et al. Muscle-bone interactions during fracture healing. J Musculoskelet Neuronal Interact. 2015;15:1–9.PubMedPubMedCentral
162.
Zurück zum Zitat Wright V, et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther. 2002;6:169–78.PubMedCrossRef Wright V, et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther. 2002;6:169–78.PubMedCrossRef
Metadaten
Titel
Origin of Reparative Stem Cells in Fracture Healing
verfasst von
Beth C. Bragdon
Chelsea S. Bahney
Publikationsdatum
29.06.2018
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 4/2018
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0458-4

Weitere Artikel der Ausgabe 4/2018

Current Osteoporosis Reports 4/2018 Zur Ausgabe

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Bone Marrow Adipose Tissue and Skeletal Health

Cancer-induced Musculoskeletal Diseases (J Sterling and E Keller, Section Editors)

Surgical Approach to Bone Metastases

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Recent Advances and Future of Gene Therapy for Bone Regeneration

Craniofacial Skeleton (WE Roberts, Section Editor)

Part I: Development and Physiology of the Temporomandibular Joint

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.