Skip to main content
Erschienen in: Skeletal Radiology 7/2023

18.01.2023 | Scientific Article

Original research: utilization of a convolutional neural network for automated detection of lytic spinal lesions on body CTs

verfasst von: Connie Y. Chang, Florian A. Huber, Kaitlyn J. Yeh, Colleen Buckless, Martin Torriani

Erschienen in: Skeletal Radiology | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Abstract

Objective

To develop, train, and test a convolutional neural network (CNN) for detection of spinal lytic lesions in chest, abdomen, and pelvis CT scans.

Materials and methods

Cases of malignant spinal lytic lesions in CT scans were identified. Images were manually segmented for the following classes: (i) lesion, (ii) normal bone, (iii) background. If more than one lesion was on a single slice, all lesions were segmented. Images were stored as 128×128 pixel grayscale, with 10% segregated for testing. The training pipeline of the dataset included histogram equalization and data augmentation. A model was trained on Keras/Tensorflow using an 80/20 training/validation split, based on U-Net architecture. Additional testing of the model was performed on 1106 images of healthy controls. Global sensitivity measured detection of any lesion on a single image. Local sensitivity and positive predictive value (PPV) measured detection of all lesions on an image. Global specificity measured false positive rate in non-pathologic bone.

Results

Six hundred images were obtained for model creation. The training set consisted of 540 images, which was augmented to 20,000. The test set consisted of 60 images. Model training was performed in triplicate. Mean Dice scores were 0.61 for lytic lesion, 0.95 for normal bone, and 0.99 for background. Mean global sensitivity was 90.6%, local sensitivity was 74.0%, local PPV was 78.3%, and global specificity was 63.3%. At least one false positive lesion was noted in 28.8–44.9% of control images.

Conclusion

A task-trained CNN showed good sensitivity in detecting spinal lytic lesions in axial CT images.
Literatur
1.
Zurück zum Zitat Lucent Lesions of Vertebral Body. Differential Diagnosis. Contemporary Diagnostic Radiology. 2019;42(11):8.CrossRef Lucent Lesions of Vertebral Body. Differential Diagnosis. Contemporary Diagnostic Radiology. 2019;42(11):8.CrossRef
2.
Zurück zum Zitat Huber FA, Guggenberger R. AI MSK clinical applications: spine imaging. Skeletal Radiol. 2021;51. Huber FA, Guggenberger R. AI MSK clinical applications: spine imaging. Skeletal Radiol. 2021;51.
3.
Zurück zum Zitat Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link TM. AI MSK clinical applications: cartilage and osteoarthritis. Skeletal Radiol. 2022;51(2):331–43.CrossRefPubMed Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link TM. AI MSK clinical applications: cartilage and osteoarthritis. Skeletal Radiol. 2022;51(2):331–43.CrossRefPubMed
4.
Zurück zum Zitat Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49(2):183–97.CrossRefPubMed Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49(2):183–97.CrossRefPubMed
5.
Zurück zum Zitat Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.CrossRefPubMed Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.CrossRefPubMed
6.
Zurück zum Zitat Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.CrossRefPubMed Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.CrossRefPubMed
7.
Zurück zum Zitat Chang CY, Buckless C, Yeh KJ, Torriani M. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network. Skeletal Radiol. 2022;51(2):391–9.CrossRefPubMed Chang CY, Buckless C, Yeh KJ, Torriani M. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network. Skeletal Radiol. 2022;51(2):391–9.CrossRefPubMed
8.
Zurück zum Zitat Faghani S, Baffour FI, Ringler MD, Hamilton-Cave M, Rouzrokh P, Moassefi M, et al. A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT. Skeletal Radiol. 2022;52. Faghani S, Baffour FI, Ringler MD, Hamilton-Cave M, Rouzrokh P, Moassefi M, et al. A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT. Skeletal Radiol. 2022;52.
9.
Zurück zum Zitat Hemke R, Buckless CG, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skeletal Radiol. 2020;49(3):387–95.CrossRefPubMed Hemke R, Buckless CG, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skeletal Radiol. 2020;49(3):387–95.CrossRefPubMed
10.
Zurück zum Zitat Burns JE, Yao J, Summers RM. Artificial intelligence in musculoskeletal imaging: a paradigm shift. J Bone Miner Res. 2020;35(1):28–35.CrossRefPubMed Burns JE, Yao J, Summers RM. Artificial intelligence in musculoskeletal imaging: a paradigm shift. J Bone Miner Res. 2020;35(1):28–35.CrossRefPubMed
11.
Zurück zum Zitat O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT--preliminary study. Radiology. 2007;242(3):811–6.CrossRefPubMed O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT--preliminary study. Radiology. 2007;242(3):811–6.CrossRefPubMed
12.
Zurück zum Zitat Yao J, O'Connor S, Summers R. Computer aided lytic bone metastasis detection using regular CT images: SPIE, 2006. Yao J, O'Connor S, Summers R. Computer aided lytic bone metastasis detection using regular CT images: SPIE, 2006.
13.
Zurück zum Zitat Ulano A, Bredella MA, Burke P, Chebib I, Simeone FJ, Huang AJ, et al. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. AJR Am J Roentgenol. 2016;207(2):362–8.CrossRefPubMed Ulano A, Bredella MA, Burke P, Chebib I, Simeone FJ, Huang AJ, et al. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. AJR Am J Roentgenol. 2016;207(2):362–8.CrossRefPubMed
14.
Zurück zum Zitat Nakai H, Arizono S, Isoda H, Togashi K. Imaging characteristics of liver metastases overlooked at contrast-enhanced CT. AJR Am J Roentgenol. 2019;212(4):782–7.CrossRefPubMed Nakai H, Arizono S, Isoda H, Togashi K. Imaging characteristics of liver metastases overlooked at contrast-enhanced CT. AJR Am J Roentgenol. 2019;212(4):782–7.CrossRefPubMed
Metadaten
Titel
Original research: utilization of a convolutional neural network for automated detection of lytic spinal lesions on body CTs
verfasst von
Connie Y. Chang
Florian A. Huber
Kaitlyn J. Yeh
Colleen Buckless
Martin Torriani
Publikationsdatum
18.01.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 7/2023
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04283-x

Weitere Artikel der Ausgabe 7/2023

Skeletal Radiology 7/2023 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.