Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 6/2014

01.06.2014 | Experimental Study

Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model

verfasst von: E. Kon, G. Filardo, D. Robinson, J. A. Eisman, A. Levy, K. Zaslav, J. Shani, N. Altschuler

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The objective of this study was to examine whether different mechanical modifications and/or impregnation of hyaluronic acid (HA) might enhance aragonite-based scaffold properties for the regeneration of cartilage and bone in an animal model.

Methods

Bi-phasic osteochondral scaffolds were prepared using coralline aragonite with different modifications, including 1- to 2-mm-deep drilled channels in the cartilage phase (Group 1, n = 7) or in the bone phase (Group 2, n = 8), and compared with unmodified coral cylinders (Group 3, n = 8) as well as empty control defects (Group 4, n = 4). In each group, four of the implants were impregnated with HA to the cartilage phase. Osteochondral defects (6 mm diameter, 8 mm depth) were made in medial and lateral femoral condyles of 14 goats, and the scaffolds were implanted according to a randomization chart. After 6 months, cartilage and bone regeneration were evaluated macroscopically and histologically by an external laboratory.

Results

Group 1 implants were replaced by newly formed hyaline cartilage and subchondral bone (combined histological evaluation according to the ICRS II-2010 and O’Driscoll et al. 34 ± 4 n = 7). In this group, the cartilaginous repair tissue showed a smooth contour and was well integrated into the adjacent native cartilage, with morphological evidence of hyaline cartilage as confirmed by the marked presence of proteoglycans, a marked grade of collagen type II and the absence of collagen type I. The average scores in other groups were significantly lower (Group 2 (n = 8) 28.8 ± 11, Group 3 (n = 8) 23 ± 9 and Group 4 (empty control, n = 4) 19.7 ± 15).

Conclusions

The implants with the mechanical modification and HA impregnation in the cartilage phase outperformed all other types of implant. Although native coral is an excellent material for bone repair, as a stand-alone material implant, it does not regenerate hyaline cartilage. Mechanical modification with drilled channels and impregnation of HA within the coral pores enhanced the scaffold’s cartilage regenerative potential. The modified implant shows young hyaline cartilage regeneration. This implant might be useful for the treatment of both chondral and osteochondral defects in humans.
Literatur
1.
Zurück zum Zitat Ahem BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713CrossRef Ahem BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713CrossRef
2.
Zurück zum Zitat Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184PubMedCrossRef Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184PubMedCrossRef
3.
Zurück zum Zitat Bhattarai N, Li ZS, Edmondson D, Zhang MQ (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef Bhattarai N, Li ZS, Edmondson D, Zhang MQ (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef
4.
Zurück zum Zitat Boiteux JP, Paré G, Robin JP (1988) Madreporal periapical augmentation. Clinical experience in use of a madrepore filling material for loss of periapical bone. Rev Odontostomatol (Paris) 17(4):291–298 Boiteux JP, Paré G, Robin JP (1988) Madreporal periapical augmentation. Clinical experience in use of a madrepore filling material for loss of periapical bone. Rev Odontostomatol (Paris) 17(4):291–298
5.
Zurück zum Zitat Brun P, Panfilo S, Gordini D Daga, Cortivo R, Abatangelo G (2003) The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage 11(3):208–216PubMedCrossRef Brun P, Panfilo S, Gordini D Daga, Cortivo R, Abatangelo G (2003) The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage 11(3):208–216PubMedCrossRef
6.
Zurück zum Zitat Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 25(7):810–814PubMedCrossRef Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 25(7):810–814PubMedCrossRef
7.
Zurück zum Zitat Chiroff RT, White EW, Weber KN, Rov DM (1975) Tissue ingrowth of replamineform implants. J Biomed Mater Res 9(4):29–45PubMedCrossRef Chiroff RT, White EW, Weber KN, Rov DM (1975) Tissue ingrowth of replamineform implants. J Biomed Mater Res 9(4):29–45PubMedCrossRef
8.
Zurück zum Zitat Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204PubMedCrossRef Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204PubMedCrossRef
9.
Zurück zum Zitat Collangettes-Peyrat D, Fonck Y, Capelani JC, Irigaray JL, Oudadesse H (1989) Ossification de corail implante dans une machoire d’ovin: determination quantitative par des methodes physiques et etude anatomo-pathologique. Innov Tech Biol Med 10:679–693 Collangettes-Peyrat D, Fonck Y, Capelani JC, Irigaray JL, Oudadesse H (1989) Ossification de corail implante dans une machoire d’ovin: determination quantitative par des methodes physiques et etude anatomo-pathologique. Innov Tech Biol Med 10:679–693
10.
Zurück zum Zitat Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35 Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35
11.
Zurück zum Zitat Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103(13):5054–5059PubMedCentralPubMedCrossRef Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103(13):5054–5059PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42(1):96–102PubMedCrossRef Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42(1):96–102PubMedCrossRef
14.
Zurück zum Zitat Fukuda K, Takayama M, Ueno M, Oh M, Asada S, Kumano F et al (1997) Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes. Inflamm Res 46(3):114–117PubMedCrossRef Fukuda K, Takayama M, Ueno M, Oh M, Asada S, Kumano F et al (1997) Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes. Inflamm Res 46(3):114–117PubMedCrossRef
15.
Zurück zum Zitat Furla P, Allemand D (2000) Nos ancêtres les coraux. Méd Sci 16:1139–1140 Furla P, Allemand D (2000) Nos ancêtres les coraux. Méd Sci 16:1139–1140
16.
Zurück zum Zitat Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464PubMedCrossRef Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464PubMedCrossRef
17.
Zurück zum Zitat Guillemin G, Fournie J, Patat JL, Chetail M (1981) Fate of a fragment of madrepore coral skeleton implanted in the diaphysis of long bones in dogs. CR Seances Acad Sci III 293:371–376 Guillemin G, Fournie J, Patat JL, Chetail M (1981) Fate of a fragment of madrepore coral skeleton implanted in the diaphysis of long bones in dogs. CR Seances Acad Sci III 293:371–376
18.
Zurück zum Zitat Guillemin G, Launay M, Meunier A (1993) Natural coral as a substrate for fibroblastic growth in vitro. J Mater Sci Mater Med 4(6):575–581CrossRef Guillemin G, Launay M, Meunier A (1993) Natural coral as a substrate for fibroblastic growth in vitro. J Mater Sci Mater Med 4(6):575–581CrossRef
19.
Zurück zum Zitat Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23:765–779PubMedCrossRef Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23:765–779PubMedCrossRef
20.
Zurück zum Zitat Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567PubMedCrossRef Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567PubMedCrossRef
22.
Zurück zum Zitat Im GI, Ahn JH, Kim SY, Choi BS, Lee SW (2010) A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16(4):1189–1200PubMedCrossRef Im GI, Ahn JH, Kim SY, Choi BS, Lee SW (2010) A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16(4):1189–1200PubMedCrossRef
23.
Zurück zum Zitat Issahakian S, Ouhayoun JP, Guillemin G, Patat JL (1987) Madreporic coral. Inf Dent 69(24):2123–2132PubMed Issahakian S, Ouhayoun JP, Guillemin G, Patat JL (1987) Madreporic coral. Inf Dent 69(24):2123–2132PubMed
24.
Zurück zum Zitat Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525PubMedCrossRef Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525PubMedCrossRef
25.
Zurück zum Zitat Kenesi C, Voisin MC, Dhem A (1997) Additive medial osteotomy of the tibia locked with a coral callus. First results apropos of 38 operations. Chirurgie 122(7):379–382PubMed Kenesi C, Voisin MC, Dhem A (1997) Additive medial osteotomy of the tibia locked with a coral callus. First results apropos of 38 operations. Chirurgie 122(7):379–382PubMed
26.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190PubMedCrossRef Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190PubMedCrossRef
27.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M (2008) Second generation issues in cartilage repair. Sports Med Arthrosc 16(4):221–229PubMedCrossRef Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M (2008) Second generation issues in cartilage repair. Sports Med Arthrosc 16(4):221–229PubMedCrossRef
28.
Zurück zum Zitat Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedCentralPubMedCrossRef Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedCentralPubMedCrossRef
29.
30.
Zurück zum Zitat Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G et al (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(S1):156S–166SPubMedCrossRef Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G et al (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(S1):156S–166SPubMedCrossRef
31.
Zurück zum Zitat Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR et al (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749PubMedCrossRef Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR et al (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749PubMedCrossRef
32.
Zurück zum Zitat Kujawa MJ, Carrino DA, Caplan AI (1986) Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114(2):519–528PubMedCrossRef Kujawa MJ, Carrino DA, Caplan AI (1986) Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114(2):519–528PubMedCrossRef
33.
Zurück zum Zitat Levet Y, Jost G (1983) Use of Madreporaria coral skeletons in reparative surgery. Ann Chir Plast Esthet 28:180–181PubMed Levet Y, Jost G (1983) Use of Madreporaria coral skeletons in reparative surgery. Ann Chir Plast Esthet 28:180–181PubMed
34.
Zurück zum Zitat Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807PubMedCrossRef Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807PubMedCrossRef
35.
Zurück zum Zitat Lutolf MP, Hubbell JH (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef Lutolf MP, Hubbell JH (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef
36.
Zurück zum Zitat Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38(5):880–890PubMedCrossRef Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38(5):880–890PubMedCrossRef
37.
Zurück zum Zitat McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311:353–355PubMedCrossRef McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311:353–355PubMedCrossRef
38.
Zurück zum Zitat Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236 Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236
39.
Zurück zum Zitat O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMed O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMed
40.
Zurück zum Zitat Patel A, Honnart F, Guillemin G, Patat JL (1980) Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application. Chirurgie 106:199–205PubMed Patel A, Honnart F, Guillemin G, Patat JL (1980) Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application. Chirurgie 106:199–205PubMed
41.
Zurück zum Zitat Petite H, Kacem K, Triffitt JT (1996) Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1,25 dihydroxyvitamin D3. J Mater Sci Mater Med 7(11):665–671CrossRef Petite H, Kacem K, Triffitt JT (1996) Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1,25 dihydroxyvitamin D3. J Mater Sci Mater Med 7(11):665–671CrossRef
42.
Zurück zum Zitat Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications. Tissue Eng 12:1197–1211PubMedCrossRef Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications. Tissue Eng 12:1197–1211PubMedCrossRef
43.
Zurück zum Zitat Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat JL (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75:360–369PubMed Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat JL (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75:360–369PubMed
44.
Zurück zum Zitat Roux FX, Brasnu D, Loty B, George B, Guillemin G (1988) Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69:510–513PubMedCrossRef Roux FX, Brasnu D, Loty B, George B, Guillemin G (1988) Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69:510–513PubMedCrossRef
45.
Zurück zum Zitat Shahgaldi BF (1998) Coral graft restoration of osteochondral defects. Biomaterials 19:205–213PubMedCrossRef Shahgaldi BF (1998) Coral graft restoration of osteochondral defects. Biomaterials 19:205–213PubMedCrossRef
46.
Zurück zum Zitat Shors EC (1999) Coralline bone graft substitutes. Orthop Clin N Am 30(4):599–613CrossRef Shors EC (1999) Coralline bone graft substitutes. Orthop Clin N Am 30(4):599–613CrossRef
47.
Zurück zum Zitat Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM et al (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18(5):773–780PubMedCrossRef Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM et al (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18(5):773–780PubMedCrossRef
48.
Zurück zum Zitat Souyris F, Pellequer C, Payrot C, Servera C (1985) Coral, a new biomedical material. Experimental and first clinical investigations on madreporia. J Maxillofac Surg 13:64–69PubMedCrossRef Souyris F, Pellequer C, Payrot C, Servera C (1985) Coral, a new biomedical material. Experimental and first clinical investigations on madreporia. J Maxillofac Surg 13:64–69PubMedCrossRef
49.
Zurück zum Zitat Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCentralPubMedCrossRef Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Toole BP, Yu Q, Underhill CB (2001) Hyaluronan and hyaluronan-binding proteins. Probes for specific detection. Methods Mol Biol 171:479–485PubMed Toole BP, Yu Q, Underhill CB (2001) Hyaluronan and hyaluronan-binding proteins. Probes for specific detection. Methods Mol Biol 171:479–485PubMed
51.
Zurück zum Zitat Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50(2–3):253–259PubMedCrossRef Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50(2–3):253–259PubMedCrossRef
52.
Zurück zum Zitat Vuola J, Göransson H, Böhling T, Asko-Seljavaara S (1996) Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17(18):1761–1766PubMedCrossRef Vuola J, Göransson H, Böhling T, Asko-Seljavaara S (1996) Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17(18):1761–1766PubMedCrossRef
53.
Zurück zum Zitat Zaner DJ, Yukna RA (1984) Particle size of periodontal bone grafting materials. J Periodontol 55(7):406–409PubMedCrossRef Zaner DJ, Yukna RA (1984) Particle size of periodontal bone grafting materials. J Periodontol 55(7):406–409PubMedCrossRef
Metadaten
Titel
Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model
verfasst von
E. Kon
G. Filardo
D. Robinson
J. A. Eisman
A. Levy
K. Zaslav
J. Shani
N. Altschuler
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 6/2014
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2467-2

Weitere Artikel der Ausgabe 6/2014

Knee Surgery, Sports Traumatology, Arthroscopy 6/2014 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.