Skip to main content
Erschienen in: Seminars in Immunopathology 5/2019

07.10.2019 | Review

Osteoclastic microRNAs and their translational potential in skeletal diseases

verfasst von: Kazuki Inoue, Shinichi Nakano, Baohong Zhao

Erschienen in: Seminars in Immunopathology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Skeleton undergoes constant remodeling process to maintain healthy bone mass. However, in pathological conditions, bone remodeling is deregulated, resulting in unbalanced bone resorption and formation. Abnormal osteoclast formation and activation play a key role in osteolysis, such as in rheumatoid arthritis and osteoporosis. As potential therapeutic targets or biomarkers, miRNAs have gained rapidly growing research and clinical attention. miRNA-based therapeutics is recently entering a new era for disease treatment. Such progress is emerging in treatment of skeletal diseases. In this review, we discuss miRNA biogenesis, advances in the strategies for miRNA target identification, important miRNAs involved in osteoclastogenesis and disease models, their regulated mechanisms, and translational potential and challenges in bone homeostasis and related diseases.
Literatur
1.
2.
Zurück zum Zitat Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis 72(Suppl 2):ii52–ii55PubMedCrossRef Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis 72(Suppl 2):ii52–ii55PubMedCrossRef
3.
Zurück zum Zitat Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development. 132(21):4653–4662PubMedCrossRef Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development. 132(21):4653–4662PubMedCrossRef
4.
5.
Zurück zum Zitat Meydan C, Shenhar-Tsarfaty S, Soreq H (2016) MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med 22(9):798–812PubMedCrossRef Meydan C, Shenhar-Tsarfaty S, Soreq H (2016) MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med 22(9):798–812PubMedCrossRef
6.
Zurück zum Zitat Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297CrossRefPubMed Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297CrossRefPubMed
7.
Zurück zum Zitat Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469PubMedCrossRef Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469PubMedCrossRef
8.
Zurück zum Zitat He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5(7):522–531PubMedCrossRef He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5(7):522–531PubMedCrossRef
9.
Zurück zum Zitat Olive V, Minella AC, He L (2015) Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 8(368):re2PubMedPubMedCentralCrossRef Olive V, Minella AC, He L (2015) Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 8(368):re2PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH, Rehimi H (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165PubMedCrossRef Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH, Rehimi H (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165PubMedCrossRef
11.
Zurück zum Zitat Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan P (2013) MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics. 3(12):930–942PubMedPubMedCentralCrossRef Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan P (2013) MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics. 3(12):930–942PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009PubMedCrossRef Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009PubMedCrossRef
13.
Zurück zum Zitat Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222PubMedCrossRef Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222PubMedCrossRef
14.
Zurück zum Zitat Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143PubMedPubMedCentralCrossRef Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694PubMedCrossRef Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694PubMedCrossRef
16.
Zurück zum Zitat Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science. 294(5543):853–858PubMedCrossRef Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science. 294(5543):853–858PubMedCrossRef
17.
Zurück zum Zitat AJ S, S L, JJ S (2008) al e. MIcrorna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 299:425–436 AJ S, S L, JJ S (2008) al e. MIcrorna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 299:425–436
19.
Zurück zum Zitat Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865PubMedPubMedCentralCrossRef Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865PubMedPubMedCentralCrossRef
20.
21.
Zurück zum Zitat Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature. 432(7014):235–240PubMedCrossRef Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature. 432(7014):235–240PubMedCrossRef
22.
Zurück zum Zitat Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature. 425(6956):415–419PubMedCrossRef Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature. 425(6956):415–419PubMedCrossRef
23.
Zurück zum Zitat Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science. 303(5654):95–98PubMedCrossRef Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science. 303(5654):95–98PubMedCrossRef
24.
Zurück zum Zitat Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 475(7355):201–205PubMedPubMedCentralCrossRef Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 475(7355):201–205PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436(7051):740–744PubMedPubMedCentralCrossRef Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436(7051):740–744PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623PubMedCrossRef Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623PubMedCrossRef
27.
Zurück zum Zitat Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell. 115(7):787–798PubMedCrossRef Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell. 115(7):787–798PubMedCrossRef
29.
Zurück zum Zitat Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRef Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRef
30.
Zurück zum Zitat Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173PubMedPubMedCentralCrossRef Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114CrossRefPubMed Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114CrossRefPubMed
32.
Zurück zum Zitat Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, Ivashkiv LB, Zhao B (2016) RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol 196(12):4977–4986PubMedCrossRef Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, Ivashkiv LB, Zhao B (2016) RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol 196(12):4977–4986PubMedCrossRef
33.
Zurück zum Zitat Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM (2016) Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM (2016) Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res
34.
Zurück zum Zitat Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 19(2):230–242PubMedPubMedCentralCrossRef Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 19(2):230–242PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedPubMedCentralCrossRef Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 456(7221):464–469PubMedPubMedCentralCrossRef Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 456(7221):464–469PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 141(1):129–141PubMedPubMedCentralCrossRef Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 141(1):129–141PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 153(3):654–665PubMedPubMedCentralCrossRef Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 153(3):654–665PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466(7308):835–840PubMedPubMedCentralCrossRef Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466(7308):835–840PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222PubMedPubMedCentralCrossRef Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15(5):R102PubMedPubMedCentralCrossRef Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15(5):R102PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118PubMedPubMedCentralCrossRef O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609PubMedPubMedCentralCrossRef O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Thai T-H, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science. 316:604–608PubMedCrossRef Thai T-H, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science. 316:604–608PubMedCrossRef
46.
Zurück zum Zitat Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KGC, Rada C, Enright AJ, Toellner KM, MacLennan ICM, Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859PubMedPubMedCentralCrossRef Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KGC, Rada C, Enright AJ, Toellner KM, MacLennan ICM, Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 28:621–629PubMedPubMedCentralCrossRef Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 28:621–629PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Satoorian T, Li B, Tang X, Xiao J, Xing W, Shi W, Lau K-HW, Baylink DJ, Qin X (2016) MicroRNA223 promotes pathogenic T-cell development and autoimmune inflammation in central nervous system in mice. Immunology. 148:326–338PubMedPubMedCentralCrossRef Satoorian T, Li B, Tang X, Xiao J, Xing W, Shi W, Lau K-HW, Baylink DJ, Qin X (2016) MicroRNA223 promotes pathogenic T-cell development and autoimmune inflammation in central nervous system in mice. Immunology. 148:326–338PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Lind EF, Millar DG, Dissanayake D, Savage JC, Grimshaw NK, Kerr WG, Ohashi PS (2015) miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol 195(10):4632–4640PubMedCrossRef Lind EF, Millar DG, Dissanayake D, Savage JC, Grimshaw NK, Kerr WG, Ohashi PS (2015) miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol 195(10):4632–4640PubMedCrossRef
50.
Zurück zum Zitat Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106(8):2735–2740PubMedPubMedCentralCrossRef Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106(8):2735–2740PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Mann M, Barad O, Agami R, Geiger B, Hornstein E, Elaine Fuchs b miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate departments of a molecular genetics and Mann M, Barad O, Agami R, Geiger B, Hornstein E, Elaine Fuchs b miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate departments of a molecular genetics and
52.
Zurück zum Zitat Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for MicroRNA-223 expression revealed by microRNA gene profiling. Cell. 129:617–631PubMedCrossRef Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for MicroRNA-223 expression revealed by microRNA gene profiling. Cell. 129:617–631PubMedCrossRef
54.
Zurück zum Zitat Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64:3240–3245PubMedCrossRef Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64:3240–3245PubMedCrossRef
55.
Zurück zum Zitat Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23:674–685PubMedCrossRef Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23:674–685PubMedCrossRef
56.
Zurück zum Zitat Sugatani T, Hruska KA (2007) MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 101:996–999PubMedCrossRef Sugatani T, Hruska KA (2007) MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 101:996–999PubMedCrossRef
57.
58.
Zurück zum Zitat Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE (2014) Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 6(246):246ra99PubMedCrossRef Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE (2014) Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 6(246):246ra99PubMedCrossRef
59.
Zurück zum Zitat Okkenhaug K, Burger JA (2016) PI3K signaling in normal B cells and chronic lymphocytic leukemia (CLL). Curr Top Microbiol Immunol 393:123–142PubMed Okkenhaug K, Burger JA (2016) PI3K signaling in normal B cells and chronic lymphocytic leukemia (CLL). Curr Top Microbiol Immunol 393:123–142PubMed
60.
Zurück zum Zitat Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202(3):345–351PubMedPubMedCentralCrossRef Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202(3):345–351PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, Akira S (2013) Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med 210(10):1947–1960PubMedPubMedCentralCrossRef Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, Akira S (2013) Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med 210(10):1947–1960PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 1839(11):1084–1096PubMedCrossRef Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 1839(11):1084–1096PubMedCrossRef
63.
Zurück zum Zitat McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL (2016) MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J Immunol 196(3):1366–1375PubMedCrossRef McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL (2016) MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J Immunol 196(3):1366–1375PubMedCrossRef
64.
Zurück zum Zitat Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell. 117(5):663–676PubMedCrossRef Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell. 117(5):663–676PubMedCrossRef
65.
Zurück zum Zitat Rodriguez-Ubreva J, Ciudad L, van Oevelen C, Parra M, Graf T, Ballestar E (2014) C/EBPa-mediated activation of microRNAs 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages. Mol Cell Biol 34(6):1145–1157PubMedPubMedCentralCrossRef Rodriguez-Ubreva J, Ciudad L, van Oevelen C, Parra M, Graf T, Ballestar E (2014) C/EBPa-mediated activation of microRNAs 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages. Mol Cell Biol 34(6):1145–1157PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 512(7515):431–435PubMedCrossRef Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 512(7515):431–435PubMedCrossRef
67.
Zurück zum Zitat Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70PubMedCrossRef Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70PubMedCrossRef
68.
Zurück zum Zitat Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone. 56:383–389PubMedCrossRef Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone. 56:383–389PubMedCrossRef
69.
Zurück zum Zitat Nakamachi Y, Ohnuma K, Uto K, Noguchi Y, Saegusa J, Kawano S (2016) MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis 75(3):601–608PubMedCrossRef Nakamachi Y, Ohnuma K, Uto K, Noguchi Y, Saegusa J, Kawano S (2016) MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis 75(3):601–608PubMedCrossRef
70.
Zurück zum Zitat Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556PubMedCrossRef Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556PubMedCrossRef
71.
Zurück zum Zitat Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Miner Res 33(10):1799–1812PubMedCrossRef Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Miner Res 33(10):1799–1812PubMedCrossRef
72.
Zurück zum Zitat Min S, Liang X, Zhang M, Zhang Y, Mei S, Liu J, Liu J, Su X, Cao S, Zhong X, Li Y, Sun J, Liu Q, Jiang X, Che Y, Yang R (2013) Multiple tumor-associated microRNAs modulate the survival and longevity of dendritic cells by targeting YWHAZ and Bcl2 signaling pathways. J Immunol 190(5):2437–2446PubMedCrossRef Min S, Liang X, Zhang M, Zhang Y, Mei S, Liu J, Liu J, Su X, Cao S, Zhong X, Li Y, Sun J, Liu Q, Jiang X, Che Y, Yang R (2013) Multiple tumor-associated microRNAs modulate the survival and longevity of dendritic cells by targeting YWHAZ and Bcl2 signaling pathways. J Immunol 190(5):2437–2446PubMedCrossRef
73.
Zurück zum Zitat Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347PubMedCrossRef Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347PubMedCrossRef
74.
75.
Zurück zum Zitat Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17(11):1473–1480PubMedCrossRef Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17(11):1473–1480PubMedCrossRef
76.
Zurück zum Zitat Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature. 485(7396):69–74PubMedCrossRef Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature. 485(7396):69–74PubMedCrossRef
77.
Zurück zum Zitat Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121PubMedCrossRef Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121PubMedCrossRef
78.
Zurück zum Zitat Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123(9):3914–3924PubMedPubMedCentralCrossRef Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123(9):3914–3924PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windahl SH, Farman H, Kindlund B et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288PubMedPubMedCentralCrossRef Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windahl SH, Farman H, Kindlund B et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848PubMedPubMedCentralCrossRef Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7(10872) Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7(10872)
82.
Zurück zum Zitat Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DWT, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21(3):288–294PubMedPubMedCentralCrossRef Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DWT, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21(3):288–294PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell. 117(3):387–398PubMedCrossRef Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell. 117(3):387–398PubMedCrossRef
84.
Zurück zum Zitat Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19(1):93–100PubMedCrossRef Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19(1):93–100PubMedCrossRef
85.
Zurück zum Zitat Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353PubMedPubMedCentralCrossRef Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Jindra PT, Bagley J, Godwin JG, Iacomini J (2010) Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. J Immunol 185(2):990–997PubMedCrossRef Jindra PT, Bagley J, Godwin JG, Iacomini J (2010) Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. J Immunol 185(2):990–997PubMedCrossRef
87.
Zurück zum Zitat Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA (2006) Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J Immunol 177(7):4262–4266PubMedCrossRef Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA (2006) Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J Immunol 177(7):4262–4266PubMedCrossRef
88.
Zurück zum Zitat Liu J, Li D, Dang L, Liang C, Guo B, Lu C, He X, Cheung HY, He B, Liu B et al (2017) Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 7(40487) Liu J, Li D, Dang L, Liang C, Guo B, Lu C, He X, Cheung HY, He B, Liu B et al (2017) Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 7(40487)
89.
Zurück zum Zitat Dambal S, Shah M, Mihelich B, Nonn L (2015) The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 43(15):7173–7188PubMedPubMedCentralCrossRef Dambal S, Shah M, Mihelich B, Nonn L (2015) The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 43(15):7173–7188PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Ke K, Sul OJ, Rajasekaran M, Choi HS (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone. 81:237–246PubMedCrossRef Ke K, Sul OJ, Rajasekaran M, Choi HS (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone. 81:237–246PubMedCrossRef
91.
Zurück zum Zitat Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I, Riedel R, Flossdorf M, Dong J, Fuhrmann F et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057–1062PubMedCrossRef Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I, Riedel R, Flossdorf M, Dong J, Fuhrmann F et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057–1062PubMedCrossRef
92.
Zurück zum Zitat Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W, Sabouri-Ghomi M, Xu S, Zheng P, Xiao C, Dong C (2016) The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 44(6):1284–1298PubMedPubMedCentralCrossRef Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W, Sabouri-Ghomi M, Xu S, Zheng P, Xiao C, Dong C (2016) The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 44(6):1284–1298PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Inoue K, Deng Z, Chen Y, Giannopoulou E, Xu R, Gong S, Greenblatt MB, Mangala LS, Lopez-Berestein G, Kirsch DG, Sood AK, Zhao L, Zhao B (2018) Bone protection by inhibition of microRNA-182. Nat Commun 9(1):4108PubMedPubMedCentralCrossRef Inoue K, Deng Z, Chen Y, Giannopoulou E, Xu R, Gong S, Greenblatt MB, Mangala LS, Lopez-Berestein G, Kirsch DG, Sood AK, Zhao L, Zhao B (2018) Bone protection by inhibition of microRNA-182. Nat Commun 9(1):4108PubMedPubMedCentralCrossRef
94.
95.
Zurück zum Zitat Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147(2):358–369PubMedPubMedCentralCrossRef Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147(2):358–369PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 9(4) Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 9(4)
Metadaten
Titel
Osteoclastic microRNAs and their translational potential in skeletal diseases
verfasst von
Kazuki Inoue
Shinichi Nakano
Baohong Zhao
Publikationsdatum
07.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 5/2019
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00761-4

Weitere Artikel der Ausgabe 5/2019

Seminars in Immunopathology 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.