Skip to main content
Erschienen in: Clinical Oral Investigations 3/2017

23.04.2016 | Original Article

Osteogenic gene array of osteoblasts cultured on a novel osteoinductive biphasic calcium phosphate bone grafting material

verfasst von: Richard J. Miron, Yuang Shuang, Dieter D. Bosshardt, Jordi Caballé-Serrano, Fatiha Chandad, Yufeng Zhang

Erschienen in: Clinical Oral Investigations | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Recently, novel biphasic calcium phosphate (BCP) scaffolds have emerged as a new class of bone grafts with osteoinductive potential demonstrating the ability to form ectopic bone in extra-skeletal sites. The aim of the present study was to perform an osteogenic gene array to target possible genes responsible for eliciting the changes in cell expression responsible for inducing osteoblast differentiation.

Materials and methods

Human MG63 osteoblast-like cells were seeded for 24 h on tissue culture plastic or osteoinductive BCP particles and analyzed for upregulated genes using an osteogenesis super-array. Osteoblast-related genes including those transcribed during bone mineralization, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules were investigated.

Results

An upregulation of genes transcribing biglycan (1.7-fold), bone morphogenetic proteins 1, 2, 4, 6, and 7 (1.5–2.1-fold), various collagen isoforms including 1a1, 1a2, 2a1, and 5a1 (1.73–2.72-fold), colony stimulating factor 2 (2.59-fold), fibroblast growth factor receptor 2 (1.79-fold), fibronectin (2.56-fold), integrin alpha 1, 2, and 3 (1.82–2.24-fold), SOX9 (2.75-fold), transforming growth factor beta receptor 2 (1.72-fold), vitamin D (1.89-fold), and vascular endothelial growth factor A and B (2.00, 1.75-fold) were all significantly (p < 0.05) increased on BCP particles when compared to control tissue culture plastic.

Conclusion

In summary, a number of activated genes were involved in bone formation following osteoblast attachment to BCP particles. The involvement of key chondrogenic genes hints that bone grafts capable of spontaneously inducing ectopic bone formation may implicate endochondral ossification. Further investigations in the triggered pathways involved in the process of ectopic bone formation are necessary to understand the key inductive properties of these novel osteoinductive BCP particles.

Clinical relevance

Novel osteoinductive BCP particles demonstrate a wide range of significant increases over several key molecules implicated in osteogenesis that may be implicated in their ability to form ectopic bone formation.
Literatur
1.
Zurück zum Zitat Urist MR (1965) Bone: formation by autoinduction. Science (New York. NY 150:893–899CrossRef Urist MR (1965) Bone: formation by autoinduction. Science (New York. NY 150:893–899CrossRef
2.
Zurück zum Zitat Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283CrossRefPubMed Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283CrossRefPubMed
4.
Zurück zum Zitat Hunziker EB, Enggist L, Kuffer A, Buser D, Liu Y (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106CrossRefPubMed Hunziker EB, Enggist L, Kuffer A, Buser D, Liu Y (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106CrossRefPubMed
5.
Zurück zum Zitat Goldberg VM (2000) Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res:68–76 Goldberg VM (2000) Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res:68–76
6.
Zurück zum Zitat Koutouzis T, Lundgren T (2010) Crestal bone-level changes around implants placed in post-extraction sockets augmented with demineralized freeze-dried bone allograft: a retrospective radiographic study. J Periodontol 81:1441–1448CrossRefPubMed Koutouzis T, Lundgren T (2010) Crestal bone-level changes around implants placed in post-extraction sockets augmented with demineralized freeze-dried bone allograft: a retrospective radiographic study. J Periodontol 81:1441–1448CrossRefPubMed
7.
Zurück zum Zitat Kim YJ, Lee JY, Kim JE, Park JC, Shin SW, Cho KS (2014) Ridge preservation using demineralized bone matrix gel with recombinant human bone morphogenetic protein-2 after tooth extraction: a randomized controlled clinical trial. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons 72:1281–1290CrossRef Kim YJ, Lee JY, Kim JE, Park JC, Shin SW, Cho KS (2014) Ridge preservation using demineralized bone matrix gel with recombinant human bone morphogenetic protein-2 after tooth extraction: a randomized controlled clinical trial. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons 72:1281–1290CrossRef
8.
Zurück zum Zitat Lyon T, Scheele W, Bhandari M, Koval KJ, Sanchez EG, Christensen J, Valentin A, Huard F (2013) Efficacy and safety of recombinant human bone morphogenetic protein-2/calcium phosphate matrix for closed tibial diaphyseal fracture: a double-blind, randomized, controlled phase-II/III trial. The Journal of bone and joint surgery American volume 95:2088–2096CrossRefPubMed Lyon T, Scheele W, Bhandari M, Koval KJ, Sanchez EG, Christensen J, Valentin A, Huard F (2013) Efficacy and safety of recombinant human bone morphogenetic protein-2/calcium phosphate matrix for closed tibial diaphyseal fracture: a double-blind, randomized, controlled phase-II/III trial. The Journal of bone and joint surgery American volume 95:2088–2096CrossRefPubMed
9.
Zurück zum Zitat Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2011) Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res 90:1428–1433CrossRefPubMed Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2011) Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res 90:1428–1433CrossRefPubMed
10.
Zurück zum Zitat Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15:481–489CrossRefPubMed Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15:481–489CrossRefPubMed
11.
Zurück zum Zitat Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standards. J Dent Res 91:736–744CrossRefPubMed Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standards. J Dent Res 91:736–744CrossRefPubMed
12.
Zurück zum Zitat Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed
13.
Zurück zum Zitat Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 107:13614–13619CrossRefPubMedPubMedCentral Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 107:13614–13619CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, Schwartz Z (2010) Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 31:2728–2735CrossRefPubMedPubMedCentral Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, Schwartz Z (2010) Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 31:2728–2735CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2010) The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. J Biomed Mater Res 94:169–179CrossRef Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2010) The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. J Biomed Mater Res 94:169–179CrossRef
16.
Zurück zum Zitat Kim IS, Song YM, Hwang SJ (2010) Osteogenic responses of human mesenchymal stromal cells to static stretch. J Dent Res 89:1129–1134CrossRefPubMed Kim IS, Song YM, Hwang SJ (2010) Osteogenic responses of human mesenchymal stromal cells to static stretch. J Dent Res 89:1129–1134CrossRefPubMed
17.
Zurück zum Zitat Yanagisawa M, Suzuki N, Mitsui N, Koyama Y, Otsuka K, Shimizu N (2007) Effects of compressive force on the differentiation of pluripotent mesenchymal cells. Life Sci 81:405–412CrossRefPubMed Yanagisawa M, Suzuki N, Mitsui N, Koyama Y, Otsuka K, Shimizu N (2007) Effects of compressive force on the differentiation of pluripotent mesenchymal cells. Life Sci 81:405–412CrossRefPubMed
18.
Zurück zum Zitat Barbieri D, Yuan H, de Groot F, Walsh WR and de Bruijn JD (2011) Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta biomaterialia 7:2007–14. 19. Davison N, Yuan H, de Bruijn JD and Barrere-de Groot F (2012) In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers. Acta Biomater 8:2759–2769. Barbieri D, Yuan H, de Groot F, Walsh WR and de Bruijn JD (2011) Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta biomaterialia 7:2007–14. 19. Davison N, Yuan H, de Bruijn JD and Barrere-de Groot F (2012) In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers. Acta Biomater 8:2759–2769.
19.
Zurück zum Zitat Miron RJ, Sculean A, Shuang Y, Bosshardt DD, Gruber R, Buser D, Chandad F, Zhang Y (2015) Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implants Res. doi:10.1111/clr.12647 Miron RJ, Sculean A, Shuang Y, Bosshardt DD, Gruber R, Buser D, Chandad F, Zhang Y (2015) Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implants Res. doi:10.​1111/​clr.​12647
20.
Zurück zum Zitat Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, Shirakata Y, Chandad F and Zhang Y (2016) Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, Shirakata Y, Chandad F and Zhang Y (2016) Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig.
21.
Zurück zum Zitat Miron RJ, Oates CJ, Molenberg A, Dard M, Hamilton DW (2010) The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials 31:449–460CrossRefPubMed Miron RJ, Oates CJ, Molenberg A, Dard M, Hamilton DW (2010) The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials 31:449–460CrossRefPubMed
22.
Zurück zum Zitat Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. Journal of tissue engineering and regenerative medicine 1:25–32CrossRefPubMed Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. Journal of tissue engineering and regenerative medicine 1:25–32CrossRefPubMed
23.
Zurück zum Zitat Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K (2006) Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 24:867–876CrossRef Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K (2006) Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 24:867–876CrossRef
24.
Zurück zum Zitat Wang L, Barbieri D, Zhou H, de Bruijn JD, Bao C, Yuan H (2015) Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J Biomed Mater Res A 103(6):1919–1929. doi:10.1002/jbm.a.35325 CrossRefPubMed Wang L, Barbieri D, Zhou H, de Bruijn JD, Bao C, Yuan H (2015) Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J Biomed Mater Res A 103(6):1919–1929. doi:10.​1002/​jbm.​a.​35325 CrossRefPubMed
25.
Zurück zum Zitat Zhang J, Barbieri D, Ten Hoopen H, de Bruijn JD, van Blitterswijk CA, Yuan H (2015) Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A 103(3):1188–1199. doi:10.1002/jbm.a.35272 CrossRefPubMed Zhang J, Barbieri D, Ten Hoopen H, de Bruijn JD, van Blitterswijk CA, Yuan H (2015) Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A 103(3):1188–1199. doi:10.​1002/​jbm.​a.​35272 CrossRefPubMed
26.
Zurück zum Zitat Zhang J, Luo X, Barbieri D, Barradas AM, de Bruijn JD, van Blitterswijk CA, Yuan H (2014) The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater 10:3254–3263CrossRefPubMed Zhang J, Luo X, Barbieri D, Barradas AM, de Bruijn JD, van Blitterswijk CA, Yuan H (2014) The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater 10:3254–3263CrossRefPubMed
27.
Zurück zum Zitat Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178CrossRefPubMed Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178CrossRefPubMed
28.
Zurück zum Zitat Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89CrossRefPubMed Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89CrossRefPubMed
29.
Zurück zum Zitat Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313–1321CrossRefPubMed Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313–1321CrossRefPubMed
30.
Zurück zum Zitat Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346CrossRefPubMedPubMedCentral Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346CrossRefPubMedPubMedCentral
31.
32.
Zurück zum Zitat Oxlund H, Barckman M, Ørtoft G, Andreassen T (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:S365–S371 Oxlund H, Barckman M, Ørtoft G, Andreassen T (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:S365–S371
33.
Zurück zum Zitat Bolander ME (1992) Regulation of fracture repair by growth factors. Experimental Biology and Medicine 200:165–170CrossRef Bolander ME (1992) Regulation of fracture repair by growth factors. Experimental Biology and Medicine 200:165–170CrossRef
34.
Zurück zum Zitat Reddi A, Anderson WA (1976) Collagenous bone matrix-induced endochondral ossification hemopoiesis. J Cell Biol 69:557–572CrossRefPubMed Reddi A, Anderson WA (1976) Collagenous bone matrix-induced endochondral ossification hemopoiesis. J Cell Biol 69:557–572CrossRefPubMed
35.
Zurück zum Zitat Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101:17192–17197CrossRefPubMedPubMedCentral Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101:17192–17197CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Mackie E, Ahmed Y, Tatarczuch L, Chen K-S, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62CrossRefPubMed Mackie E, Ahmed Y, Tatarczuch L, Chen K-S, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62CrossRefPubMed
38.
Zurück zum Zitat Kojima N, Ozawa S, Miyata Y, Hasegawa H, Tanaka Y, Ogawa T (2008) High-throughput gene expression analysis in bone healing around titanium implants by DNA microarray. Clinical oral implants research 19:173–181CrossRefPubMed Kojima N, Ozawa S, Miyata Y, Hasegawa H, Tanaka Y, Ogawa T (2008) High-throughput gene expression analysis in bone healing around titanium implants by DNA microarray. Clinical oral implants research 19:173–181CrossRefPubMed
39.
Zurück zum Zitat Mengatto CM, Mussano F, Honda Y, Colwell CS, Nishimura I (2011) Circadian rhythm and cartilage extracellular matrix genes in osseointegration: a genome-wide screening of implant failure by vitamin D deficiency. PLoS One 6:e15848CrossRefPubMedPubMedCentral Mengatto CM, Mussano F, Honda Y, Colwell CS, Nishimura I (2011) Circadian rhythm and cartilage extracellular matrix genes in osseointegration: a genome-wide screening of implant failure by vitamin D deficiency. PLoS One 6:e15848CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Thalji G, Gretzer C, Cooper LF (2013) Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 52:444–453CrossRefPubMed Thalji G, Gretzer C, Cooper LF (2013) Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 52:444–453CrossRefPubMed
41.
Zurück zum Zitat Wall I, Donos N, Carlqvist K, Jones F, Brett P (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells < i > in vitro</i >. Bone 45:17–26CrossRefPubMed Wall I, Donos N, Carlqvist K, Jones F, Brett P (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells < i > in vitro</i >. Bone 45:17–26CrossRefPubMed
42.
Zurück zum Zitat Mamalis AA, Silvestros SS (2011) Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clinical oral implants research 22:530–537CrossRefPubMed Mamalis AA, Silvestros SS (2011) Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clinical oral implants research 22:530–537CrossRefPubMed
43.
Zurück zum Zitat Denker AE, Haas AR, Nicoll SB, Tuan RS (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64:67–76CrossRefPubMed Denker AE, Haas AR, Nicoll SB, Tuan RS (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64:67–76CrossRefPubMed
44.
Zurück zum Zitat Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis & Rheumatism 54:1222–1232CrossRef Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis & Rheumatism 54:1222–1232CrossRef
45.
Zurück zum Zitat Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465CrossRefPubMed Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465CrossRefPubMed
46.
Zurück zum Zitat Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203:398–409CrossRefPubMed Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203:398–409CrossRefPubMed
47.
Zurück zum Zitat Suzuki S, Itoh K, Ohyama K (2004) Local administration of IGF-I stimulates the growth of mandibular condyle in mature rats. J Orthod 31:138–143CrossRefPubMed Suzuki S, Itoh K, Ohyama K (2004) Local administration of IGF-I stimulates the growth of mandibular condyle in mature rats. J Orthod 31:138–143CrossRefPubMed
48.
Zurück zum Zitat Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone 19:S1–S12CrossRef Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone 19:S1–S12CrossRef
49.
Zurück zum Zitat Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 124:2991–2994CrossRefPubMed Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 124:2991–2994CrossRefPubMed
50.
Zurück zum Zitat Rosen DM, Stempien SA, Thompson AY, Seyedin SM (1988) Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 134:337–346CrossRefPubMed Rosen DM, Stempien SA, Thompson AY, Seyedin SM (1988) Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 134:337–346CrossRefPubMed
51.
Zurück zum Zitat Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (1999) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. European journal of histochemistry: EJH 44:269–278 Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (1999) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. European journal of histochemistry: EJH 44:269–278
52.
Zurück zum Zitat Street J, Bao M, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci 99:9656–9661CrossRefPubMedPubMedCentral Street J, Bao M, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci 99:9656–9661CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Davison NL, Gamblin AL, Layrolle P, Yuan H, de Bruijn JD, Barrere-de Groot F (2014) Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials 35:5088–5097CrossRefPubMed Davison NL, Gamblin AL, Layrolle P, Yuan H, de Bruijn JD, Barrere-de Groot F (2014) Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials 35:5088–5097CrossRefPubMed
54.
Zurück zum Zitat Davison NL, Su J, Yuan H, van den Beucken JJ, de Bruijn JD, Barrere-de Groot F (2015) Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. European cells & materials 29:314–329CrossRef Davison NL, Su J, Yuan H, van den Beucken JJ, de Bruijn JD, Barrere-de Groot F (2015) Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. European cells & materials 29:314–329CrossRef
55.
Zurück zum Zitat Davison NL, ten Harkel B, Schoenmaker T, Luo X, Yuan H, Everts V, Barrere-de Groot F, de Bruijn JD (2014) Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. Biomaterials 35:7441–7451CrossRefPubMed Davison NL, ten Harkel B, Schoenmaker T, Luo X, Yuan H, Everts V, Barrere-de Groot F, de Bruijn JD (2014) Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. Biomaterials 35:7441–7451CrossRefPubMed
56.
Zurück zum Zitat Miron RJ, Bosshardt DD (2016) OsteoMacs: key players around bone biomaterials. Biomaterials 82:1–19CrossRefPubMed Miron RJ, Bosshardt DD (2016) OsteoMacs: key players around bone biomaterials. Biomaterials 82:1–19CrossRefPubMed
Metadaten
Titel
Osteogenic gene array of osteoblasts cultured on a novel osteoinductive biphasic calcium phosphate bone grafting material
verfasst von
Richard J. Miron
Yuang Shuang
Dieter D. Bosshardt
Jordi Caballé-Serrano
Fatiha Chandad
Yufeng Zhang
Publikationsdatum
23.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 3/2017
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-016-1825-0

Weitere Artikel der Ausgabe 3/2017

Clinical Oral Investigations 3/2017 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.