Skip to main content
Erschienen in: Calcified Tissue International 2/2018

16.11.2017 | Review

Osteomimicry: How the Seed Grows in the Soil

verfasst von: Nadia Rucci, Anna Teti

Erschienen in: Calcified Tissue International | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Metastasis is defined as a very inefficient process, since less than 0.01% of cancer cells injected into the circulation will engraft in a distant organ, where they must acquire the ability to survive and proliferate inside a “foreign” environment. In bone metastases, the interaction with the host organ is much more favoured if tumour cells gain “osteomimicry”, that is the ability to resemble a resident bone cell (i.e. the osteoblast), thus intruding in the physiology of the bone. This is accomplished by the expression of osteoblast markers (e.g. alkaline phosphatase) and the production of bone matrix proteins and paracrine factors which deregulate the physiology of bone, fuelling the so-called “vicious cycle”. The main challenge of researchers is therefore to identify the genetic profile determining the osteotropism of tumour cells, which would eventually lead to bone colonisation. This could likely provide the answer to a quite intriguing question, that is why some cancers, such as prostate and breast, have a specific predilection to metastasise to the bone. Therefore, it is important to completely address the molecular mechanisms underlying this aspect of bone oncology, identifying relevant pathways, the targeting of which could make any type of bone metastasis curable or avoidable.
Literatur
1.
Zurück zum Zitat Fidler IJ (1970) Metastasis: quantitative analysis of the distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782PubMed Fidler IJ (1970) Metastasis: quantitative analysis of the distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782PubMed
2.
Zurück zum Zitat Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRef Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRef
3.
Zurück zum Zitat Ewing J (1928) A treatise on tumours, 3rd edn. W.B. Saunders, Philadelphia Ewing J (1928) A treatise on tumours, 3rd edn. W.B. Saunders, Philadelphia
4.
Zurück zum Zitat Bubendorf L, Schopfer A, Wagner U (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31:578–583CrossRefPubMed Bubendorf L, Schopfer A, Wagner U (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31:578–583CrossRefPubMed
5.
Zurück zum Zitat Coleman RE (2016) Impact of bone-targeted treatments on skeletal morbidity and survival in breast cancer. Oncology 30(8):695 (Williston Park) PubMed Coleman RE (2016) Impact of bone-targeted treatments on skeletal morbidity and survival in breast cancer. Oncology 30(8):695 (Williston Park) PubMed
7.
Zurück zum Zitat Lacey D, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qiann YX, Kaufman S, Sarosi I, Shalshoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176CrossRefPubMed Lacey D, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qiann YX, Kaufman S, Sarosi I, Shalshoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176CrossRefPubMed
8.
Zurück zum Zitat Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Program Amgen EST, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMed Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Program Amgen EST, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMed
9.
Zurück zum Zitat Xiong J, Piemontese M, Onal M, Campbell J, Goelner JJ, Dusevich V, Bonewald L, Manolagas SC, O’Brian CA (2015) Osteocytes not osteoblasts or lining cells are the main source of the RANKL required for osteoclast formation in remodelling bone. PLoS ONE 10:e0138189CrossRefPubMedPubMedCentral Xiong J, Piemontese M, Onal M, Campbell J, Goelner JJ, Dusevich V, Bonewald L, Manolagas SC, O’Brian CA (2015) Osteocytes not osteoblasts or lining cells are the main source of the RANKL required for osteoclast formation in remodelling bone. PLoS ONE 10:e0138189CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, Lydon JP (2009) The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 328:127–139CrossRefPubMed Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, Lydon JP (2009) The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 328:127–139CrossRefPubMed
11.
Zurück zum Zitat Kong YY, Boyle WJ, Penninger JM (1999) Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 77:188–193CrossRefPubMed Kong YY, Boyle WJ, Penninger JM (1999) Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 77:188–193CrossRefPubMed
12.
Zurück zum Zitat Anderson DM, Maraskovsky E, Billigsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179CrossRefPubMed Anderson DM, Maraskovsky E, Billigsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179CrossRefPubMed
13.
Zurück zum Zitat Kim W, Takyar FM, Swan K, Jeong J, vanHouten J, Sullivan CA, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J (2016) Calcium-sensing receptor (CaSR) promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res 76:5348–5360CrossRefPubMedPubMedCentral Kim W, Takyar FM, Swan K, Jeong J, vanHouten J, Sullivan CA, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J (2016) Calcium-sensing receptor (CaSR) promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res 76:5348–5360CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Byun MR, Hwang JH, Kim AR, Kim KM, Hwang ES, Yaffe MB, Hong JH (2014) Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 21:854–863CrossRefPubMedPubMedCentral Byun MR, Hwang JH, Kim AR, Kim KM, Hwang ES, Yaffe MB, Hong JH (2014) Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 21:854–863CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ducy P, Zhang R, Geoffroy V, Ridall AI, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefPubMed Ducy P, Zhang R, Geoffroy V, Ridall AI, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefPubMed
16.
Zurück zum Zitat Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F (2010) Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem 111:1199–1209CrossRefPubMed Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F (2010) Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem 111:1199–1209CrossRefPubMed
17.
Zurück zum Zitat Curatolo C, Ludovico GM, Correale M, Pagliarulo A, Abbate I, Cirrillo Marucco E, Barletta A (1992) Advanced prostate cancer follow-up with prostate-specific antigen, prostatic acid phosphatase, osteocalcin and bone isoenzyme of alkaline phosphatase. Eur Urol 21(Suppl 1):105–107CrossRefPubMed Curatolo C, Ludovico GM, Correale M, Pagliarulo A, Abbate I, Cirrillo Marucco E, Barletta A (1992) Advanced prostate cancer follow-up with prostate-specific antigen, prostatic acid phosphatase, osteocalcin and bone isoenzyme of alkaline phosphatase. Eur Urol 21(Suppl 1):105–107CrossRefPubMed
18.
Zurück zum Zitat Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261CrossRefPubMed Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261CrossRefPubMed
19.
Zurück zum Zitat Knerr K, Ackermann K, Neidhart T, Pyerin W (2004) Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int J Cancer 111:152–159CrossRefPubMed Knerr K, Ackermann K, Neidhart T, Pyerin W (2004) Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int J Cancer 111:152–159CrossRefPubMed
20.
Zurück zum Zitat Bellahcène A, Bachelier R, Detry C, Lidereau R, Clézardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148CrossRefPubMed Bellahcène A, Bachelier R, Detry C, Lidereau R, Clézardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148CrossRefPubMed
21.
Zurück zum Zitat Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY, Wong YC, Wang X, Chan KW (2008) TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29:1509–1518CrossRefPubMed Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY, Wong YC, Wang X, Chan KW (2008) TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29:1509–1518CrossRefPubMed
22.
Zurück zum Zitat Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, Wang QS, Feng YM (2016) Breast cancer cells obtain an osteomimetic feature via epithelial/mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 7:79688–79705PubMedPubMedCentral Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, Wang QS, Feng YM (2016) Breast cancer cells obtain an osteomimetic feature via epithelial/mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 7:79688–79705PubMedPubMedCentral
23.
Zurück zum Zitat Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise T, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise T, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMed
24.
Zurück zum Zitat Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA (2007) Bone regeneration is regulated by wnt signalling. J Bone Miner Res 22:1913–1923CrossRefPubMed Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA (2007) Bone regeneration is regulated by wnt signalling. J Bone Miner Res 22:1913–1923CrossRefPubMed
25.
Zurück zum Zitat Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windhal SH, Farman H, Kindlund B, Engdahl C, Koskela A, Zhang FP, Eriksson EE, Zaman F, Hammarstedt A, Isaksson H, Bally M, Kassem A, Lindholm C, Sandberg O, Aspenberg P, Savendahl L, Feng JQ, Tuckermann J, Tuukkanen J, Poutanen M, Baron R, Lerner UH, Gori F, Ohlsson C (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:279–1288CrossRef Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windhal SH, Farman H, Kindlund B, Engdahl C, Koskela A, Zhang FP, Eriksson EE, Zaman F, Hammarstedt A, Isaksson H, Bally M, Kassem A, Lindholm C, Sandberg O, Aspenberg P, Savendahl L, Feng JQ, Tuckermann J, Tuukkanen J, Poutanen M, Baron R, Lerner UH, Gori F, Ohlsson C (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:279–1288CrossRef
26.
Zurück zum Zitat Hall CL, Bafico A, Dai J, Aaronson SA, Kellet ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnt. Cancer Res 65:7554–7560CrossRefPubMed Hall CL, Bafico A, Dai J, Aaronson SA, Kellet ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnt. Cancer Res 65:7554–7560CrossRefPubMed
27.
Zurück zum Zitat Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA (2004) Up-regulation of Wnt-1 and -catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356CrossRefPubMed Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA (2004) Up-regulation of Wnt-1 and -catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356CrossRefPubMed
28.
Zurück zum Zitat Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28CrossRefPubMed Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28CrossRefPubMed
29.
Zurück zum Zitat Chu CYG, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung WK (2014) RANK-and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 21:311–326CrossRefPubMedPubMedCentral Chu CYG, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung WK (2014) RANK-and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 21:311–326CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Holen H, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62:1619–1623PubMed Holen H, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62:1619–1623PubMed
31.
Zurück zum Zitat Neville-Webbe HL, Cross NA, Eaton CL, Nyambo R, Evans CA, Coleman RE, Holen I (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–279CrossRefPubMed Neville-Webbe HL, Cross NA, Eaton CL, Nyambo R, Evans CA, Coleman RE, Holen I (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–279CrossRefPubMed
32.
Zurück zum Zitat Higgs JT, Jarboe JS, Lee JH, Chanda D, Lee CM, Deivanayagam C, Ponnazhagan S (2015) Variants of osteoprotegerin lacking TRAIL binding for therapeutic bone remodeling in osteolytic malignancies. Mol Cancer Res 13:819–882CrossRefPubMedPubMedCentral Higgs JT, Jarboe JS, Lee JH, Chanda D, Lee CM, Deivanayagam C, Ponnazhagan S (2015) Variants of osteoprotegerin lacking TRAIL binding for therapeutic bone remodeling in osteolytic malignancies. Mol Cancer Res 13:819–882CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Fisher LW, Fedarko NS (2003) Six genes expressed in bone and teeth encode the current members of the SIBLING family proteins. Connect Tissue Res 44(Suppl1):33–40CrossRefPubMed Fisher LW, Fedarko NS (2003) Six genes expressed in bone and teeth encode the current members of the SIBLING family proteins. Connect Tissue Res 44(Suppl1):33–40CrossRefPubMed
34.
Zurück zum Zitat Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277PubMed Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277PubMed
35.
Zurück zum Zitat Carlinfante G, Vassilioul D, Svensson O, Wendel M, Heinegard D, Andersson G (2003) Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 20:437–444CrossRefPubMed Carlinfante G, Vassilioul D, Svensson O, Wendel M, Heinegard D, Andersson G (2003) Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 20:437–444CrossRefPubMed
36.
Zurück zum Zitat Shevde LA, Das S, Clark DW, Samant RS (2010) Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med 10:71–81CrossRefPubMed Shevde LA, Das S, Clark DW, Samant RS (2010) Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med 10:71–81CrossRefPubMed
37.
Zurück zum Zitat Das S, Tucker JA, Khullar S, Samant RS, Shevde LA (2012) Hedgehog signalling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS ONE 7:e34374CrossRefPubMedPubMedCentral Das S, Tucker JA, Khullar S, Samant RS, Shevde LA (2012) Hedgehog signalling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS ONE 7:e34374CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Bellahcène A, Merville MP, Castronovo V (1994) Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res 54:2823–2826PubMed Bellahcène A, Merville MP, Castronovo V (1994) Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res 54:2823–2826PubMed
39.
Zurück zum Zitat Waltregny D, Bellahcène A, Van Riet I, Fisher LW, Young M, Fernandez P, Dewé W, de Leval J, Castronovo V (1998) Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 90:1000–1008CrossRefPubMed Waltregny D, Bellahcène A, Van Riet I, Fisher LW, Young M, Fernandez P, Dewé W, de Leval J, Castronovo V (1998) Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 90:1000–1008CrossRefPubMed
40.
Zurück zum Zitat Zhang JH (2004) Bone sialoprotein promotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res 24:1361–1368PubMed Zhang JH (2004) Bone sialoprotein promotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res 24:1361–1368PubMed
41.
Zurück zum Zitat Reufsteck C, Lifshitz-Shovali R, Zepp M, Bäuerle T, Kübler D, Golomb G, Berger MR (2012) Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metastasis 29:441–456CrossRefPubMed Reufsteck C, Lifshitz-Shovali R, Zepp M, Bäuerle T, Kübler D, Golomb G, Berger MR (2012) Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metastasis 29:441–456CrossRefPubMed
42.
Zurück zum Zitat Yeung F, Law WK, Yeh CH, Westendorf JJ, Zhang Y, Wang R, Kao C, Chung LW (2002) Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 277:2468–2476CrossRefPubMed Yeung F, Law WK, Yeh CH, Westendorf JJ, Zhang Y, Wang R, Kao C, Chung LW (2002) Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 277:2468–2476CrossRefPubMed
43.
Zurück zum Zitat Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signalling pathway. Cancer Res 65:2303–2313CrossRefPubMed Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signalling pathway. Cancer Res 65:2303–2313CrossRefPubMed
44.
Zurück zum Zitat Jacob K, Webber M, Benayahu D, Kleinman HK (1999) Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 59:4453–4457PubMed Jacob K, Webber M, Benayahu D, Kleinman HK (1999) Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 59:4453–4457PubMed
45.
Zurück zum Zitat Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung WKL (2011) β2-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71:2600–2610CrossRefPubMedPubMedCentral Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung WKL (2011) β2-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71:2600–2610CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092CrossRefPubMedPubMedCentral Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Itoh T, Ito Y, Ohtsuki Y, Ando M, Tsukamasa Y, Yamada N, Naoe T, Akao Y (2012) Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast differentiation. J Mol Histol 43:509–515CrossRefPubMedPubMedCentral Itoh T, Ito Y, Ohtsuki Y, Ando M, Tsukamasa Y, Yamada N, Naoe T, Akao Y (2012) Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast differentiation. J Mol Histol 43:509–515CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Karlsson T, Lundholm M, Widmark A, Persson E (2016) Tumor-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS ONE 11:e0166284CrossRefPubMedPubMedCentral Karlsson T, Lundholm M, Widmark A, Persson E (2016) Tumor-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS ONE 11:e0166284CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Andersen TL, Boissy P, Sondergaard TE, Kupisiewicz K, Plesner T, Rasmussen T, Haaber J, Kølvraa S, Delaissé JM (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17CrossRefPubMed Andersen TL, Boissy P, Sondergaard TE, Kupisiewicz K, Plesner T, Rasmussen T, Haaber J, Kølvraa S, Delaissé JM (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17CrossRefPubMed
52.
Zurück zum Zitat Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15:188–193CrossRefPubMed Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15:188–193CrossRefPubMed
Metadaten
Titel
Osteomimicry: How the Seed Grows in the Soil
verfasst von
Nadia Rucci
Anna Teti
Publikationsdatum
16.11.2017
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 2/2018
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0365-1

Weitere Artikel der Ausgabe 2/2018

Calcified Tissue International 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.