Skip to main content
Erschienen in: Brain Tumor Pathology 2/2019

01.04.2019 | Review Article

Overview of DNA methylation in adult diffuse gliomas

verfasst von: Kosuke Aoki, Atsushi Natsume

Erschienen in: Brain Tumor Pathology | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Adult diffuse gliomas form a heterogeneous group of tumors of the central nervous system that vary greatly in histology and prognosis. A significant advance during the last decade has been the identification of a set of genetic lesions that correlate well with histology and clinical outcome in diffuse gliomas. Most characteristic driver mutations consist of isocitrate dehydrogenase 1 (IDH1) and IDH2, and H3 histone family member 3A, which are strongly associated with DNA and histone methylation patterns. A well-characterized DNA methylation aberration is on the O6-methylguanine-DNA methyltransferase promoter. This aberration is associated with an improved response to the DNA alkylating agent, temozolomide. Methylation alterations are used for classification or treatment decisions of diffuse gliomas. This supports the importance of considering epigenomic aberrations in the pathogenesis of gliomas. Recent DNA methylation analyses revealed a small group of IDH mutant diffuse gliomas exhibiting decreased DNA hypermethylation resulting in substantial unfavorable prognosis comparable to glioblastoma. Thus, DNA methylation patterns may become a new standard that replaces the conventional grading system based on histological diagnosis. In this review, we summarize recent developments regarding the contributions of methylation patterns to the pathogenesis of adult diffuse glioma, the interactions between methylation patterns and driver mutations, and potential epigenomic targeted therapies.
Literatur
1.
2.
Zurück zum Zitat Aldape K, Simmons ML, Davis RL et al (2000) Discrepancies in diagnoses of neuroepithelial neoplasms: the San Francisco Bay Area Adult Glioma Study. Cancer 88:2342–2349CrossRefPubMed Aldape K, Simmons ML, Davis RL et al (2000) Discrepancies in diagnoses of neuroepithelial neoplasms: the San Francisco Bay Area Adult Glioma Study. Cancer 88:2342–2349CrossRefPubMed
3.
Zurück zum Zitat van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304CrossRefPubMedPubMedCentral van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMed Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMed
6.
Zurück zum Zitat Ichimura K (2012) Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol 29:131–139CrossRefPubMed Ichimura K (2012) Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol 29:131–139CrossRefPubMed
7.
Zurück zum Zitat Cairncross JG, Ueki K, Zlatescu MC et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479CrossRefPubMed Cairncross JG, Ueki K, Zlatescu MC et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479CrossRefPubMed
8.
Zurück zum Zitat Yamamichi A, Ohka F, Aoki K et al (2018) Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion. Brain Tumor Pathol 35:106–113CrossRefPubMed Yamamichi A, Ohka F, Aoki K et al (2018) Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion. Brain Tumor Pathol 35:106–113CrossRefPubMed
10.
Zurück zum Zitat Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231CrossRefPubMed Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231CrossRefPubMed
11.
Zurück zum Zitat Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRefPubMedPubMedCentral Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450CrossRefPubMedPubMedCentral Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587CrossRefPubMed Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587CrossRefPubMed
14.
Zurück zum Zitat Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569CrossRefPubMed Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569CrossRefPubMed
15.
Zurück zum Zitat Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514CrossRefPubMed Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514CrossRefPubMed
17.
19.
Zurück zum Zitat Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(Spec No 1):R50–R59CrossRefPubMed Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(Spec No 1):R50–R59CrossRefPubMed
20.
Zurück zum Zitat Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711CrossRefPubMed Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711CrossRefPubMed
21.
Zurück zum Zitat Costello JF, Berger MS, Huang HS et al (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56:2405–2410PubMed Costello JF, Berger MS, Huang HS et al (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56:2405–2410PubMed
22.
Zurück zum Zitat Watanabe T, Yokoo H, Yokoo M et al (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189CrossRefPubMed Watanabe T, Yokoo H, Yokoo M et al (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189CrossRefPubMed
23.
Zurück zum Zitat Nakamura M, Yonekawa Y, Kleihues P et al (2001) Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 81:77–82CrossRefPubMed Nakamura M, Yonekawa Y, Kleihues P et al (2001) Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 81:77–82CrossRefPubMed
24.
Zurück zum Zitat Bello MJ, Rey JA (2006) The p53/Mdm2/p14(ARF) cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogen 164:172–173CrossRef Bello MJ, Rey JA (2006) The p53/Mdm2/p14(ARF) cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogen 164:172–173CrossRef
25.
Zurück zum Zitat Amatya VJ, Naumann U, Weller M et al (2005) TP53 promoter methylation in human gliomas. Acta neuropathologica 110:178–184CrossRefPubMed Amatya VJ, Naumann U, Weller M et al (2005) TP53 promoter methylation in human gliomas. Acta neuropathologica 110:178–184CrossRefPubMed
26.
Zurück zum Zitat Lambiv WL, Vassallo I, Delorenzi M et al (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncology 13:736–747CrossRefPubMedPubMedCentral Lambiv WL, Vassallo I, Delorenzi M et al (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncology 13:736–747CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Gotze S, Wolter M, Reifenberger G et al (2010) Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 126:2584–2593PubMed Gotze S, Wolter M, Reifenberger G et al (2010) Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 126:2584–2593PubMed
28.
29.
Zurück zum Zitat Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522CrossRefPubMedPubMedCentral Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066CrossRefPubMedPubMedCentral Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343CrossRefPubMed Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343CrossRefPubMed
33.
Zurück zum Zitat Farshidfar F, Zheng S, Gingras MC et al (2017) Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep 19:2878–2880CrossRefPubMedPubMedCentral Farshidfar F, Zheng S, Gingras MC et al (2017) Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep 19:2878–2880CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed
35.
Zurück zum Zitat Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMed Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMed
37.
Zurück zum Zitat Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234CrossRefPubMedPubMedCentral Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234CrossRefPubMedPubMedCentral
38.
39.
Zurück zum Zitat Bunse L, Pusch S, Bunse T et al (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24:1192–1203CrossRefPubMed Bunse L, Pusch S, Bunse T et al (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24:1192–1203CrossRefPubMed
40.
Zurück zum Zitat Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMed Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMed
41.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
42.
Zurück zum Zitat Juratli TA, Kirsch M, Geiger K et al (2012) The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neurooncol 110:325–333CrossRefPubMed Juratli TA, Kirsch M, Geiger K et al (2012) The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neurooncol 110:325–333CrossRefPubMed
43.
Zurück zum Zitat Stupp R, Hegi ME, Gorlia T et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108CrossRefPubMed Stupp R, Hegi ME, Gorlia T et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108CrossRefPubMed
44.
Zurück zum Zitat Baumert BG, Hegi ME, van den Bent MJ et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033–26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 17:1521–1532CrossRefPubMedPubMedCentral Baumert BG, Hegi ME, van den Bent MJ et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033–26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 17:1521–1532CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Bady P, Delorenzi M, Hegi ME (2016) Sensitivity analysis of the MGMT-STP27 model and impact of genetic and epigenetic context to predict the MGMT methylation status in gliomas and other tumors. J Mol Diagn 18:350–361CrossRefPubMed Bady P, Delorenzi M, Hegi ME (2016) Sensitivity analysis of the MGMT-STP27 model and impact of genetic and epigenetic context to predict the MGMT methylation status in gliomas and other tumors. J Mol Diagn 18:350–361CrossRefPubMed
47.
Zurück zum Zitat Moran S, Martinez-Cardus A, Sayols S et al (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17:1386–1395CrossRefPubMed Moran S, Martinez-Cardus A, Sayols S et al (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17:1386–1395CrossRefPubMed
48.
49.
Zurück zum Zitat Sahm F, Schrimpf D, Stichel D et al (2017) DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 18:682–694CrossRefPubMed Sahm F, Schrimpf D, Stichel D et al (2017) DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 18:682–694CrossRefPubMed
50.
51.
Zurück zum Zitat Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefPubMedPubMedCentral Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805–810CrossRefPubMedPubMedCentral Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805–810CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77CrossRefPubMed Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77CrossRefPubMed
55.
Zurück zum Zitat Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRef Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRef
56.
Zurück zum Zitat Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596CrossRefPubMedPubMedCentral Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat de Souza CF, Sabedot TS, Malta TM et al (2018) A distinct DNA methylation shift in a subset of glioma CpG island methylator phenotypes during tumor recurrence. Cell Rep 23:637–651CrossRefPubMedPubMedCentral de Souza CF, Sabedot TS, Malta TM et al (2018) A distinct DNA methylation shift in a subset of glioma CpG island methylator phenotypes during tumor recurrence. Cell Rep 23:637–651CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Mazor T, Pankov A, Johnson BE et al (2015) DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28:307–317CrossRefPubMedPubMedCentral Mazor T, Pankov A, Johnson BE et al (2015) DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28:307–317CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Bai H, Harmanci AS, Erson-Omay EZ et al (2016) Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48:59–66CrossRefPubMed Bai H, Harmanci AS, Erson-Omay EZ et al (2016) Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48:59–66CrossRefPubMed
60.
Zurück zum Zitat Yang X, Han H, De Carvalho DD et al (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590CrossRefPubMedPubMedCentral Yang X, Han H, De Carvalho DD et al (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Singer M, Kosti I, Pachter L et al (2015) A diverse epigenetic landscape at human exons with implication for expression. Nucleic Acids Res 43:3498–3508CrossRefPubMedPubMedCentral Singer M, Kosti I, Pachter L et al (2015) A diverse epigenetic landscape at human exons with implication for expression. Nucleic Acids Res 43:3498–3508CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114CrossRefPubMed Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114CrossRefPubMed
63.
Zurück zum Zitat Malta TM, de Souza CF, Sabedot TS et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 20:608–620CrossRefPubMed Malta TM, de Souza CF, Sabedot TS et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 20:608–620CrossRefPubMed
64.
Zurück zum Zitat Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641CrossRefPubMed Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641CrossRefPubMed
65.
Zurück zum Zitat Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861CrossRefPubMedPubMedCentral Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Mund C, Brueckner B, Lyko F (2006) Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors basic concepts and clinical applications. Epigenetics-Us 1:7–13 Mund C, Brueckner B, Lyko F (2006) Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors basic concepts and clinical applications. Epigenetics-Us 1:7–13
67.
Zurück zum Zitat Issa JP (2005) Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Clin Pract Oncol 2(Suppl 1):S24–S29CrossRefPubMed Issa JP (2005) Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Clin Pract Oncol 2(Suppl 1):S24–S29CrossRefPubMed
68.
Zurück zum Zitat Kaminskas E, Farrell A, Abraham S et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608CrossRefPubMed Kaminskas E, Farrell A, Abraham S et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608CrossRefPubMed
69.
Zurück zum Zitat Tsai HC, Li H, Van Neste L et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21:430–446CrossRefPubMedPubMedCentral Tsai HC, Li H, Van Neste L et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21:430–446CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Chiappinelli KB, Strissel PL, Desrichard A et al (2017) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 169:361CrossRefPubMed Chiappinelli KB, Strissel PL, Desrichard A et al (2017) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 169:361CrossRefPubMed
71.
Zurück zum Zitat Roulois D, Loo Yau H, Singhania R et al (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–973CrossRefPubMedPubMedCentral Roulois D, Loo Yau H, Singhania R et al (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–973CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Kantarjian HM, Roboz GJ, Kropf PL et al (2017) Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol 18:1317–1326CrossRefPubMedPubMedCentral Kantarjian HM, Roboz GJ, Kropf PL et al (2017) Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol 18:1317–1326CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Losman JA, Looper RE, Koivunen P et al (2013) R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625CrossRefPubMed Losman JA, Looper RE, Koivunen P et al (2013) R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625CrossRefPubMed
74.
Zurück zum Zitat Stein EM (2015) IDH2 inhibition in AML: finally progress? Best Pract Res Cl Ha 28:112–115CrossRef Stein EM (2015) IDH2 inhibition in AML: finally progress? Best Pract Res Cl Ha 28:112–115CrossRef
75.
Zurück zum Zitat Yen K, Travins J, Wang F et al (2017) AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 7:478–493CrossRefPubMed Yen K, Travins J, Wang F et al (2017) AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 7:478–493CrossRefPubMed
76.
77.
Zurück zum Zitat DiNardo CD, Stein EM, de Botton S et al (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. New Engl J Med 378:2386–2398CrossRefPubMed DiNardo CD, Stein EM, de Botton S et al (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. New Engl J Med 378:2386–2398CrossRefPubMed
78.
Zurück zum Zitat Rohle D, Popovici-Muller J, Palaskas N et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630CrossRefPubMedPubMedCentral Rohle D, Popovici-Muller J, Palaskas N et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630CrossRefPubMedPubMedCentral
79.
80.
Zurück zum Zitat Mazor T, Chesnelong C, Pankov A et al (2017) Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1. Proc Natl Acad Sci USA 114:10743–10748CrossRefPubMedPubMedCentral Mazor T, Chesnelong C, Pankov A et al (2017) Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1. Proc Natl Acad Sci USA 114:10743–10748CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Mellinghoff IK, Touat M, Maher E et al (2017) Ag-120, a first-in-class mutant Idh1 inhibitor in patients with recurrent or progressive Idh1 mutant glioma: updated results from the phase 1 non-enhancing glioma population. Neuro-Oncology 19:10–11CrossRef Mellinghoff IK, Touat M, Maher E et al (2017) Ag-120, a first-in-class mutant Idh1 inhibitor in patients with recurrent or progressive Idh1 mutant glioma: updated results from the phase 1 non-enhancing glioma population. Neuro-Oncology 19:10–11CrossRef
Metadaten
Titel
Overview of DNA methylation in adult diffuse gliomas
verfasst von
Kosuke Aoki
Atsushi Natsume
Publikationsdatum
01.04.2019
Verlag
Springer Singapore
Erschienen in
Brain Tumor Pathology / Ausgabe 2/2019
Print ISSN: 1433-7398
Elektronische ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-019-00339-w

Weitere Artikel der Ausgabe 2/2019

Brain Tumor Pathology 2/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.