Skip to main content
Erschienen in: European Archives of Oto-Rhino-Laryngology 7/2018

31.05.2018 | Otology

P1 cortical auditory evoked potential in children with unilateral or bilateral cochlear implants; implication for the timing of second cochlear implantation

verfasst von: Sung Wook Jeong, Seung Hyun Chung, Lee-Suk Kim

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

To examine maturation of the central auditory pathway, using P1 cortical auditory evoked potential (CAEP), in children who had received unilateral or bilateral cochlear implantation (CI).

Study design

Prospective study.

Setting

Tertiary referral hospital.

Methods

Twenty children who had received CI due to congenital, or prelingual, deafness participated in the study. Participants had received the 1st implant at a mean age of 3.4 ± 0.7 years; 16 had also received a 2nd CI for the contralateral ear, at a mean age of 11.1 ± 2.1 years. P1 CAEP was recorded while using the 1st implant and, for those who received contralateral CI, within 2 weeks of switching on the 2nd implant. Relations between P1 latency and duration with the 1st implant, and between age at 1st CI and P1 latency, were investigated. Relations between P1 latency with the 1st and 2nd implants, and between the interstage interval and difference between P1 latencies with the 1st and 2nd implants, were also examined.

Results

P1 CAEP with the 1st implant was present in 16 of the 20 children. Mean P1 latency was shorter in the early CI group compared with the late CI group, but this difference was not statistically significant (p = 0.154). There was a significant negative correlation between the duration with the 1st implant and P1 latency (r = − 0.783, p < 0.001). Among the 16 children with sequential bilateral CI, P1 CAEP with the 2nd implant was present in 10. There was a significant negative correlation between the duration with the 1st implant before receiving the 2nd implant and P1 latency with the 2nd implant (r = − 0.710, p = 0.021); there was also a significant positive correlation between P1 latency with the 1st and 2nd implants (r = 0.722, p = 0.018). There was not a significant correlation between interstage interval and the difference between the two P1 latencies (r = − 0.430, p = 0.248).

Conclusion

Longer cochlear implant use is associated with shorter P1 latency. Unilateral hearing with the 1st implant may positively affect P1 latency with the 2nd CI ear. These findings imply that increased auditory experience may influence central auditory pathway maturation and that the degree of central auditory pathway maturation before the 2nd CI, rather than the timing when the surgery is received, may influence 2nd CI outcome in children with sequential bilateral cochlear implants.
Literatur
1.
Zurück zum Zitat Lee HJ, Kang E, Oh SH, Kang H, Lee DS, Lee MC et al (2004) Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hear Res 203:2–9 Lee HJ, Kang E, Oh SH, Kang H, Lee DS, Lee MC et al (2004) Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hear Res 203:2–9
2.
Zurück zum Zitat Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK et al (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150CrossRefPubMed Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK et al (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150CrossRefPubMed
3.
Zurück zum Zitat Sharma A, Dorman M, Spahr A (2002) Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 13:1365–1368CrossRefPubMed Sharma A, Dorman M, Spahr A (2002) Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 13:1365–1368CrossRefPubMed
4.
Zurück zum Zitat Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol 117:161–163CrossRefPubMed Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol 117:161–163CrossRefPubMed
5.
Zurück zum Zitat Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122CrossRefPubMed Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122CrossRefPubMed
6.
Zurück zum Zitat Gilley PM, Sharma A, Dorman M, Martin K (2004) Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol 116:648–657CrossRef Gilley PM, Sharma A, Dorman M, Martin K (2004) Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol 116:648–657CrossRef
7.
Zurück zum Zitat Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephal Clin Neurophysiol 104:540–545CrossRef Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephal Clin Neurophysiol 104:540–545CrossRef
8.
Zurück zum Zitat Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203:134–143CrossRefPubMed Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203:134–143CrossRefPubMed
9.
Zurück zum Zitat Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:532–539CrossRefPubMed Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:532–539CrossRefPubMed
10.
Zurück zum Zitat Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P et al (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573CrossRefPubMed Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P et al (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573CrossRefPubMed
11.
Zurück zum Zitat Dorman MF, Sharma A, Gilley P, Martin K, Roland P (2007) Central auditory development: evidence from CAEP measurements in children fit with cochlear implants. J Commun Disord 40:284–294CrossRefPubMedPubMedCentral Dorman MF, Sharma A, Gilley P, Martin K, Roland P (2007) Central auditory development: evidence from CAEP measurements in children fit with cochlear implants. J Commun Disord 40:284–294CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Yoshinaga-Itano C, Sedey AL, Coulter DK, Mehl AL (1998) Language of early- and later-identified children with hearing loss. Pediatrics 102:1161–1171CrossRefPubMed Yoshinaga-Itano C, Sedey AL, Coulter DK, Mehl AL (1998) Language of early- and later-identified children with hearing loss. Pediatrics 102:1161–1171CrossRefPubMed
13.
Zurück zum Zitat Sharma A, Glick H, Deeves E, Duncan E (2015) The P1 biomarker for assessing cortical maturation in pediatric hearing loss: a review. Otorinolaringologia 65:103–114PubMedPubMedCentral Sharma A, Glick H, Deeves E, Duncan E (2015) The P1 biomarker for assessing cortical maturation in pediatric hearing loss: a review. Otorinolaringologia 65:103–114PubMedPubMedCentral
14.
15.
Zurück zum Zitat Nicholas JG, Geers AE (2013) Spoken language benefits of extending cochlear implant candidacy below 12 months of age. Otol Neurotol 34:532–538CrossRefPubMedPubMedCentral Nicholas JG, Geers AE (2013) Spoken language benefits of extending cochlear implant candidacy below 12 months of age. Otol Neurotol 34:532–538CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Leigh J, Dettman S, Dowell R, Briggs R (2013) Communication development in children who receive a cochlear implant by 12 months of age. Otol Neurotol 34:443–450CrossRefPubMed Leigh J, Dettman S, Dowell R, Briggs R (2013) Communication development in children who receive a cochlear implant by 12 months of age. Otol Neurotol 34:443–450CrossRefPubMed
17.
Zurück zum Zitat Colletti L, Mandalà M, Colletti V (2012) Cochlear implants in children younger than 6 months. Otolaryngol Head Neck Surg 147:139–146CrossRefPubMed Colletti L, Mandalà M, Colletti V (2012) Cochlear implants in children younger than 6 months. Otolaryngol Head Neck Surg 147:139–146CrossRefPubMed
18.
Zurück zum Zitat Niparko JK, Tobey EA, Thal DJ, Eisenberg LS, Wang NY, Quittner AL et al (2010) Spoken language development in children following cochlear implantation. JAMA 303:1498–1506CrossRefPubMedPubMedCentral Niparko JK, Tobey EA, Thal DJ, Eisenberg LS, Wang NY, Quittner AL et al (2010) Spoken language development in children following cochlear implantation. JAMA 303:1498–1506CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sharma A, Gilley PM, Dorman MF, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46:494–499CrossRefPubMed Sharma A, Gilley PM, Dorman MF, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46:494–499CrossRefPubMed
20.
Zurück zum Zitat Gordon KA, Papsin BC (2009) Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otol Neurotol 30:319–331CrossRefPubMed Gordon KA, Papsin BC (2009) Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otol Neurotol 30:319–331CrossRefPubMed
21.
Zurück zum Zitat Kim JS, Kim LS, Jeong SW (2013) Functional benefits of sequential bilateral cochlear implantation in children with long inter-stage interval between two implants. Int J Pediatr Otorhinolaryngol 77:162–169CrossRefPubMed Kim JS, Kim LS, Jeong SW (2013) Functional benefits of sequential bilateral cochlear implantation in children with long inter-stage interval between two implants. Int J Pediatr Otorhinolaryngol 77:162–169CrossRefPubMed
22.
Zurück zum Zitat Strøm-Roum H, Laurent C, Wie OB (2012) Comparison of bilateral and unilateral cochlear implants in children with sequential surgery. Int J Pediatr Otorhinolaryngol 76:95–99CrossRefPubMed Strøm-Roum H, Laurent C, Wie OB (2012) Comparison of bilateral and unilateral cochlear implants in children with sequential surgery. Int J Pediatr Otorhinolaryngol 76:95–99CrossRefPubMed
23.
Zurück zum Zitat Boons T, Brokx JP, Frijns JH, Peeraer L, Philips B, Vermeulen A et al (2012) Effect of pediatric bilateral cochlear implantation on language development. Arch Pediatr Adolesc Med 166:28–34CrossRefPubMed Boons T, Brokx JP, Frijns JH, Peeraer L, Philips B, Vermeulen A et al (2012) Effect of pediatric bilateral cochlear implantation on language development. Arch Pediatr Adolesc Med 166:28–34CrossRefPubMed
24.
Zurück zum Zitat Kocdor P, Iseli CE, Teagle HF, Woodard J, Park L, Zdanski CJ et al (2016) The effect of interdevice interval on speech perception performance among bilateral, pediatric cochlear implant recipients. Laryngoscope 126:2389–2394CrossRefPubMed Kocdor P, Iseli CE, Teagle HF, Woodard J, Park L, Zdanski CJ et al (2016) The effect of interdevice interval on speech perception performance among bilateral, pediatric cochlear implant recipients. Laryngoscope 126:2389–2394CrossRefPubMed
Metadaten
Titel
P1 cortical auditory evoked potential in children with unilateral or bilateral cochlear implants; implication for the timing of second cochlear implantation
verfasst von
Sung Wook Jeong
Seung Hyun Chung
Lee-Suk Kim
Publikationsdatum
31.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 7/2018
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-018-5021-5

Weitere Artikel der Ausgabe 7/2018

European Archives of Oto-Rhino-Laryngology 7/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.