Skip to main content
Erschienen in: The journal of nutrition, health & aging 10/2017

03.05.2017

P49/STRAP, a serum response factor binding protein (SRFBP1), is involved in the redistribution of cytoskeletal f-actin proteins during glucose deprivation

verfasst von: E. D. Williams, S. C. Rogers, X. Zhang, G. Azhar, Jeanne Y. Wei

Erschienen in: The journal of nutrition, health & aging | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

The functional decline that usually accompanies adult aging also encompasses cellular changes including cytoplasmic architecture. In addition to their role in cytoskeletal structure, actin microfilaments have important roles in various cellular processes, including cell-to-cell communication and intracellular signaling. Age-related diseases and late-stage cellular morphological appearances often correlate with altered f-actin structure, which has been observed most notably in cancer. What remains less clear are the molecular pathways that may be involved in normal and premature aging-induced f-actin changes. We report herein that p49/STRAP, a serum response factor binding protein (SRFBP1), is increased with normal aging and appears to be sensitive to low glucose-exposure. Our study results suggest that increased levels of p49/STRAP expression tend to correlate with f-actin redistribution genes, particularly cofilin, while siRNA-mediated knockdown of p49/STRAP resulted in a reduction of thymosin-β4. Furthermore, with the redistribution of f-actin, we observed an increase in the intermediate filament vimentin, compatible with the notion that vimentin may be increased due to its greater role in cytoskeletal dynamics during advancing population doubling levels (PDLs) and in response to a low-glucose exposure. Taken together, these data suggest that p49/STRAP may play a role in glucose-deprivation associated cytoskeletal changes.
Literatur
3.
Zurück zum Zitat Rigney DR, Wei JY. Note on the dispersion of generations among cells in senescing diploid fibroblast populations. Mech. Ageing Dev. (1989); 47:187197.CrossRef Rigney DR, Wei JY. Note on the dispersion of generations among cells in senescing diploid fibroblast populations. Mech. Ageing Dev. (1989); 47:187197.CrossRef
4.
Zurück zum Zitat Odiet JA, Wei JY. Heart failure and the aging myocardium. Heart Failure Reviews (1996); 2:139–149.CrossRef Odiet JA, Wei JY. Heart failure and the aging myocardium. Heart Failure Reviews (1996); 2:139–149.CrossRef
5.
Zurück zum Zitat Vijg J, Wei JY. Understanding the biology of aging: the key to prevention and therapy. J. Am. Geriatr. Soc. (1995); 43:426–34.CrossRefPubMed Vijg J, Wei JY. Understanding the biology of aging: the key to prevention and therapy. J. Am. Geriatr. Soc. (1995); 43:426–34.CrossRefPubMed
6.
Zurück zum Zitat Nekhaeva E, Bodyak NB, McGrath S, Van Orsouw N, Pluzhnikov A, Wei JY, Vijg J, Khrapko K. Somatic mtDNA point mutations, as studied in individual cells of the human body, are abundant, commonly homoplasmic, and tissue-specific. PNAS (2002); 99: 5521–5526.CrossRefPubMedPubMedCentral Nekhaeva E, Bodyak NB, McGrath S, Van Orsouw N, Pluzhnikov A, Wei JY, Vijg J, Khrapko K. Somatic mtDNA point mutations, as studied in individual cells of the human body, are abundant, commonly homoplasmic, and tissue-specific. PNAS (2002); 99: 5521–5526.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Sven Geißler,1,2,* Martin Textor,1,2 Jirko Kühnisch,3 Delia Könnig,1,4 Oliver Klein,2,3 Andrea Ode,1,2 Tilman Pfitzner,1 James Adjaye,4,5 Grit Kasper,1,2 and Georg N. Duda1,2 Functional Comparison of Chronological and In Vitro Aging: Differential Role of the Cytoskeleton and Mitochondria in Mesenchymal Stromal Cells. PLoS One. (2012); 7(12): e52700.CrossRef Sven Geißler,1,2,* Martin Textor,1,2 Jirko Kühnisch,3 Delia Könnig,1,4 Oliver Klein,2,3 Andrea Ode,1,2 Tilman Pfitzner,1 James Adjaye,4,5 Grit Kasper,1,2 and Georg N. Duda1,2 Functional Comparison of Chronological and In Vitro Aging: Differential Role of the Cytoskeleton and Mitochondria in Mesenchymal Stromal Cells. PLoS One. (2012); 7(12): e52700.CrossRef
9.
Zurück zum Zitat Zhang X, Azhar G, Rogers SC, Foster SR, Luo S, Wei JY. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice. BMC Cell Biology. 2014; 15:32.CrossRefPubMedPubMedCentral Zhang X, Azhar G, Rogers SC, Foster SR, Luo S, Wei JY. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice. BMC Cell Biology. 2014; 15:32.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. (2010);21: 543–559.CrossRefPubMed Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. (2010);21: 543–559.CrossRefPubMed
11.
Zurück zum Zitat Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS. (1995);92:9363–9367.CrossRefPubMedPubMedCentral Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS. (1995);92:9363–9367.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lorente G, Syriani E, Morales M. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One. (2014) 9: e85817.CrossRefPubMedPubMedCentral Lorente G, Syriani E, Morales M. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One. (2014) 9: e85817.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rogers S. C., Zhang X., Azhar G., Luo S., Wei J. Y. Exposure to high or low glucose levels accelerates the appearance of markers of endothelial cell senescence and induces dysregulation of nitric oxide synthase.The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. (2013); 68(12):1469–1481.CrossRef Rogers S. C., Zhang X., Azhar G., Luo S., Wei J. Y. Exposure to high or low glucose levels accelerates the appearance of markers of endothelial cell senescence and induces dysregulation of nitric oxide synthase.The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. (2013); 68(12):1469–1481.CrossRef
15.
Zurück zum Zitat Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. (2005); 6: 583–589.CrossRef Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. (2005); 6: 583–589.CrossRef
16.
Zurück zum Zitat Jiang P, Enomoto A, Takahashi M. Cell biology of the movement of breast cancer cells: intracellular signalling and the actin cytoskeleton. Cancer Lett. (2009); 284:122–30.CrossRefPubMed Jiang P, Enomoto A, Takahashi M. Cell biology of the movement of breast cancer cells: intracellular signalling and the actin cytoskeleton. Cancer Lett. (2009); 284:122–30.CrossRefPubMed
17.
Zurück zum Zitat Yarar D, Waterman-Storer CM, Schmid SL. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell. (2005); 16: 964–975.CrossRefPubMedPubMedCentral Yarar D, Waterman-Storer CM, Schmid SL. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell. (2005); 16: 964–975.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Jacinto E, loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. (2004) 6: 1122–1128.CrossRefPubMed Jacinto E, loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. (2004) 6: 1122–1128.CrossRefPubMed
19.
Zurück zum Zitat Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. (2001) 22(6):818–35.CrossRefPubMed Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. (2001) 22(6):818–35.CrossRefPubMed
20.
Zurück zum Zitat Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. (2003)285(5):E1064–71.10.1152/ajpendo.00296.2003. Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. (2003)285(5):E1064–71.10.1152/ajpendo.00296.2003.
21.
Zurück zum Zitat Lu X.-G., Azhar G., Liu L., Tsou H., Wei J. Y. SRF binding to SRE in the rat heart: influence of age.The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. (1998); 53(1):B3–B10.CrossRef Lu X.-G., Azhar G., Liu L., Tsou H., Wei J. Y. SRF binding to SRE in the rat heart: influence of age.The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. (1998); 53(1):B3–B10.CrossRef
22.
Zurück zum Zitat Zhang X., Azhar G., Furr M. C., Zhong Y., Wei J. Y. Model of functional cardiac aging: young adult mice with mild overexpression of serum response factor. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. (2003); 285(3):R552–R560.CrossRef Zhang X., Azhar G., Furr M. C., Zhong Y., Wei J. Y. Model of functional cardiac aging: young adult mice with mild overexpression of serum response factor. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. (2003); 285(3):R552–R560.CrossRef
23.
Zurück zum Zitat Zhang XM, Azhar G, Helms S, Burton B, Tong W, Hong F, Zhong Y, Wei JY. Identification of new SRF binding sites in genes modulated by SRF over-expression in mouse hearts. Gene Regulation and Systems Biology (2011); 5:41–59.PubMedPubMedCentral Zhang XM, Azhar G, Helms S, Burton B, Tong W, Hong F, Zhong Y, Wei JY. Identification of new SRF binding sites in genes modulated by SRF over-expression in mouse hearts. Gene Regulation and Systems Biology (2011); 5:41–59.PubMedPubMedCentral
24.
Zurück zum Zitat Jin W, Goldfine AB, Boes T, Henry RR, Ciaraldi TP, Kim EY, et al. Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin. Invest. (2011); 121, 918–929.CrossRefPubMedPubMedCentral Jin W, Goldfine AB, Boes T, Henry RR, Ciaraldi TP, Kim EY, et al. Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin. Invest. (2011); 121, 918–929.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Zhang X, Azhar G, Zhong Y, Wei JY. Identification of a novel serum response factor cofactor in cardiac gene regulation. J. Biol. Chem. (2004); 279:55626–55632.CrossRefPubMed Zhang X, Azhar G, Zhong Y, Wei JY. Identification of a novel serum response factor cofactor in cardiac gene regulation. J. Biol. Chem. (2004); 279:55626–55632.CrossRefPubMed
26.
Zurück zum Zitat Zhang X, Azhar G, Helms S, Zhong Y, Wei JY. Identification of a subunit of NADHdehydrogenase as a p49/STRAP-binding protein. BMC Cell Biol. (2008); 9:8. doi: 10.1186/1471-2121-9-8.CrossRefPubMedPubMedCentral Zhang X, Azhar G, Helms S, Zhong Y, Wei JY. Identification of a subunit of NADHdehydrogenase as a p49/STRAP-binding protein. BMC Cell Biol. (2008); 9:8. doi: 10.1186/1471-2121-9-8.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Williams ED, Rogers SC, Zhang X, Azhar G, Wei JY. Elevated oxygen consumption rate in response to acute low-glucose stress: Metformin restores rate to normal level. Exp. Gerontol. (2015) Aug 7;70:157–162.CrossRefPubMedPubMedCentral Williams ED, Rogers SC, Zhang X, Azhar G, Wei JY. Elevated oxygen consumption rate in response to acute low-glucose stress: Metformin restores rate to normal level. Exp. Gerontol. (2015) Aug 7;70:157–162.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yun H, Lee JH, Park CE, et al. Inulin Increases Glucose Transport in C2C12 Myotubes and HepG2 Cells via Activation of AMP-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways. Journal of Medicinal Food. 2009;12(5):1023–1028.CrossRefPubMedPubMedCentral Yun H, Lee JH, Park CE, et al. Inulin Increases Glucose Transport in C2C12 Myotubes and HepG2 Cells via Activation of AMP-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways. Journal of Medicinal Food. 2009;12(5):1023–1028.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochimica et biophysica acta. 2015;1853(2):276–284.CrossRefPubMed Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochimica et biophysica acta. 2015;1853(2):276–284.CrossRefPubMed
30.
Zurück zum Zitat Bielig H, Lautz K, Braun PR, et al. The Cofilin Phosphatase Slingshot Homolog 1 (SSH1) Links NOD1 Signaling to Actin Remodeling. Baumler AJ, ed. PLoS Pathogens. 2014;10(9):e1004351.CrossRefPubMedPubMedCentral Bielig H, Lautz K, Braun PR, et al. The Cofilin Phosphatase Slingshot Homolog 1 (SSH1) Links NOD1 Signaling to Actin Remodeling. Baumler AJ, ed. PLoS Pathogens. 2014;10(9):e1004351.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Liu, L. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion. Biofactors. (2015); Sep-Oct;41(5):352–9.CrossRefPubMed Liu, L. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion. Biofactors. (2015); Sep-Oct;41(5):352–9.CrossRefPubMed
32.
Zurück zum Zitat Etienne-Manneville S. Actin and microtubules in cell motility: which one is in control? Traffic. (2004); 5:470–7.CrossRefPubMed Etienne-Manneville S. Actin and microtubules in cell motility: which one is in control? Traffic. (2004); 5:470–7.CrossRefPubMed
33.
Zurück zum Zitat Murai, K., and R. Treisman. Interaction of serum response factor (SRF) with the Elk-1 B-box inhibits RhoA-actin signalling to SRF and potentiates transcriptional activation by Elk-1. Mol. Cell. Biol. (2002); 22:7083–7092.CrossRefPubMedPubMedCentral Murai, K., and R. Treisman. Interaction of serum response factor (SRF) with the Elk-1 B-box inhibits RhoA-actin signalling to SRF and potentiates transcriptional activation by Elk-1. Mol. Cell. Biol. (2002); 22:7083–7092.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Nishio K, Inoue A. Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic P53 in senescent human fibroblasts. Histochemistry & Cell Biology. (2005); 123:11.CrossRef Nishio K, Inoue A. Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic P53 in senescent human fibroblasts. Histochemistry & Cell Biology. (2005); 123:11.CrossRef
35.
Zurück zum Zitat Fife CM, McCarroll JA, Kavallaris M Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. (2014). Fife CM, McCarroll JA, Kavallaris M Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. (2014).
36.
Zurück zum Zitat Nishio K, et al. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochemistry & Cell Biology. (2001); 116:7.CrossRef Nishio K, et al. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochemistry & Cell Biology. (2001); 116:7.CrossRef
37.
Zurück zum Zitat Thompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. Journal Of Applied Physiology. (2006); 101:1581–1587.CrossRefPubMedPubMedCentral Thompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. Journal Of Applied Physiology. (2006); 101:1581–1587.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Bell Biology. (2011); 13:1016–1023.CrossRef Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Bell Biology. (2011); 13:1016–1023.CrossRef
40.
Zurück zum Zitat Howard J. Mechanical signaling in networks of motor and cytoskeletal proteins. Ann. Rev. Biophys. (2009); 38: 217–234.CrossRef Howard J. Mechanical signaling in networks of motor and cytoskeletal proteins. Ann. Rev. Biophys. (2009); 38: 217–234.CrossRef
41.
Zurück zum Zitat C.S. Hill, J. Wynne, R. Treisman. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81 (1995), pp. 1159–1170CrossRefPubMed C.S. Hill, J. Wynne, R. Treisman. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81 (1995), pp. 1159–1170CrossRefPubMed
42.
Zurück zum Zitat Crockford D, Turjman N, Allan C, Angel J. «Thymosin beta4: structure, function, and biological properties supporting current and future clinical applications». Ann. N. Y. Acad. Sci. (April 2010); 1194: 179–89.CrossRef Crockford D, Turjman N, Allan C, Angel J. «Thymosin beta4: structure, function, and biological properties supporting current and future clinical applications». Ann. N. Y. Acad. Sci. (April 2010); 1194: 179–89.CrossRef
43.
Zurück zum Zitat Sen B, Xie Z, Case N, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2014;29(1):10.1002/jbmr.2031. Sen B, Xie Z, Case N, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2014;29(1):10.1002/jbmr.2031.
Metadaten
Titel
P49/STRAP, a serum response factor binding protein (SRFBP1), is involved in the redistribution of cytoskeletal f-actin proteins during glucose deprivation
verfasst von
E. D. Williams
S. C. Rogers
X. Zhang
G. Azhar
Jeanne Y. Wei
Publikationsdatum
03.05.2017
Verlag
Springer Paris
Erschienen in
The journal of nutrition, health & aging / Ausgabe 10/2017
Print ISSN: 1279-7707
Elektronische ISSN: 1760-4788
DOI
https://doi.org/10.1007/s12603-017-0925-0

Weitere Artikel der Ausgabe 10/2017

The journal of nutrition, health & aging 10/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.