Skip to main content
Erschienen in: Inflammation 5/2014

01.10.2014

Paeoniflorin Upregulates β-Defensin-2 Expression in Human Bronchial Epithelial Cell Through the p38 MAPK, ERK, and NF-κB Signaling Pathways

verfasst von: Yuying Gan, Xuefan Cui, Ting Ma, Yanliang Liu, Amin Li, Mao Huang

Erschienen in: Inflammation | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Paeoniflorin (PF) is one of the principal components of peony, a plant widely used in traditional Chinese medicine for its anti-inflammatory and immunomodulatory effects. Human β-defensin-2 (hBD-2) is an antimicrobial peptide that acts as the first line of defense against bacterial, viral, and fungal infections. This study aims to determine whether or not PF can regulate the expression of hBD-2 and its possible molecular mechanism in human bronchial epithelial cells (HBECs). Real-time quantitative reverse transcription PCR showed that PF can enhance the mRNA expression level of hBD-2 in a concentration- and time-dependent manner in HBECs. Further studies demonstrated that the mRNA and protein expression levels of hBD-2 were attenuated by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, the extracellular signal-regulated kinase (ERK) inhibitor PD98059, and the nuclear factor kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate (PDTC)). The phosphorylation of p38 MAPK, ERK, and c-Jun N-terminal kinase was detected by Western blot analysis, and the NF-κB translocation of 16HBECs after PF treatment was analyzed by immunofluorescence. These results support that PF upregulates hBD-2 expression in HBECs through the p38 MAPK, ERK, and NF-κB signaling pathways. These findings provide a new pharmacological mechanism of PF for the treatment of microbial infections by strengthening epithelial antimicrobial barriers.
Literatur
1.
Zurück zum Zitat Hiemstra, P.S. 2007. The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Experimental Lung Research 33(10): 537–542.PubMedCrossRef Hiemstra, P.S. 2007. The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Experimental Lung Research 33(10): 537–542.PubMedCrossRef
2.
Zurück zum Zitat Underwood, M., and L. Bakaletz. 2011. Innate immunity and the role of defensins in otitis media. Current Allergy and Asthma Reports 11(6): 499–507.PubMedCrossRefPubMedCentral Underwood, M., and L. Bakaletz. 2011. Innate immunity and the role of defensins in otitis media. Current Allergy and Asthma Reports 11(6): 499–507.PubMedCrossRefPubMedCentral
3.
Zurück zum Zitat Yang, D., Z.H. Liu, P. Tewary, Q. Chen, G. de la Rosa, and J.J. Oppenheim. 2007. Defensin participation in innate and adaptive immunity. Current Pharmaceutical Design 13(30): 3131–3139.PubMedCrossRef Yang, D., Z.H. Liu, P. Tewary, Q. Chen, G. de la Rosa, and J.J. Oppenheim. 2007. Defensin participation in innate and adaptive immunity. Current Pharmaceutical Design 13(30): 3131–3139.PubMedCrossRef
4.
Zurück zum Zitat McCormick, T.S., and A. Weinberg. 2000. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 54(1): 195–206.CrossRef McCormick, T.S., and A. Weinberg. 2000. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 54(1): 195–206.CrossRef
5.
Zurück zum Zitat Niyonsaba, F., K. Iwabuchi, H. Matsuda, H. Ogawa, and I. Nagaoka. 2002. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. International Immunology 14(4): 421–426.PubMedCrossRef Niyonsaba, F., K. Iwabuchi, H. Matsuda, H. Ogawa, and I. Nagaoka. 2002. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. International Immunology 14(4): 421–426.PubMedCrossRef
6.
Zurück zum Zitat Niyonsaba, F., H. Ushio, N. Nakano, W. Ng, K. Sayama, K. Hashimoto, et al. 2007. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. The Journal of Investigative Dermatology 127(3): 594–604.PubMedCrossRef Niyonsaba, F., H. Ushio, N. Nakano, W. Ng, K. Sayama, K. Hashimoto, et al. 2007. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. The Journal of Investigative Dermatology 127(3): 594–604.PubMedCrossRef
7.
Zurück zum Zitat Biragyn, A., P.A. Ruffini, C.A. Leifer, E. Klyushnenkova, A. Shakhov, O. Chertov, et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298(5595): 1025–1029.PubMedCrossRef Biragyn, A., P.A. Ruffini, C.A. Leifer, E. Klyushnenkova, A. Shakhov, O. Chertov, et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298(5595): 1025–1029.PubMedCrossRef
8.
Zurück zum Zitat Liu, J., X. Du, J. Chen, L. Hu, and L. Chen. 2013. The induction expression of human beta-defensins in gingival epithelial cells and fibroblasts. Archives of Oral Biology 58(10): 1415–1421.PubMedCrossRef Liu, J., X. Du, J. Chen, L. Hu, and L. Chen. 2013. The induction expression of human beta-defensins in gingival epithelial cells and fibroblasts. Archives of Oral Biology 58(10): 1415–1421.PubMedCrossRef
9.
Zurück zum Zitat Lai, Y., A.L. Cogen, K.A. Radek, H.J. Park, D.T. Macleod, A. Leichtle, et al. 2010. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. The Journal of Investigative Dermatology 130(9): 2211–2221.PubMedCrossRefPubMedCentral Lai, Y., A.L. Cogen, K.A. Radek, H.J. Park, D.T. Macleod, A. Leichtle, et al. 2010. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. The Journal of Investigative Dermatology 130(9): 2211–2221.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Ju, S.M., A.R. Goh, D.J. Kwon, G.S. Youn, H.J. Kwon, Y.S. Bae, et al. 2012. Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Molecules and Cells 33(4): 335–341.PubMedCrossRefPubMedCentral Ju, S.M., A.R. Goh, D.J. Kwon, G.S. Youn, H.J. Kwon, Y.S. Bae, et al. 2012. Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Molecules and Cells 33(4): 335–341.PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Gacser, A., Z. Tiszlavicz, T. Nemeth, G. Seprenyi, and Y. Mandi. 2013. Induction of human defensins by intestinal Caco-2 cells after interactions with opportunistic Candida species. Microbes and Infection/Institut Pasteur 16(1): 80–85.PubMedCrossRef Gacser, A., Z. Tiszlavicz, T. Nemeth, G. Seprenyi, and Y. Mandi. 2013. Induction of human defensins by intestinal Caco-2 cells after interactions with opportunistic Candida species. Microbes and Infection/Institut Pasteur 16(1): 80–85.PubMedCrossRef
12.
Zurück zum Zitat Kim, Y.J., H.S. Shin, J.H. Lee, Y.W. Jung, H.B. Kim, and U.H. Ha. 2013. Pneumolysin-mediated expression of beta-defensin 2 is coordinated by p38 MAP kinase-MKP1 in human airway cells. Journal of Microbiology 51(2): 194–199.CrossRef Kim, Y.J., H.S. Shin, J.H. Lee, Y.W. Jung, H.B. Kim, and U.H. Ha. 2013. Pneumolysin-mediated expression of beta-defensin 2 is coordinated by p38 MAP kinase-MKP1 in human airway cells. Journal of Microbiology 51(2): 194–199.CrossRef
13.
Zurück zum Zitat Li, D., H. Lei, Z. Li, H. Li, Y. Wang, and Y. Lai. 2013. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One 8(3): e58288.PubMedCrossRefPubMedCentral Li, D., H. Lei, Z. Li, H. Li, Y. Wang, and Y. Lai. 2013. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One 8(3): e58288.PubMedCrossRefPubMedCentral
14.
Zurück zum Zitat Scharf, S., J. Zahlten, K. Szymanski, S. Hippenstiel, N. Suttorp, and P.D. N’Guessan. 2012. Streptococcus pneumoniae induces human beta-defensin-2 and −3 in human lung epithelium. Experimental Lung Research 38(2): 100–110.PubMedCrossRef Scharf, S., J. Zahlten, K. Szymanski, S. Hippenstiel, N. Suttorp, and P.D. N’Guessan. 2012. Streptococcus pneumoniae induces human beta-defensin-2 and −3 in human lung epithelium. Experimental Lung Research 38(2): 100–110.PubMedCrossRef
15.
Zurück zum Zitat Hu, Z.Y., L. Xu, R. Yan, Y. Huang, G. Liu, W.X. Zhou, et al. 2013. Advance in studies on effect of paeoniflorin on nervous system. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi. China Journal of Chinese Materia Medica 38(3): 297–301.PubMed Hu, Z.Y., L. Xu, R. Yan, Y. Huang, G. Liu, W.X. Zhou, et al. 2013. Advance in studies on effect of paeoniflorin on nervous system. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi. China Journal of Chinese Materia Medica 38(3): 297–301.PubMed
16.
Zurück zum Zitat Zhang, W., and S.M. Dai. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. International Immunopharmacology 14(1): 27–31.PubMedCrossRef Zhang, W., and S.M. Dai. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. International Immunopharmacology 14(1): 27–31.PubMedCrossRef
17.
Zurück zum Zitat Cao, W., W. Zhang, J. Liu, Y. Wang, X. Peng, D. Lu, et al. 2011. Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-alpha and IL-1beta release and augmentation of IL-10 production. International Immunopharmacology 11(2): 172–178.PubMedCrossRef Cao, W., W. Zhang, J. Liu, Y. Wang, X. Peng, D. Lu, et al. 2011. Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-alpha and IL-1beta release and augmentation of IL-10 production. International Immunopharmacology 11(2): 172–178.PubMedCrossRef
18.
Zurück zum Zitat Jiang, W.L., X.G. Chen, H.B. Zhu, Y.B. Gao, J.W. Tian, and F.H. Fu. 2009. Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic & Clinical Pharmacology & Toxicology 105(1): 64–71.CrossRef Jiang, W.L., X.G. Chen, H.B. Zhu, Y.B. Gao, J.W. Tian, and F.H. Fu. 2009. Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic & Clinical Pharmacology & Toxicology 105(1): 64–71.CrossRef
19.
Zurück zum Zitat Zhou, Y., H. Wang, Y.S. Li, Y.W. Tao, J.Y. Zhang, and Z.Q. Zhang. 2010. Paeoniflorin increases beta-defensin expression and attenuates lesion in the colonic mucosa from mice with oxazolone-induced colitis. Yao xue xue bao. Acta Pharmaceutica Sinica 45(1): 37–42.PubMed Zhou, Y., H. Wang, Y.S. Li, Y.W. Tao, J.Y. Zhang, and Z.Q. Zhang. 2010. Paeoniflorin increases beta-defensin expression and attenuates lesion in the colonic mucosa from mice with oxazolone-induced colitis. Yao xue xue bao. Acta Pharmaceutica Sinica 45(1): 37–42.PubMed
20.
Zurück zum Zitat Kao, C.Y., Y. Chen, P. Thai, S. Wachi, F. Huang, C. Kim, et al. 2004. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. Journal of Immunology 173(5): 3482–3491.CrossRef Kao, C.Y., Y. Chen, P. Thai, S. Wachi, F. Huang, C. Kim, et al. 2004. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. Journal of Immunology 173(5): 3482–3491.CrossRef
21.
Zurück zum Zitat Tecle, T., S. Tripathi, and K.L. Hartshorn. 2010. Review: defensins and cathelicidins in lung immunity. Innate Immunity 16(3): 151–159.PubMedCrossRef Tecle, T., S. Tripathi, and K.L. Hartshorn. 2010. Review: defensins and cathelicidins in lung immunity. Innate Immunity 16(3): 151–159.PubMedCrossRef
22.
Zurück zum Zitat Chen, H., Z. Xu, L. Peng, X. Fang, X. Yin, N. Xu, et al. 2006. Recent advances in the research and development of human defensins. Peptides 27(4): 931–940.PubMedCrossRef Chen, H., Z. Xu, L. Peng, X. Fang, X. Yin, N. Xu, et al. 2006. Recent advances in the research and development of human defensins. Peptides 27(4): 931–940.PubMedCrossRef
23.
Zurück zum Zitat Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh. 2013. MAP kinase signalling cascades and transcriptional regulation. Gene 513(1): 1–13.PubMedCrossRef Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh. 2013. MAP kinase signalling cascades and transcriptional regulation. Gene 513(1): 1–13.PubMedCrossRef
24.
Zurück zum Zitat Madi, A., Z. Alnabhani, C. Leneveu, L. Mijouin, M. Feuilloley, and N. Connil. 2013. Pseudomonas fluorescens can induce and divert the human beta-defensin-2 secretion in intestinal epithelial cells to enhance its virulence. Archives of Microbiology 195(3): 189–195.PubMedCrossRef Madi, A., Z. Alnabhani, C. Leneveu, L. Mijouin, M. Feuilloley, and N. Connil. 2013. Pseudomonas fluorescens can induce and divert the human beta-defensin-2 secretion in intestinal epithelial cells to enhance its virulence. Archives of Microbiology 195(3): 189–195.PubMedCrossRef
25.
Zurück zum Zitat Jang, B.C., K.J. Lim, J.H. Paik, Y.K. Kwon, S.W. Shin, S.C. Kim, et al. 2004. Up-regulation of human beta-defensin 2 by interleukin-1beta in A549 cells: involvement of PI3K, PKC, p38 MAPK, JNK, and NF-kappaB. Biochemical and Biophysical Research Communications 320(3): 1026–1033.PubMedCrossRef Jang, B.C., K.J. Lim, J.H. Paik, Y.K. Kwon, S.W. Shin, S.C. Kim, et al. 2004. Up-regulation of human beta-defensin 2 by interleukin-1beta in A549 cells: involvement of PI3K, PKC, p38 MAPK, JNK, and NF-kappaB. Biochemical and Biophysical Research Communications 320(3): 1026–1033.PubMedCrossRef
26.
Zurück zum Zitat Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140(6): 805–820.PubMedCrossRef Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140(6): 805–820.PubMedCrossRef
27.
Zurück zum Zitat Wang, C., J. Yuan, H.X. Wu, Y. Chang, Q.T. Wang, Y.J. Wu, et al. 2013. Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflammation Research 62(12): 1035–1044.PubMedCrossRef Wang, C., J. Yuan, H.X. Wu, Y. Chang, Q.T. Wang, Y.J. Wu, et al. 2013. Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflammation Research 62(12): 1035–1044.PubMedCrossRef
28.
Zurück zum Zitat Nam, K.N., C.G. Yae, J.W. Hong, D.H. Cho, J.H. Lee, and E.H. Lee. 2013. Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnology Letters 35(8): 1183–1189.PubMedCrossRef Nam, K.N., C.G. Yae, J.W. Hong, D.H. Cho, J.H. Lee, and E.H. Lee. 2013. Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnology Letters 35(8): 1183–1189.PubMedCrossRef
29.
Zurück zum Zitat Zhang, J., W. Dou, E. Zhang, A. Sun, L. Ding, X. Wei, et al. 2013. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 54(9): 6326–6333. Zhang, J., W. Dou, E. Zhang, A. Sun, L. Ding, X. Wei, et al. 2013. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 54(9): 6326–6333.
30.
Zurück zum Zitat Yan, D., K. Saito, Y. Ohmi, N. Fujie, and K. Ohtsuka. 2004. Paeoniflorin, a novel heat shock protein-inducing compound. Cell Stress & Chaperones 9(4): 378–389.CrossRef Yan, D., K. Saito, Y. Ohmi, N. Fujie, and K. Ohtsuka. 2004. Paeoniflorin, a novel heat shock protein-inducing compound. Cell Stress & Chaperones 9(4): 378–389.CrossRef
31.
Zurück zum Zitat Asai, M., D. Kawashima, K. Katagiri, R. Takeuchi, G. Tohnai, and K. Ohtsuka. 2011. Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl- and ethanol-triggered gastric mucosal injury. Life Sciences 88(7–8): 350–357.PubMedCrossRef Asai, M., D. Kawashima, K. Katagiri, R. Takeuchi, G. Tohnai, and K. Ohtsuka. 2011. Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl- and ethanol-triggered gastric mucosal injury. Life Sciences 88(7–8): 350–357.PubMedCrossRef
Metadaten
Titel
Paeoniflorin Upregulates β-Defensin-2 Expression in Human Bronchial Epithelial Cell Through the p38 MAPK, ERK, and NF-κB Signaling Pathways
verfasst von
Yuying Gan
Xuefan Cui
Ting Ma
Yanliang Liu
Amin Li
Mao Huang
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9872-7

Weitere Artikel der Ausgabe 5/2014

Inflammation 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.