Skip to main content
Erschienen in: Inflammation 3/2016

22.04.2016 | ORIGINAL ARTICLE

Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells

verfasst von: Hang Lei, Quan Wen, Hui Li, Shaohui Du, Jing-jing Wu, Jing Chen, Haiyuan Huang, Dongfeng Chen, Yiwei Li, Saixia Zhang, Jianhong Zhou, Rudong Deng, Qinglin Yang

Erschienen in: Inflammation | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2′-hydroxy-4′-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goodwin, Graham H., Clive Sanders, and Ernest W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38: 14–19.CrossRefPubMed Goodwin, Graham H., Clive Sanders, and Ernest W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38: 14–19.CrossRefPubMed
2.
Zurück zum Zitat Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed
3.
Zurück zum Zitat Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev Immunol 5: 331–342.CrossRef Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev Immunol 5: 331–342.CrossRef
4.
Zurück zum Zitat Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.CrossRefPubMedPubMedCentral Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed
6.
Zurück zum Zitat Li, M., D.F. Carpio, Y. Zheng, P. Bruzzo, V. Singh, F. Ouaaz, R.M. Medzhitov, and A.A. Beg. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166: 7128–7135.CrossRef Li, M., D.F. Carpio, Y. Zheng, P. Bruzzo, V. Singh, F. Ouaaz, R.M. Medzhitov, and A.A. Beg. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166: 7128–7135.CrossRef
7.
Zurück zum Zitat Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed
10.
Zurück zum Zitat Ueno, H., T. Matsuda, S. Hashimoto, F. Amaya, Y. Kitamura, M. Tanaka, A. Kobayashi, I. Maruyama, S. Yamada, N. Hasegawa, J. Soejima, H. Koh, and A. Ishizaka. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.CrossRefPubMed Ueno, H., T. Matsuda, S. Hashimoto, F. Amaya, Y. Kitamura, M. Tanaka, A. Kobayashi, I. Maruyama, S. Yamada, N. Hasegawa, J. Soejima, H. Koh, and A. Ishizaka. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.CrossRefPubMed
11.
Zurück zum Zitat van Zoelen, M. A., Laterre, P. F., van Veen. S, Q., van Till J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and van der Poll, T. 2007. Systemic and local high mobility group box 1 concentrations during severe infection. e 35: 2799–2804. van Zoelen, M. A., Laterre, P. F., van Veen. S, Q., van Till J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and van der Poll, T. 2007. Systemic and local high mobility group box 1 concentrations during severe infection. e 35: 2799–2804.
12.
Zurück zum Zitat Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef
13.
Zurück zum Zitat Kohno, T., T. Anzai, K. Naito, T. Miyasho, M. Okamoto, H. Yokota, S. Yamada, Y. Maekawa, T. Takahashi, T. Yoshikawa, A. Ishizaka, and S. Ogawa. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research 81: 565–573.CrossRefPubMed Kohno, T., T. Anzai, K. Naito, T. Miyasho, M. Okamoto, H. Yokota, S. Yamada, Y. Maekawa, T. Takahashi, T. Yoshikawa, A. Ishizaka, and S. Ogawa. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research 81: 565–573.CrossRefPubMed
14.
Zurück zum Zitat Kokkola, R., E. Sundberg, A.K. Ulfgren, K. Palmblad, J. Li, H. Wang, L. Ulloa, H. Yang, X.J. Yan, R. Furie, N. Chiorazzi, K.J. Tracey, U. Andersson, and H.E. Harris. 2002. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis and Rheumatism 46: 2598–2603.CrossRefPubMed Kokkola, R., E. Sundberg, A.K. Ulfgren, K. Palmblad, J. Li, H. Wang, L. Ulloa, H. Yang, X.J. Yan, R. Furie, N. Chiorazzi, K.J. Tracey, U. Andersson, and H.E. Harris. 2002. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis and Rheumatism 46: 2598–2603.CrossRefPubMed
15.
Zurück zum Zitat Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, T. Nakajima, S. Komiya, and I. Maruyama. 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 48: 971–981.CrossRefPubMed Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, T. Nakajima, S. Komiya, and I. Maruyama. 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 48: 971–981.CrossRefPubMed
16.
Zurück zum Zitat Lamkanfi, M., A. Sarkar, L. Vande Walle, A.C. Vitari, A.O. Amer, M.D. Wewers, K.J. Tracey, T.D. Kanneganti, and V.M. Dixit. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. Journal of Immunology 185: 4385–4392.CrossRef Lamkanfi, M., A. Sarkar, L. Vande Walle, A.C. Vitari, A.O. Amer, M.D. Wewers, K.J. Tracey, T.D. Kanneganti, and V.M. Dixit. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. Journal of Immunology 185: 4385–4392.CrossRef
17.
Zurück zum Zitat Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, H. Wang, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.CrossRefPubMedPubMedCentral Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, H. Wang, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Suda, K., Y. Kitagawa, S. Ozawa, Y. Saikawa, M. Ueda, M. Ebina, S. Yamada, S. Hashimoto, S. Fukata, E. Abraham, I. Maruyama, M. Kitajima, and A. Ishizaka. 2006. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis. World Journal of Surgery 30: 1755–1762.CrossRefPubMed Suda, K., Y. Kitagawa, S. Ozawa, Y. Saikawa, M. Ueda, M. Ebina, S. Yamada, S. Hashimoto, S. Fukata, E. Abraham, I. Maruyama, M. Kitajima, and A. Ishizaka. 2006. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis. World Journal of Surgery 30: 1755–1762.CrossRefPubMed
19.
Zurück zum Zitat Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27: 672–677.CrossRefPubMed Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27: 672–677.CrossRefPubMed
20.
Zurück zum Zitat Zhang, T., M. Xia, Q. Zhan, Q. Zhou, G. Lu, and F. An. 2015. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression. Digestive Diseases and Sciences 60: 1991–1999.CrossRefPubMed Zhang, T., M. Xia, Q. Zhan, Q. Zhou, G. Lu, and F. An. 2015. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression. Digestive Diseases and Sciences 60: 1991–1999.CrossRefPubMed
21.
Zurück zum Zitat Gong, Q., M.J. Chen, C. Wang, H. Nie, Y.X. Zhang, K.G. Shu, and G. Li. 2014. Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice. Sheng Li Xue Bao 66: 619–624. Chinese.PubMed Gong, Q., M.J. Chen, C. Wang, H. Nie, Y.X. Zhang, K.G. Shu, and G. Li. 2014. Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice. Sheng Li Xue Bao 66: 619–624. Chinese.PubMed
22.
Zurück zum Zitat Wu, A.H., L. He, W. Long, Q. Zhou, S. Zhu, P. Wang, S. Fan, and H. Wang. 2015. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evidence-based Complementary and Alternative Medicine. doi:10.1155/2015/456305. Wu, A.H., L. He, W. Long, Q. Zhou, S. Zhu, P. Wang, S. Fan, and H. Wang. 2015. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evidence-based Complementary and Alternative Medicine. doi:10.​1155/​2015/​456305.
23.
Zurück zum Zitat Nizamutdinova, I.T., H.M. Oh, Y.N. Min, S.H. Park, M.J. Lee, J.S. Kim, M.H. Yean, S.S. Kang, Y.S. Kim, K.C. Chang, and H.J. Kim. 2007. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. International Immunopharmacology 7: 343–350.CrossRefPubMed Nizamutdinova, I.T., H.M. Oh, Y.N. Min, S.H. Park, M.J. Lee, J.S. Kim, M.H. Yean, S.S. Kang, Y.S. Kim, K.C. Chang, and H.J. Kim. 2007. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. International Immunopharmacology 7: 343–350.CrossRefPubMed
24.
Zurück zum Zitat Himaya, S.W., B. Ryu, Z.J. Qian, and S.K. Kim. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicology In Vitro 26: 878–887.CrossRefPubMed Himaya, S.W., B. Ryu, Z.J. Qian, and S.K. Kim. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicology In Vitro 26: 878–887.CrossRefPubMed
25.
Zurück zum Zitat Wu, J., X. Xue, B. Zhang, W. Jiang, H. Cao, R. Wang, D. Sun, and R. Guo. 2016. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chemico-Biological Interactions 244: 1–8.CrossRefPubMed Wu, J., X. Xue, B. Zhang, W. Jiang, H. Cao, R. Wang, D. Sun, and R. Guo. 2016. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chemico-Biological Interactions 244: 1–8.CrossRefPubMed
26.
Zurück zum Zitat Zhang, L., L. Tao, T. Shi, F. Zhang, X. Sheng, Y. Cao, S. Zheng, A. Wang, W. Qian, L. Jiang, and Y. Lu. 2015. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67: 778–788.CrossRefPubMed Zhang, L., L. Tao, T. Shi, F. Zhang, X. Sheng, Y. Cao, S. Zheng, A. Wang, W. Qian, L. Jiang, and Y. Lu. 2015. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67: 778–788.CrossRefPubMed
27.
Zurück zum Zitat Jin, X., J. Wang, Z.M. Xia, C.H. Shang, Q.L. Chao, Y.R. Liu, H.Y. Fan, D.Q. Chen, F. Qiu, and F. Zhao. 2016. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation 39: 434–446.CrossRefPubMed Jin, X., J. Wang, Z.M. Xia, C.H. Shang, Q.L. Chao, Y.R. Liu, H.Y. Fan, D.Q. Chen, F. Qiu, and F. Zhao. 2016. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation 39: 434–446.CrossRefPubMed
28.
Zurück zum Zitat Chou, T.C. 2003. Anti-inflammatory and analgesic effects of Paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.CrossRefPubMedPubMedCentral Chou, T.C. 2003. Anti-inflammatory and analgesic effects of Paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Fu, P. K., Wu, C. L., Tsai, T. H., and Hsieh, C. L., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 2012: Doi: 10.1155/2012/837513 Fu, P. K., Wu, C. L., Tsai, T. H., and Hsieh, C. L., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 2012: Doi: 10.1155/2012/837513
30.
Zurück zum Zitat Wang, Y.Q., M. Dai, J.C. Zhong, and D.K. Yin. 2012. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biological and Pharmaceutical Bulletin 35: 767–772.CrossRefPubMed Wang, Y.Q., M. Dai, J.C. Zhong, and D.K. Yin. 2012. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biological and Pharmaceutical Bulletin 35: 767–772.CrossRefPubMed
31.
Zurück zum Zitat Huang, H., E.J. Chang, Y. Lee, J.S. Kim, S.S. Kang, and H.H. Kim. 2008. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflammation Research 57: 189–198.CrossRefPubMed Huang, H., E.J. Chang, Y. Lee, J.S. Kim, S.S. Kang, and H.H. Kim. 2008. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflammation Research 57: 189–198.CrossRefPubMed
32.
Zurück zum Zitat Zhu, S., W. Li, M.F. Ward, A.E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9: 60–72.CrossRefPubMed Zhu, S., W. Li, M.F. Ward, A.E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9: 60–72.CrossRefPubMed
33.
Zurück zum Zitat Tu, C.T., Q.Y. Yao, B.L. Xu, and S.C. Zhang. 2012. Curcumin protects against concanavalin a-induced hepatitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1. Inflammation 36: 206–215.CrossRef Tu, C.T., Q.Y. Yao, B.L. Xu, and S.C. Zhang. 2012. Curcumin protects against concanavalin a-induced hepatitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1. Inflammation 36: 206–215.CrossRef
34.
Zurück zum Zitat Lin, C., H.Y. Lin, J.H. Chen, W.P. Tseng, P.Y. Ko, Y.S. Liu, W.L. Yeh, and D.Y. Lu. 2015. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Sci. 16: 8844–8860. Lin, C., H.Y. Lin, J.H. Chen, W.P. Tseng, P.Y. Ko, Y.S. Liu, W.L. Yeh, and D.Y. Lu. 2015. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Sci. 16: 8844–8860.
35.
Zurück zum Zitat Kim, D.C., W. Lee, and J.S. Bae. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflammation Research 60: 1161–1168.CrossRefPubMed Kim, D.C., W. Lee, and J.S. Bae. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflammation Research 60: 1161–1168.CrossRefPubMed
36.
Zurück zum Zitat Kim, T.H., S.K. Ku, and J.S. Bae. 2012. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114: 336–345.CrossRef Kim, T.H., S.K. Ku, and J.S. Bae. 2012. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114: 336–345.CrossRef
37.
Zurück zum Zitat Yang, E.J., W. Lee, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology 50: 1288–1294.CrossRefPubMed Yang, E.J., W. Lee, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology 50: 1288–1294.CrossRefPubMed
38.
Zurück zum Zitat Lee, W., T.H. Kim, S.K. Ku, K.J. Min, H.S. Lee, T.K. Kwon, and J.S. Bae. 2012. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicology and Applied Pharmacology 262: 91–98.CrossRefPubMed Lee, W., T.H. Kim, S.K. Ku, K.J. Min, H.S. Lee, T.K. Kwon, and J.S. Bae. 2012. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicology and Applied Pharmacology 262: 91–98.CrossRefPubMed
39.
Zurück zum Zitat Lee, W., S.K. Ku, J.W. Bae, and J.S. Bae. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food and Chemical Toxicology 50: 1826–1833.CrossRefPubMed Lee, W., S.K. Ku, J.W. Bae, and J.S. Bae. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food and Chemical Toxicology 50: 1826–1833.CrossRefPubMed
40.
Zurück zum Zitat Kim, T.H., S.K. Ku, T. Lee, and J.S. Bae. 2012. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 50: 2188–2195.CrossRefPubMed Kim, T.H., S.K. Ku, T. Lee, and J.S. Bae. 2012. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 50: 2188–2195.CrossRefPubMed
41.
Zurück zum Zitat Mollica, L., F. deMarchis, A. Spitaleri, C. Dallacosta, D. Pennacchini, M. Zamai, A. Agrest, L. Trisciuoglio, G, Musco, and M.E. Bianchi. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry and Biology 14: 431–441.CrossRefPubMed Mollica, L., F. deMarchis, A. Spitaleri, C. Dallacosta, D. Pennacchini, M. Zamai, A. Agrest, L. Trisciuoglio, G, Musco, and M.E. Bianchi. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry and Biology 14: 431–441.CrossRefPubMed
42.
Zurück zum Zitat Yamaguchi, H., K. Kidachi, Noshita T. Kamiie, and H. Umetsu. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA Complex. Bioinformation 8: 1147–1153.CrossRefPubMedPubMedCentral Yamaguchi, H., K. Kidachi, Noshita T. Kamiie, and H. Umetsu. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA Complex. Bioinformation 8: 1147–1153.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Li, W., J. Li, A.E. Sama, and H. Wang. 2013. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Molecular Medicine 19: 203–211.CrossRefPubMedPubMedCentral Li, W., J. Li, A.E. Sama, and H. Wang. 2013. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Molecular Medicine 19: 203–211.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Li, W., Ashok, M., Li, J., Yang, H., Sama, AE., and Wang, H., 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One e1153. Li, W., Ashok, M., Li, J., Yang, H., Sama, AE., and Wang, H., 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One e1153.
45.
Zurück zum Zitat Li, W., J. Li, M. Ashok, R. Wu, D. Chen, L. Yang, H. Yang, K.J. Tracey, P. Wang, A.E. Sama, and H. Wang. 2007. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. The Journal of Immunology 178: 3856–3864.CrossRefPubMedPubMedCentral Li, W., J. Li, M. Ashok, R. Wu, D. Chen, L. Yang, H. Yang, K.J. Tracey, P. Wang, A.E. Sama, and H. Wang. 2007. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. The Journal of Immunology 178: 3856–3864.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Lau, C.H., C.M. Chan, Y.W. Chan, K.M. Lau, T.W. Lau, F.C. Lam, W.T. Law, C.T. Che, P.C. Leung, K.P. Fung, Y.Y. Ho, and C.B. Lau. 2007. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14: 778–784.CrossRefPubMed Lau, C.H., C.M. Chan, Y.W. Chan, K.M. Lau, T.W. Lau, F.C. Lam, W.T. Law, C.T. Che, P.C. Leung, K.P. Fung, Y.Y. Ho, and C.B. Lau. 2007. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14: 778–784.CrossRefPubMed
47.
Zurück zum Zitat Mi, X.J., S.W. Chen, W.J. Wang, R. Wang, Y.J. Zhang, W.J. Li, and Y.L. Li. 2005. Anxiolytic-like effect of paeonol in mice. Pharmacology, Biochemistry and Behavior 81: 683–687.CrossRefPubMed Mi, X.J., S.W. Chen, W.J. Wang, R. Wang, Y.J. Zhang, W.J. Li, and Y.L. Li. 2005. Anxiolytic-like effect of paeonol in mice. Pharmacology, Biochemistry and Behavior 81: 683–687.CrossRefPubMed
48.
Zurück zum Zitat Li, N., L.L. Fan, G.P. Sun, X.A. Wan, Z.G. Wang, Q. Wu, and H. Wang. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World Journal of Gastroenterology 16: 4483–4490.CrossRefPubMedPubMedCentral Li, N., L.L. Fan, G.P. Sun, X.A. Wan, Z.G. Wang, Q. Wu, and H. Wang. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World Journal of Gastroenterology 16: 4483–4490.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Kim, S.A., H.J. Lee, K.S. Ahn, H.J. Lee, E.O. Lee, K.S. Ahn, S.H. Choi, S.J. Jung, J.Y. Kim, N. Baek, and S.H. Kim. 2009. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin 32: 1142–1147.CrossRefPubMed Kim, S.A., H.J. Lee, K.S. Ahn, H.J. Lee, E.O. Lee, K.S. Ahn, S.H. Choi, S.J. Jung, J.Y. Kim, N. Baek, and S.H. Kim. 2009. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin 32: 1142–1147.CrossRefPubMed
50.
Zurück zum Zitat Chen, Y., F. Qiao, Y. Zhao, Y. Wang, and G. Liu. 2015. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology 8: 6683–6691.PubMedPubMedCentral Chen, Y., F. Qiao, Y. Zhao, Y. Wang, and G. Liu. 2015. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology 8: 6683–6691.PubMedPubMedCentral
51.
Zurück zum Zitat Wu, T.Y., L. Liu, W. Zhang, Y. Zhang, Y.Z. Liu, X.L. Shen, H. Gong, Y.Y. Yang, X.Y. Bi, C.L. Jiang, and Y.X. Wang. 2015. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. Journal of Psychiatric Research 64: 99–106.CrossRefPubMed Wu, T.Y., L. Liu, W. Zhang, Y. Zhang, Y.Z. Liu, X.L. Shen, H. Gong, Y.Y. Yang, X.Y. Bi, C.L. Jiang, and Y.X. Wang. 2015. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. Journal of Psychiatric Research 64: 99–106.CrossRefPubMed
52.
Zurück zum Zitat Antón, M., F. Alén, R. Gómez de Heras, A. Serrano, F.J. Pavón, J.C. Leza, B. García-Bueno, F. Rodríguez de Fonseca, and L. Orio. 2016. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol Doi. doi:10.1111/adb. Antón, M., F. Alén, R. Gómez de Heras, A. Serrano, F.J. Pavón, J.C. Leza, B. García-Bueno, F. Rodríguez de Fonseca, and L. Orio. 2016. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol Doi. doi:10.​1111/​adb.
53.
Zurück zum Zitat Sharma, S., Evans, A., and Hemers, E., 2016. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res. Sharma, S., Evans, A., and Hemers, E., 2016. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res.
54.
Zurück zum Zitat Ni, P., Y. Zhang, Y. Liu, X. Lin, X. Su, H. Lu, H. Shen, W. Xu, H. Xu, and Z. Su. 2015. HMGB1 silence could promote MCF-7 cell apoptosis and inhibit invasion and metastasis. International Journal of Clinical and Experimental Pathology 8: 15940–15946.PubMedPubMedCentral Ni, P., Y. Zhang, Y. Liu, X. Lin, X. Su, H. Lu, H. Shen, W. Xu, H. Xu, and Z. Su. 2015. HMGB1 silence could promote MCF-7 cell apoptosis and inhibit invasion and metastasis. International Journal of Clinical and Experimental Pathology 8: 15940–15946.PubMedPubMedCentral
Metadaten
Titel
Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells
verfasst von
Hang Lei
Quan Wen
Hui Li
Shaohui Du
Jing-jing Wu
Jing Chen
Haiyuan Huang
Dongfeng Chen
Yiwei Li
Saixia Zhang
Jianhong Zhou
Rudong Deng
Qinglin Yang
Publikationsdatum
22.04.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0353-z

Weitere Artikel der Ausgabe 3/2016

Inflammation 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.