Skip to main content
Erschienen in: Surgery Today 6/2016

07.07.2015 | Review Article

Pancreatic regeneration: basic research and gene regulation

verfasst von: Kenji Okita, Toru Mizuguchi, Ota Shigenori, Masayuki Ishii, Toshihiko Nishidate, Tomomi Ueki, Makoto Meguro, Yasutoshi Kimura, Naoki Tanimizu, Norihisa Ichinohe, Toshihiko Torigoe, Takashi Kojima, Toshihiro Mitaka, Noriyuki Sato, Norimasa Sawada, Koichi Hirata

Erschienen in: Surgery Today | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.
Literatur
1.
Zurück zum Zitat Yagi H, Soto-Gutierrez A, Kitagawa Y. Whole-organ re-engineering: a regenerative medicine approach in digestive surgery for organ replacement. Surg Today. 2013;43:587–94.CrossRefPubMedPubMedCentral Yagi H, Soto-Gutierrez A, Kitagawa Y. Whole-organ re-engineering: a regenerative medicine approach in digestive surgery for organ replacement. Surg Today. 2013;43:587–94.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Takahashi K, Murata S, Ohkohchi N. Novel therapy for liver regeneration by increasing the number of platelets. Surg Today. 2013;43:1081–7.CrossRefPubMed Takahashi K, Murata S, Ohkohchi N. Novel therapy for liver regeneration by increasing the number of platelets. Surg Today. 2013;43:1081–7.CrossRefPubMed
3.
Zurück zum Zitat Peng HS, Xu XH, Zhang R, He XY, Wang XX, Wang WH, et al. Multiple low doses of erythropoietin delay the proliferation of hepatocytes but promote liver function in a rat model of subtotal hepatectomy. Surg Today. 2014;44:1109–15.CrossRefPubMed Peng HS, Xu XH, Zhang R, He XY, Wang XX, Wang WH, et al. Multiple low doses of erythropoietin delay the proliferation of hepatocytes but promote liver function in a rat model of subtotal hepatectomy. Surg Today. 2014;44:1109–15.CrossRefPubMed
4.
Zurück zum Zitat Menge BA, Tannapfel A, Belyaev O, Drescher R, Muller C, Uhl W, et al. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes. 2008;57:142–9.CrossRefPubMed Menge BA, Tannapfel A, Belyaev O, Drescher R, Muller C, Uhl W, et al. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes. 2008;57:142–9.CrossRefPubMed
5.
Zurück zum Zitat Scow RO. Total pancreatectomy in the rat: operation, effects, and postoperative care. Endocrinology. 1957;60:359–67.CrossRefPubMed Scow RO. Total pancreatectomy in the rat: operation, effects, and postoperative care. Endocrinology. 1957;60:359–67.CrossRefPubMed
6.
Zurück zum Zitat Houry S, Huguier M. Total splenopancreatectomy in the rat. Technical report. Eur Surg Res. 1983;15:328–31.CrossRefPubMed Houry S, Huguier M. Total splenopancreatectomy in the rat. Technical report. Eur Surg Res. 1983;15:328–31.CrossRefPubMed
7.
Zurück zum Zitat Migliorini RH. Two-stage procedure for total pancreatectomy in the rat. Diabetes. 1970;19:694–7.CrossRefPubMed Migliorini RH. Two-stage procedure for total pancreatectomy in the rat. Diabetes. 1970;19:694–7.CrossRefPubMed
8.
Zurück zum Zitat Wenger JM, Meyer P, Morel DR, Costabella PM, Rohner A. Radical splenopancreatectomy with duodenal loop conservation in rats. J Surg Res. 1990;49:361–5.CrossRefPubMed Wenger JM, Meyer P, Morel DR, Costabella PM, Rohner A. Radical splenopancreatectomy with duodenal loop conservation in rats. J Surg Res. 1990;49:361–5.CrossRefPubMed
9.
Zurück zum Zitat Richards C, Fitzgerald PJ, Carol B, Rosenstock L, Lipkin L. Segmental division of the rat pancreas for experimental procedures. Lab Invest. 1964;13:1303–21.PubMed Richards C, Fitzgerald PJ, Carol B, Rosenstock L, Lipkin L. Segmental division of the rat pancreas for experimental procedures. Lab Invest. 1964;13:1303–21.PubMed
10.
Zurück zum Zitat Pearson KW, Scott D, Torrance B. Effects of partial surgical pancreatectomy in rats. I. Pancreatic regeneration. Gastroenterology. 1977;72:469–73.PubMed Pearson KW, Scott D, Torrance B. Effects of partial surgical pancreatectomy in rats. I. Pancreatic regeneration. Gastroenterology. 1977;72:469–73.PubMed
11.
Zurück zum Zitat Cavelti-Weder C, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, et al. Pancreatic duct ligation after almost complete beta-cell loss: exocrine regeneration but no evidence of beta-cell regeneration. Endocrinology. 2013;154:4493–502.CrossRefPubMedPubMedCentral Cavelti-Weder C, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, et al. Pancreatic duct ligation after almost complete beta-cell loss: exocrine regeneration but no evidence of beta-cell regeneration. Endocrinology. 2013;154:4493–502.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197–207.CrossRefPubMed Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197–207.CrossRefPubMed
13.
Zurück zum Zitat Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci. 2008;105:19915–9.CrossRefPubMedPubMedCentral Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci. 2008;105:19915–9.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 2013;140:751–64.CrossRefPubMedPubMedCentral Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 2013;140:751–64.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science. 1993;259:1604–7.CrossRefPubMed Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science. 1993;259:1604–7.CrossRefPubMed
16.
Zurück zum Zitat Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, et al. Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes. 2000;49:2021–7.CrossRefPubMed Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, et al. Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes. 2000;49:2021–7.CrossRefPubMed
17.
Zurück zum Zitat Cras-Meneur C, Elghazi L, Czernichow P, Scharfmann R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes. 2001;50:1571–9.CrossRefPubMed Cras-Meneur C, Elghazi L, Czernichow P, Scharfmann R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes. 2001;50:1571–9.CrossRefPubMed
18.
Zurück zum Zitat Song SY, Gannon M, Washington MK, Scoggins CR, Meszoely IM, Goldenring JR, et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology. 1999;117:1416–26.CrossRefPubMed Song SY, Gannon M, Washington MK, Scoggins CR, Meszoely IM, Goldenring JR, et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology. 1999;117:1416–26.CrossRefPubMed
19.
Zurück zum Zitat Krakowski ML, Kritzik MR, Jones EM, Krahl T, Lee J, Arnush M, et al. Transgenic expression of epidermal growth factor and keratinocyte growth factor in beta-cells results in substantial morphological changes. J Endocrinol. 1999;162:167–75.CrossRefPubMed Krakowski ML, Kritzik MR, Jones EM, Krahl T, Lee J, Arnush M, et al. Transgenic expression of epidermal growth factor and keratinocyte growth factor in beta-cells results in substantial morphological changes. J Endocrinol. 1999;162:167–75.CrossRefPubMed
20.
Zurück zum Zitat Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, et al. Hepatocyte growth factor/c-Met signaling is required for beta-cell regeneration. Diabetes. 2014;63:216–23.CrossRefPubMedPubMedCentral Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, et al. Hepatocyte growth factor/c-Met signaling is required for beta-cell regeneration. Diabetes. 2014;63:216–23.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–6.CrossRefPubMed Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–6.CrossRefPubMed
22.
Zurück zum Zitat Greig NH, Holloway HW, De Ore KA, Jani D, Wang Y, Zhou J, et al. Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia. 1999;42:45–50.CrossRefPubMed Greig NH, Holloway HW, De Ore KA, Jani D, Wang Y, Zhou J, et al. Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia. 1999;42:45–50.CrossRefPubMed
23.
24.
Zurück zum Zitat Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34(Suppl 2):S279–84.CrossRefPubMedPubMedCentral Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34(Suppl 2):S279–84.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Rooman I, Lardon J, Bouwens L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes. 2002;51:686–90.CrossRefPubMed Rooman I, Lardon J, Bouwens L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes. 2002;51:686–90.CrossRefPubMed
26.
Zurück zum Zitat Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes. 2008;57:3281–8.CrossRefPubMedPubMedCentral Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes. 2008;57:3281–8.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Pittenger GL, Vinik AI, Rosenberg L. The partial isolation and characterization of ilotropin, a novel islet-specific growth factor. Adv Exp Med Biol. 1992;321:123–130 (discussion 131–122). Pittenger GL, Vinik AI, Rosenberg L. The partial isolation and characterization of ilotropin, a novel islet-specific growth factor. Adv Exp Med Biol. 1992;321:123–130 (discussion 131–122).
28.
Zurück zum Zitat Dungan KM, Buse JB, Ratner RE. Effects of therapy in type 1 and type 2 diabetes mellitus with a peptide derived from islet neogenesis associated protein (INGAP). Diabetes Metab Res Rev. 2009;25:558–65.CrossRefPubMed Dungan KM, Buse JB, Ratner RE. Effects of therapy in type 1 and type 2 diabetes mellitus with a peptide derived from islet neogenesis associated protein (INGAP). Diabetes Metab Res Rev. 2009;25:558–65.CrossRefPubMed
30.
Zurück zum Zitat Tyutyulkova N, Tuneva S, Gorantcheva U, Tanev G, Zhivkov V, Chelibonova-Lorer H, et al. Hepatoprotective effect of silymarin (carsil) on liver of D-galactosamine treated rats. Biochemical and morphological investigations. Methods Find Exp Clin Pharmacol. 1981;3:71–7.PubMed Tyutyulkova N, Tuneva S, Gorantcheva U, Tanev G, Zhivkov V, Chelibonova-Lorer H, et al. Hepatoprotective effect of silymarin (carsil) on liver of D-galactosamine treated rats. Biochemical and morphological investigations. Methods Find Exp Clin Pharmacol. 1981;3:71–7.PubMed
31.
Zurück zum Zitat Vargas-Mendoza N, Madrigal-Santillan E, Morales-Gonzalez A, Esquivel-Soto J, Esquivel-Chirino C, Garcia-Luna YG-RM, et al. Hepatoprotective effect of silymarin. World J Hepatol. 2014;6:144–9.CrossRefPubMedPubMedCentral Vargas-Mendoza N, Madrigal-Santillan E, Morales-Gonzalez A, Esquivel-Soto J, Esquivel-Chirino C, Garcia-Luna YG-RM, et al. Hepatoprotective effect of silymarin. World J Hepatol. 2014;6:144–9.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Soto C, Raya L, Perez J, Gonzalez I, Perez S. Silymarin induces expression of pancreatic Nkx6.1 transcription factor and beta-cells neogenesis in a pancreatectomy model. Molecules. 2014;19:4654–68.CrossRefPubMed Soto C, Raya L, Perez J, Gonzalez I, Perez S. Silymarin induces expression of pancreatic Nkx6.1 transcription factor and beta-cells neogenesis in a pancreatectomy model. Molecules. 2014;19:4654–68.CrossRefPubMed
33.
Zurück zum Zitat Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci. 2012;109:19751–6.CrossRefPubMedPubMedCentral Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci. 2012;109:19751–6.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci. 2013;110:16109–14.CrossRefPubMedPubMedCentral Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci. 2013;110:16109–14.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development. 1997;124:4243–52.PubMed Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development. 1997;124:4243–52.PubMed
38.
39.
Zurück zum Zitat Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci. 2000;97:1607–11.CrossRefPubMedPubMedCentral Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci. 2000;97:1607–11.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci. 2005;102:1490–5.CrossRefPubMedPubMedCentral Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci. 2005;102:1490–5.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, et al. MafB is required for islet beta cell maturation. Proc Natl Acad Sci. 2007;104:3853–8.CrossRefPubMedPubMedCentral Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, et al. MafB is required for islet beta cell maturation. Proc Natl Acad Sci. 2007;104:3853–8.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Slack JM. Developmental biology of the pancreas. Development. 1995;121:1569–80.PubMed Slack JM. Developmental biology of the pancreas. Development. 1995;121:1569–80.PubMed
43.
Zurück zum Zitat Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371:606–9.CrossRefPubMed Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371:606–9.CrossRefPubMed
44.
Zurück zum Zitat Dutta S, Bonner-Weir S, Montminy M, Wright C. Regulatory factor linked to late-onset diabetes? Nature. 1998;392:560.CrossRefPubMed Dutta S, Bonner-Weir S, Montminy M, Wright C. Regulatory factor linked to late-onset diabetes? Nature. 1998;392:560.CrossRefPubMed
45.
Zurück zum Zitat Rose SD, Swift GH, Peyton MJ, Hammer RE, MacDonald RJ. The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem. 2001;276:44018–26.CrossRefPubMed Rose SD, Swift GH, Peyton MJ, Hammer RE, MacDonald RJ. The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem. 2001;276:44018–26.CrossRefPubMed
46.
Zurück zum Zitat Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–34.CrossRefPubMed Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–34.CrossRefPubMed
47.
Zurück zum Zitat Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998;12:3752–63.CrossRefPubMedPubMedCentral Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998;12:3752–63.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Chuang PT, Kornberg TB. On the range of hedgehog signaling. Curr Opin Genet Dev. 2000;10:515–22.CrossRefPubMed Chuang PT, Kornberg TB. On the range of hedgehog signaling. Curr Opin Genet Dev. 2000;10:515–22.CrossRefPubMed
49.
Zurück zum Zitat Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–72.PubMed Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–72.PubMed
50.
Zurück zum Zitat van Tuyl M, Groenman F, Wang J, Kuliszewski M, Liu J, Tibboel D, et al. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol. 2007;303:514–26.CrossRefPubMed van Tuyl M, Groenman F, Wang J, Kuliszewski M, Liu J, Tibboel D, et al. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol. 2007;303:514–26.CrossRefPubMed
51.
Zurück zum Zitat Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development. 2000;127:4905–13.PubMed Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development. 2000;127:4905–13.PubMed
52.
Zurück zum Zitat Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17:384–5.CrossRefPubMed Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17:384–5.CrossRefPubMed
53.
Zurück zum Zitat Ravassard P, Chatail F, Mallet J, Icard-Liepkalns C. Relax, a novel rat bHLH transcriptional regulator transiently expressed in the ventricular proliferating zone of the developing central nervous system. J Neurosci Res. 1997;48:146–58.CrossRefPubMed Ravassard P, Chatail F, Mallet J, Icard-Liepkalns C. Relax, a novel rat bHLH transcriptional regulator transiently expressed in the ventricular proliferating zone of the developing central nervous system. J Neurosci Res. 1997;48:146–58.CrossRefPubMed
54.
Zurück zum Zitat Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997;11:2323–34.CrossRefPubMedPubMedCentral Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997;11:2323–34.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15:106–10.CrossRefPubMed Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15:106–10.CrossRefPubMed
56.
Zurück zum Zitat Balderes DA, Magnuson MA, Sussel L. Nkx2.2: Cre knock-in mouse line: a novel tool for pancreas- and CNS-specific gene deletion. Genesis. 2013;51:844–51.CrossRefPubMedPubMedCentral Balderes DA, Magnuson MA, Sussel L. Nkx2.2: Cre knock-in mouse line: a novel tool for pancreas- and CNS-specific gene deletion. Genesis. 2013;51:844–51.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998;125:2213–21.PubMed Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998;125:2213–21.PubMed
58.
59.
Zurück zum Zitat Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997;386:399–402.CrossRefPubMed Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997;386:399–402.CrossRefPubMed
60.
Zurück zum Zitat May CL. The role of Islet-1 in the endocrine pancreas: Lessons from pancreas specific Islet-1 deficient mice. Islets. 2010;2:121–3.CrossRefPubMed May CL. The role of Islet-1 in the endocrine pancreas: Lessons from pancreas specific Islet-1 deficient mice. Islets. 2010;2:121–3.CrossRefPubMed
61.
Zurück zum Zitat Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996;84:309–20.CrossRefPubMed Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996;84:309–20.CrossRefPubMed
62.
Zurück zum Zitat Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–60.CrossRefPubMed Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–60.CrossRefPubMed
63.
Zurück zum Zitat Lemaigre FP, Durviaux SM, Truong O, Lannoy VJ, Hsuan JJ, Rousseau GG. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc Natl Acad Sci. 1996;93:9460–4.CrossRefPubMedPubMedCentral Lemaigre FP, Durviaux SM, Truong O, Lannoy VJ, Hsuan JJ, Rousseau GG. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc Natl Acad Sci. 1996;93:9460–4.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20:4445–54.CrossRefPubMedPubMedCentral Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20:4445–54.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Blanchi B, Kelly LM, Viemari JC, Lafon I, Burnet H, Bevengut M, et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci. 2003;6:1091–100.CrossRefPubMed Blanchi B, Kelly LM, Viemari JC, Lafon I, Burnet H, Bevengut M, et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci. 2003;6:1091–100.CrossRefPubMed
66.
Zurück zum Zitat Sosa-Pineda B. The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells. 2004;18:289–94.PubMed Sosa-Pineda B. The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells. 2004;18:289–94.PubMed
67.
Zurück zum Zitat Kordowich S, Collombat P, Mansouri A, Serup P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC Dev Biol. 2011;11:52.CrossRefPubMedPubMedCentral Kordowich S, Collombat P, Mansouri A, Serup P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC Dev Biol. 2011;11:52.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Collombat P, Hecksher-Sorensen J, Broccoli V, Krull J, Ponte I, Mundiger T, et al. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development. 2005;132:2969–80.CrossRefPubMed Collombat P, Hecksher-Sorensen J, Broccoli V, Krull J, Ponte I, Mundiger T, et al. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development. 2005;132:2969–80.CrossRefPubMed
69.
Zurück zum Zitat Price M, Lazzaro D, Pohl T, Mattei MG, Ruther U, Olivo JC, et al. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron. 1992;8:241–55.CrossRefPubMed Price M, Lazzaro D, Pohl T, Mattei MG, Ruther U, Olivo JC, et al. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron. 1992;8:241–55.CrossRefPubMed
70.
Zurück zum Zitat Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 2000;127:5533–40.PubMed Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 2000;127:5533–40.PubMed
71.
Zurück zum Zitat Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development. 2005;132:3139–49.CrossRefPubMed Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development. 2005;132:3139–49.CrossRefPubMed
72.
Zurück zum Zitat Simpson TI, Price DJ. Pax6; a pleiotropic player in development. BioEssays. 2002;24:1041–51.CrossRefPubMed Simpson TI, Price DJ. Pax6; a pleiotropic player in development. BioEssays. 2002;24:1041–51.CrossRefPubMed
73.
Zurück zum Zitat St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387:406–9.CrossRefPubMed St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387:406–9.CrossRefPubMed
74.
Zurück zum Zitat Vanderford NL. Regulation of beta-cell-specific and glucose-dependent MafA expression. Islets. 2011;3:35–7.CrossRefPubMed Vanderford NL. Regulation of beta-cell-specific and glucose-dependent MafA expression. Islets. 2011;3:35–7.CrossRefPubMed
75.
Zurück zum Zitat Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005;25:4969–76.CrossRefPubMedPubMedCentral Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005;25:4969–76.CrossRefPubMedPubMedCentral
Metadaten
Titel
Pancreatic regeneration: basic research and gene regulation
verfasst von
Kenji Okita
Toru Mizuguchi
Ota Shigenori
Masayuki Ishii
Toshihiko Nishidate
Tomomi Ueki
Makoto Meguro
Yasutoshi Kimura
Naoki Tanimizu
Norihisa Ichinohe
Toshihiko Torigoe
Takashi Kojima
Toshihiro Mitaka
Noriyuki Sato
Norimasa Sawada
Koichi Hirata
Publikationsdatum
07.07.2015
Verlag
Springer Japan
Erschienen in
Surgery Today / Ausgabe 6/2016
Print ISSN: 0941-1291
Elektronische ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-015-1215-2

Weitere Artikel der Ausgabe 6/2016

Surgery Today 6/2016 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Neu im Fachgebiet Allgemeinmedizin

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.