Skip to main content
Erschienen in: Brain Topography 2/2018

13.07.2017 | Original Paper

Parcellation of Macaque Cortex with Anatomical Connectivity Profiles

verfasst von: Jiaojian Wang, Zhentao Zuo, Sangma Xie, Yifan Miao, Yuanye Ma, Xudong Zhao, Tianzi Jiang

Erschienen in: Brain Topography | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The macaque model has been widely used to investigate the brain mechanisms of specific cognitive functions and psychiatric disorders. However, a detailed functional architecture map of the macaque cortex in vivo is still lacking. Here, we aimed to construct a new macaque cortex atlas based on its anatomical connectivity profiles using in vivo diffusion MRI. First, we defined the macaque cortical seed areas using the NeuroMaps atlas. Then, we applied the anatomical connectivity patterns-based parcellation approach to parcellate the macaque cortex into 80 subareas in each hemisphere, which were approximately symmetric between the two hemispheres. In each hemisphere, we identified 14 subareas in the frontal cortex, 9 subareas in the somatosensory cortex, 13 subareas in the parietal cortex, 16 subareas in the temporal cortex, 16 subareas in the occipital cortex, and 12 subareas in the limbic system. Finally, the graph-based network analyses of the anatomical network based on newly constructed macaque cortex atlas identified seven hub areas including bilateral ventral premotor cortex, bilateral superior parietal lobule, right medial precentral gyrus, and right precuneus. This newly constructed macaque cortex atlas may facilitate studies of the structure and functions of the macaque brain in the future.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMed Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMed
Zurück zum Zitat Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254CrossRefPubMed Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254CrossRefPubMed
Zurück zum Zitat Binney RJ, Parker GJ, Lambon Ralph MA (2012) Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J Cogn Neurosci 24(10):1998–2014. doi:10.1162/jocn_a_00263 CrossRefPubMed Binney RJ, Parker GJ, Lambon Ralph MA (2012) Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J Cogn Neurosci 24(10):1998–2014. doi:10.​1162/​jocn_​a_​00263 CrossRefPubMed
Zurück zum Zitat Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB, Coalson T, Kennedy H, Knoblauch K, Van Essen DC, Glasser MF (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36(25):6758–6770. doi:10.1523/JNEUROSCI.0493-16.2016 CrossRefPubMedPubMedCentral Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB, Coalson T, Kennedy H, Knoblauch K, Van Essen DC, Glasser MF (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36(25):6758–6770. doi:10.​1523/​JNEUROSCI.​0493-16.​2016 CrossRefPubMedPubMedCentral
Zurück zum Zitat Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32(2):570–582CrossRefPubMed Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32(2):570–582CrossRefPubMed
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47CrossRefPubMed
Zurück zum Zitat Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMed Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMed
Zurück zum Zitat Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi:10.1148/rg.26si065510 CrossRefPubMed Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi:10.​1148/​rg.​26si065510 CrossRefPubMed
Zurück zum Zitat Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S (2012a) Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 107(9):2463–2474. doi:10.1152/jn.00891.2011 CrossRefPubMed Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S (2012a) Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 107(9):2463–2474. doi:10.​1152/​jn.​00891.​2011 CrossRefPubMed
Zurück zum Zitat Hutchison RM, Womelsdorf T, Gati JS, Leung LS, Menon RS, Everling S (2012b) Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. Cereb Cortex 22(6):1294–1308. doi:10.1093/cercor/bhr181 CrossRefPubMed Hutchison RM, Womelsdorf T, Gati JS, Leung LS, Menon RS, Everling S (2012b) Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. Cereb Cortex 22(6):1294–1308. doi:10.​1093/​cercor/​bhr181 CrossRefPubMed
Zurück zum Zitat Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340. doi:10.1073/pnas.0403743101 CrossRefPubMedPubMedCentral Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340. doi:10.​1073/​pnas.​0403743101 CrossRefPubMedPubMedCentral
Zurück zum Zitat Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15(5 Pt 2):3821–3839PubMed Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15(5 Pt 2):3821–3839PubMed
Zurück zum Zitat Lewis JW, Van Essen DC (2000a) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137CrossRefPubMed Lewis JW, Van Essen DC (2000a) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137CrossRefPubMed
Zurück zum Zitat Lewis JW, Van Essen DC (2000b) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428(1):79–111CrossRefPubMed Lewis JW, Van Essen DC (2000b) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428(1):79–111CrossRefPubMed
Zurück zum Zitat Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272. doi:10.1093/cercor/bhq201 CrossRefPubMed Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272. doi:10.​1093/​cercor/​bhq201 CrossRefPubMed
Zurück zum Zitat Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31(11):4087–4100. doi:10.1523/JNEUROSCI.5102-10.2011 CrossRefPubMedPubMedCentral Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31(11):4087–4100. doi:10.​1523/​JNEUROSCI.​5102-10.​2011 CrossRefPubMedPubMedCentral
Zurück zum Zitat Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69. doi:10.1002/cne.10980 CrossRefPubMed Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69. doi:10.​1002/​cne.​10980 CrossRefPubMed
Zurück zum Zitat Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256CrossRef Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256CrossRef
Zurück zum Zitat Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwicklungsgesch 139(2):127–161CrossRefPubMed Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwicklungsgesch 139(2):127–161CrossRefPubMed
Zurück zum Zitat Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego
Zurück zum Zitat Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16(2):291–310CrossRefPubMed Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16(2):291–310CrossRefPubMed
Zurück zum Zitat Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310(4):475–506. doi:10.1002/cne.903100403 CrossRefPubMed Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310(4):475–506. doi:10.​1002/​cne.​903100403 CrossRefPubMed
Zurück zum Zitat Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149(1):1–24CrossRefPubMed Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149(1):1–24CrossRefPubMed
Zurück zum Zitat Styner M, Knickmeyer R, Joshi S, Coe C, Short SJ, Gilmore J (2007) Automatic brain segmentation in rhesus monkeys. In: Medical imaging, 2007. International Society for Optics and Photonics, pp 65122L–65128L Styner M, Knickmeyer R, Joshi S, Coe C, Short SJ, Gilmore J (2007) Automatic brain segmentation in rhesus monkeys. In: Medical imaging, 2007. International Society for Optics and Photonics, pp 65122L–65128L
Zurück zum Zitat Wang J, Yang Y, Fan L, Xu J, Li C, Liu Y, Fox PT, Eickhoff SB, Yu C, Jiang T (2015b) Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum Brain Mapp 36:238–257. doi:10.1002/hbm.22626 CrossRefPubMed Wang J, Yang Y, Fan L, Xu J, Li C, Liu Y, Fox PT, Eickhoff SB, Yu C, Jiang T (2015b) Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum Brain Mapp 36:238–257. doi:10.​1002/​hbm.​22626 CrossRefPubMed
Metadaten
Titel
Parcellation of Macaque Cortex with Anatomical Connectivity Profiles
verfasst von
Jiaojian Wang
Zhentao Zuo
Sangma Xie
Yifan Miao
Yuanye Ma
Xudong Zhao
Tianzi Jiang
Publikationsdatum
13.07.2017
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-017-0576-9

Weitere Artikel der Ausgabe 2/2018

Brain Topography 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.