Skip to main content
Erschienen in: Journal of Neural Transmission 2/2020

05.02.2020 | Neurology and Preclinical Neurological Studies - Review Article

Parkinson’s disease and iron

verfasst von: Hideki Mochizuki, Chi-Jing Choong, Kousuke Baba

Erschienen in: Journal of Neural Transmission | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

While the initial causes of Parkinson’s disease (PD) are not clearly defined, iron deposition has long been implicated in the pathogenesis of PD. The substantia nigra of PD patients, where the selective loss of dopaminergic neurons occurs, show a fairly selective and significant elevation in iron contents. However, the question remains whether iron deposition represents the initiation cause or merely the consequence of nigral degeneration. Here, we describe existing findings regarding the interaction of iron with neuromelanin and alpha synuclein, the iron deposition in experimental animal model of PD and sporadic and familial PD patients, and the treatment option involving the use of iron chelators for targeting the aberration of iron level in brain. This review may provide us a better understanding of the role of iron in PD to address the question of cause or consequence.
Literatur
Zurück zum Zitat Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. BBA Mol Cell Res 1823:1468–1483 Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. BBA Mol Cell Res 1823:1468–1483
Zurück zum Zitat Atasoy HT, Nuyan O, Tunc T et al (2004) T2-weighted MRI in Parkinson’s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurol India 52:332–337PubMed Atasoy HT, Nuyan O, Tunc T et al (2004) T2-weighted MRI in Parkinson’s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurol India 52:332–337PubMed
Zurück zum Zitat Beck G, Sugiura Y, Shinzawa K et al (2011) Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 31:11411–11420PubMedPubMedCentral Beck G, Sugiura Y, Shinzawa K et al (2011) Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 31:11411–11420PubMedPubMedCentral
Zurück zum Zitat Beck G, Shinzawa K, Hayakawa H et al (2015) Deficiency of calcium-independent phospholipase A2 beta induces brain iron accumulation through upregulation of divalent metal transporter 1. PLoS ONE 10:e0141629PubMedPubMedCentral Beck G, Shinzawa K, Hayakawa H et al (2015) Deficiency of calcium-independent phospholipase A2 beta induces brain iron accumulation through upregulation of divalent metal transporter 1. PLoS ONE 10:e0141629PubMedPubMedCentral
Zurück zum Zitat Ben-Shachar SD, Kahana N, Kampel V et al (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46:254–263 Ben-Shachar SD, Kahana N, Kampel V et al (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46:254–263
Zurück zum Zitat Bergsland N, Zivadinov R, Schweser F et al (2019) Ventral posterior substantia nigra iron increases over 3 years in Parkinson’s disease. Mov Disord 34:1006–1013PubMedPubMedCentral Bergsland N, Zivadinov R, Schweser F et al (2019) Ventral posterior substantia nigra iron increases over 3 years in Parkinson’s disease. Mov Disord 34:1006–1013PubMedPubMedCentral
Zurück zum Zitat Binolfi AES, Rasia RM, Bertoncini CW et al (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901PubMed Binolfi AES, Rasia RM, Bertoncini CW et al (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901PubMed
Zurück zum Zitat Dashtipour K, Liu M, Kani C et al (2015) Iron accumulation is not homogenous among patients with Parkinson’s disease. Parkinsons Dis 2015:324843PubMedPubMedCentral Dashtipour K, Liu M, Kani C et al (2015) Iron accumulation is not homogenous among patients with Parkinson’s disease. Parkinsons Dis 2015:324843PubMedPubMedCentral
Zurück zum Zitat Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822PubMed Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822PubMed
Zurück zum Zitat Devos D, Moreau C, Devedjian JC et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21:195–210PubMedPubMedCentral Devos D, Moreau C, Devedjian JC et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21:195–210PubMedPubMedCentral
Zurück zum Zitat Dexter DT, Wells FR, Agid F et al (1987) Increase nigral iron content in postmortem parkinsonian brain. Lancet 330:1219–1220 Dexter DT, Wells FR, Agid F et al (1987) Increase nigral iron content in postmortem parkinsonian brain. Lancet 330:1219–1220
Zurück zum Zitat Earle KM (1968) Trace metals in parkinsonian brains. J Neuropathol Exp Neurol 27:114 Earle KM (1968) Trace metals in parkinsonian brains. J Neuropathol Exp Neurol 27:114
Zurück zum Zitat Eid R, Arab NTT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta Mol Cell Res 1864:399–430PubMed Eid R, Arab NTT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta Mol Cell Res 1864:399–430PubMed
Zurück zum Zitat Faucheux BA, Martin ME, Beaumont C et al (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148PubMed Faucheux BA, Martin ME, Beaumont C et al (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148PubMed
Zurück zum Zitat Fernández B, Ferrer I, Gil F, Hilfiker S (2017) Biomonitorization of iron accumulation in the substantia nigra from Lewy body disease patients. Toxicol Rep 4:188–193PubMedPubMedCentral Fernández B, Ferrer I, Gil F, Hilfiker S (2017) Biomonitorization of iron accumulation in the substantia nigra from Lewy body disease patients. Toxicol Rep 4:188–193PubMedPubMedCentral
Zurück zum Zitat Finkelstein DI, Hare DJ, Billings JL et al (2016) Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chem Neurosci 7:119–129PubMed Finkelstein DI, Hare DJ, Billings JL et al (2016) Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chem Neurosci 7:119–129PubMed
Zurück zum Zitat Friedlich AL, Tanzi RE, Rogers JT (2007) The 5′-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12:222–223PubMed Friedlich AL, Tanzi RE, Rogers JT (2007) The 5′-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12:222–223PubMed
Zurück zum Zitat Gal S, Zheng H, Fridkin M, Youdim MBH (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95:79–88PubMed Gal S, Zheng H, Fridkin M, Youdim MBH (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95:79–88PubMed
Zurück zum Zitat Gal S, Zheng H, Fridkin M, Youdim MBH (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17:15–27PubMed Gal S, Zheng H, Fridkin M, Youdim MBH (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17:15–27PubMed
Zurück zum Zitat Galazka-Friedman J, Bauminger ER, Friedman A et al (1996) Iron in parkinsonian and control substantia nigra: a Mossbauer spectroscopy study. Mov Disord 11:8–16PubMed Galazka-Friedman J, Bauminger ER, Friedman A et al (1996) Iron in parkinsonian and control substantia nigra: a Mossbauer spectroscopy study. Mov Disord 11:8–16PubMed
Zurück zum Zitat Gerlach M, Double KL, Ben-Shachar D et al (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res 5:35–43PubMed Gerlach M, Double KL, Ben-Shachar D et al (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res 5:35–43PubMed
Zurück zum Zitat Goto K, Mochizuki H, Imai H et al (1996) An immuno-histochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 724:125–128PubMed Goto K, Mochizuki H, Imai H et al (1996) An immuno-histochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 724:125–128PubMed
Zurück zum Zitat Guo C, Hao LJ, Yang ZH et al (2016) Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 280:13–23PubMed Guo C, Hao LJ, Yang ZH et al (2016) Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 280:13–23PubMed
Zurück zum Zitat Guo Y, Tang B, Liu H et al (2019) Impaired iPLA 2 β activity affects iron uptake and storage without iron accumulation: an in vitro study excluding decreased iPLA 2 β activity as the cause of iron deposition in PLAN. Brain Res 1712:25–33PubMed Guo Y, Tang B, Liu H et al (2019) Impaired iPLA 2 β activity affects iron uptake and storage without iron accumulation: an in vitro study excluding decreased iPLA 2 β activity as the cause of iron deposition in PLAN. Brain Res 1712:25–33PubMed
Zurück zum Zitat He Y, Thong PS, Lee T et al (2003) Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radic Biol Med 35:540–547PubMed He Y, Thong PS, Lee T et al (2003) Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radic Biol Med 35:540–547PubMed
Zurück zum Zitat Jellinger K, Kienzl E, Rumpelmair G et al (1992) Iron–melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59:1168–1171PubMed Jellinger K, Kienzl E, Rumpelmair G et al (1992) Iron–melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59:1168–1171PubMed
Zurück zum Zitat Jimenez Del Rio M, Moreno S, Garcia-Ospina G et al (2004) Autosomal recessive juvenile Parkinsonism Cys212Tyr mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov Disord 19:324–330PubMed Jimenez Del Rio M, Moreno S, Garcia-Ospina G et al (2004) Autosomal recessive juvenile Parkinsonism Cys212Tyr mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov Disord 19:324–330PubMed
Zurück zum Zitat Kaur D, Yantiri F, Rajagopalan S et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909PubMed Kaur D, Yantiri F, Rajagopalan S et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909PubMed
Zurück zum Zitat Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948PubMedPubMedCentral Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948PubMedPubMedCentral
Zurück zum Zitat Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S (2006) MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J Neurol 253:26–32PubMed Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S (2006) MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J Neurol 253:26–32PubMed
Zurück zum Zitat Kostka M, Högen T, Danzer KM et al (2008) Single particle characterization of iron-induced pore-forming α-synuclein oligomers. J Biol Chem 283:10992–11003PubMed Kostka M, Högen T, Danzer KM et al (2008) Single particle characterization of iron-induced pore-forming α-synuclein oligomers. J Biol Chem 283:10992–11003PubMed
Zurück zum Zitat Langley J, He N, Huddleston DE et al (2019) Reproducible detection of nigral iron deposition in 2 Parkinson’s disease cohorts. Mov Disord 34:416–419PubMed Langley J, He N, Huddleston DE et al (2019) Reproducible detection of nigral iron deposition in 2 Parkinson’s disease cohorts. Mov Disord 34:416–419PubMed
Zurück zum Zitat Langston JW, Forno LS, Tetrud J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605PubMed Langston JW, Forno LS, Tetrud J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605PubMed
Zurück zum Zitat Levin J, Högen T, Hillmer AS et al (2011) Generation of ferric iron links oxidative stress to α-synuclein oligomer formation. J Parkinsons Dis 1:205–216PubMed Levin J, Högen T, Hillmer AS et al (2011) Generation of ferric iron links oxidative stress to α-synuclein oligomer formation. J Parkinsons Dis 1:205–216PubMed
Zurück zum Zitat Lewis MM, Du G, Kidacki M et al (2013) Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol Aging 34:1497–1503PubMed Lewis MM, Du G, Kidacki M et al (2013) Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol Aging 34:1497–1503PubMed
Zurück zum Zitat Li S-J, Ren Y-D, Li J et al (2020) The role of iron in Parkinson’s disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci 240:117091PubMed Li S-J, Ren Y-D, Li J et al (2020) The role of iron in Parkinson’s disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci 240:117091PubMed
Zurück zum Zitat Lingor P, Carboni E, Koch JC (2017) Alpha-synuclein and iron: two keys unlocking Parkinson’s disease. J Neural Transm 124:973–981PubMed Lingor P, Carboni E, Koch JC (2017) Alpha-synuclein and iron: two keys unlocking Parkinson’s disease. J Neural Transm 124:973–981PubMed
Zurück zum Zitat Lu Y, Prudent M, Fauvet B et al (2011) Phosphorylation of α-synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci 2:667–675PubMedPubMedCentral Lu Y, Prudent M, Fauvet B et al (2011) Phosphorylation of α-synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci 2:667–675PubMedPubMedCentral
Zurück zum Zitat Martin-Bastida A, Lao-Kaim NP, Loane C et al (2017) Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur J Neurol 24:357–365PubMed Martin-Bastida A, Lao-Kaim NP, Loane C et al (2017) Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur J Neurol 24:357–365PubMed
Zurück zum Zitat Mochizuki H, Nishi K, Mizuno Y (1993) Iron–melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 2:1–7 Mochizuki H, Nishi K, Mizuno Y (1993) Iron–melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 2:1–7
Zurück zum Zitat Mochizuki H, Imai H, Endo K et al (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168:251–253PubMed Mochizuki H, Imai H, Endo K et al (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168:251–253PubMed
Zurück zum Zitat Morgan NV, Westaway SK, Morton JEV et al (2006) PLA2G6, encoding a phospholipase A 2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754PubMedPubMedCentral Morgan NV, Westaway SK, Morton JEV et al (2006) PLA2G6, encoding a phospholipase A 2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754PubMedPubMedCentral
Zurück zum Zitat Mubaidin A, Roberts E, Hampshire D et al (2003) Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet 40:543–546PubMedPubMedCentral Mubaidin A, Roberts E, Hampshire D et al (2003) Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet 40:543–546PubMedPubMedCentral
Zurück zum Zitat Naduthota RM, Honnedevasthana AA, Lenka A et al (2017) Association of freezing of gait with nigral iron accumulation in patients with Parkinson’s disease. J Neurol Sci 382:61–65PubMed Naduthota RM, Honnedevasthana AA, Lenka A et al (2017) Association of freezing of gait with nigral iron accumulation in patients with Parkinson’s disease. J Neurol Sci 382:61–65PubMed
Zurück zum Zitat Ortega R, Carmona A, Roudeau S et al (2016) α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons. Mol Neurobiol 53:1925–1934PubMed Ortega R, Carmona A, Roudeau S et al (2016) α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons. Mol Neurobiol 53:1925–1934PubMed
Zurück zum Zitat Ostrerova-Golts N, Petrucelli L, Hardy J et al (2000) The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054PubMedPubMedCentral Ostrerova-Golts N, Petrucelli L, Hardy J et al (2000) The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054PubMedPubMedCentral
Zurück zum Zitat Paisan-Ruiz C, Bhatia KP, Li A et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65:19–23PubMedPubMedCentral Paisan-Ruiz C, Bhatia KP, Li A et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65:19–23PubMedPubMedCentral
Zurück zum Zitat Rajagopalan S, Rane A, Chinta SJ, Andersen JK (2016) Regulation of ATP13A2 via PHD2-HIF1α signaling is critical for cellular iron homeostasis: implications for Parkinson’s disease. J Neurosci 36:1086–1095PubMedPubMedCentral Rajagopalan S, Rane A, Chinta SJ, Andersen JK (2016) Regulation of ATP13A2 via PHD2-HIF1α signaling is critical for cellular iron homeostasis: implications for Parkinson’s disease. J Neurosci 36:1086–1095PubMedPubMedCentral
Zurück zum Zitat Ramos P, Santos A, Pinto NR et al (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17PubMed Ramos P, Santos A, Pinto NR et al (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17PubMed
Zurück zum Zitat Riederer P, Sofic E, Rausch W-D et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520PubMed Riederer P, Sofic E, Rausch W-D et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520PubMed
Zurück zum Zitat Rinaldi DE, Corradi GR, Cuesta LM et al (2015) The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. Biochim Biophys Acta Biomembr 1848:1646–1655 Rinaldi DE, Corradi GR, Cuesta LM et al (2015) The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. Biochim Biophys Acta Biomembr 1848:1646–1655
Zurück zum Zitat Roth JA, Singleton S, Feng J et al (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113:454–464PubMed Roth JA, Singleton S, Feng J et al (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113:454–464PubMed
Zurück zum Zitat Santoro L, Breedveld GJ, Manganelli F et al (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12:33–39PubMed Santoro L, Breedveld GJ, Manganelli F et al (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12:33–39PubMed
Zurück zum Zitat Schneider SA, Paisan-Ruiz C, Quinn NP et al (2010) ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 25:979–984PubMed Schneider SA, Paisan-Ruiz C, Quinn NP et al (2010) ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 25:979–984PubMed
Zurück zum Zitat Shi L, Huang C, Luo Q et al (2019) The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci 11:215PubMedPubMedCentral Shi L, Huang C, Luo Q et al (2019) The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci 11:215PubMedPubMedCentral
Zurück zum Zitat Singleton AB, Farrer M, Johnson J et al (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMed Singleton AB, Farrer M, Johnson J et al (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMed
Zurück zum Zitat Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840PubMed Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840PubMed
Zurück zum Zitat Sumi-Akamaru H, Beck G, Kato S, Mochizuki H (2015) Neuroaxonal dystrophy in PLA2G6 knockout mice. Neuropathology 35:289–302PubMed Sumi-Akamaru H, Beck G, Kato S, Mochizuki H (2015) Neuroaxonal dystrophy in PLA2G6 knockout mice. Neuropathology 35:289–302PubMed
Zurück zum Zitat Takahashi H, Watanabe Y, Tanaka H et al (2018) Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol 109:48–56PubMed Takahashi H, Watanabe Y, Tanaka H et al (2018) Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol 109:48–56PubMed
Zurück zum Zitat Takanashi M, Mochizuki H, Yokomizo K et al (2001) Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinson Relat Disord 7:311–314 Takanashi M, Mochizuki H, Yokomizo K et al (2001) Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinson Relat Disord 7:311–314
Zurück zum Zitat Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62:134–146PubMed Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62:134–146PubMed
Zurück zum Zitat Uitti RJ, Rajput AH, Rozdilsky B et al (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314PubMed Uitti RJ, Rajput AH, Rozdilsky B et al (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314PubMed
Zurück zum Zitat Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: a possible molecular link between parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296PubMed Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: a possible molecular link between parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296PubMed
Zurück zum Zitat Wang JY, Zhuang QQ, Zhu LB et al (2016) Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6:36669PubMedPubMedCentral Wang JY, Zhuang QQ, Zhu LB et al (2016) Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6:36669PubMedPubMedCentral
Zurück zum Zitat Xing Y, Sapuan A, Dineen RA, Auer DP (2018) Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI. Mov Disord 33:1792–1799PubMedPubMedCentral Xing Y, Sapuan A, Dineen RA, Auer DP (2018) Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI. Mov Disord 33:1792–1799PubMedPubMedCentral
Zurück zum Zitat Yoshino H, Tomiyama H, Tachibana N et al (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75:1356–1361PubMed Yoshino H, Tomiyama H, Tachibana N et al (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75:1356–1361PubMed
Zurück zum Zitat Youdim MBH (ed) (1988) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London Youdim MBH (ed) (1988) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London
Zurück zum Zitat Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 80:47–54 Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 80:47–54
Zurück zum Zitat Youdim MBH, Gross A, Finberg JPM (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506PubMedPubMedCentral Youdim MBH, Gross A, Finberg JPM (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506PubMedPubMedCentral
Zurück zum Zitat Youdim MBH, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. In: Mechanisms of ageing and development, pp 317–326 Youdim MBH, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. In: Mechanisms of ageing and development, pp 317–326
Zurück zum Zitat Zecca L, Tampellini D, Gatti A et al (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109:663–672PubMed Zecca L, Tampellini D, Gatti A et al (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109:663–672PubMed
Zurück zum Zitat Zecca L, Casella L, Albertini A et al (2008) Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem 106:1866–1875PubMed Zecca L, Casella L, Albertini A et al (2008) Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem 106:1866–1875PubMed
Zurück zum Zitat Zhang W, Phillips K, Wielgus AR et al (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19:63–72PubMed Zhang W, Phillips K, Wielgus AR et al (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19:63–72PubMed
Zurück zum Zitat Zheng H, Weiner LM, Bar-Am O et al (2005) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorganic Med Chem 13:773–783 Zheng H, Weiner LM, Bar-Am O et al (2005) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorganic Med Chem 13:773–783
Metadaten
Titel
Parkinson’s disease and iron
verfasst von
Hideki Mochizuki
Chi-Jing Choong
Kousuke Baba
Publikationsdatum
05.02.2020
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 2/2020
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-020-02149-3

Weitere Artikel der Ausgabe 2/2020

Journal of Neural Transmission 2/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.