Skip to main content
Erschienen in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01.12.2016 | Research article

Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms

verfasst von: Urooj Aman, Fazal Subhan, Muhammad Shahid, Shehla Akbar, Nisar Ahmad, Gowhar Ali, Khwaja Fawad, Robert D. E. Sewell

Erschienen in: BMC Complementary Medicine and Therapies | Ausgabe 1/2016

Abstract

Background

Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms.

Methods

PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia.

Results

GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency.

Conclusions

These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12906-016-1048-6) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FS initiated the idea and guided the research group as supervisor in planning and conducting experiments throughout the research project. UA conducted the experiments and carried out calculations and statistical analysis. She also prepared the initial draft of the manuscript. MS helped in the analysis and interpretation of data as well as in preparing the final version of the manuscript. SA provided her help during pharmacological experiments throughout the study. NA assisted in the extraction of plant material and other pharmacological activities. GA helped in the neuropathic pain related experiments. KF attributed materials during pharmacological screening of the plant extract. RDES guided the research group and interpreted the results as well as critically revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Background

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage [1]. The phenomenon of pain may be nociceptive or neuropathic in nature, and caused by damage to non-neural or neuronal tissues respectively [2, 3]. Neuropathic pain is a major cause of morbidity and has a profound impact on patient well-being. It involves the sensation of allodynia; a painful sensation to a normally non-noxious stimulus and hyperalgesia; an exaggerated pain response to a normally noxious stimulus [4]. Neuropathic pain results from various causes that affect the central nervous system including multiple sclerosis, post stroke or spinal cord pain. Alternatively, it may be associated with damage to the peripheral nervous system, for instance, diabetic neuropathy and trigeminal or post-herpetic neuralgia [5]. Management of neuropathic pain poses an enormous challenge due to the restricted efficacy of assorted pharmacotherapies including both natural treatments [68] and synthetic medicaments [9, 10] which are limited by the occurrence of side effects and the extent of pain inhibition [11].
Passiflora incarnata L. (Additional file 1: Figure S1) from the genus Passiflora (family: Passifloraceae) commonly known as Passion flower, is a fast growing perennial vine widely spread in tropical and warm temperate regions [12]. Phytochemical analysis of P. incarnata has demonstrated that flavonoids constitute about 2.5 % of the total phyto-constituents [13, 14] mainly present in the leaves, the greatest concentration of flavonoid being vitexin compared to the other species of its genus [12, 15]. P. incarnata has been studied for its analgesic [16], anxiolytic [1720], anticonvulsant [21], antitussive [22], aphrodisiac [23], anti-asthmatic [24], anti-diabetic and hypolipidemic properties [25] along with efficacy in the treatment of cannabinoid [26], morphine [27], nicotine [28] and alcohol dependence [29]. Traditionally, P. incarnata has been used for curing various ailments like anxiety, insomnia, convulsions, sexual dysfunction, cough and cancer [30] and is well known in relieving neuropathic conditions [12]. In this regard, an eye wipe test has been conducted suggesting a potential application in relieving trigeminal neuralgia [31]. Clinical investigations on P. incarnata have indicated effectiveness in the treatment of anxiety [32, 33], insomnia [34], opioid withdrawal [35], attention deficit hyperactivity disorder [36] and postmenopausal symptoms [37].
Neuropathic pain results from a cascade of neurobiological events that induces electrical hyperexcitability in somatosensory conduction pathways and results in hyperesthesia, dysesthesia, hyperalgesia, paresthesia or allodynia [38]. Currently, the most common choices of therapy for neuropathic pain are tricyclic antidepressants and anticonvulsants [39, 40]. However, these therapies are only partially effective and are usually accompanied by a variety of side effects [41]. The use of complementary and alternative medicine has been shown to produce some beneficial effects in the management of painful neuropathy [42] and several herbal medicines exhibit promise in different types of experimentally induced neuropathic pain models [6, 8, 4345]. Thus there is some scope for new herbal medicines to combat neuropathic pain syndromes [46]. The present study was therefore designed to evaluate the ameliorative effect of P. incarnata methanolic extract (PI-ME) in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia [47] in rodents. Additionally, PI-ME induced antinociceptive, anxiolytic and sedative activities were also investigated using naloxone and pentylenetetrazole (PTZ) to probe its possible underlying mechanisms.

Methods

Chemicals

Morphine (Punjab Drug House, Lahore, Pakistan), diclofenac sodium (≥98 %, Continental Chemicals Company Pvt. Ltd. Pakistan), naloxone (98 %, Hangzhou Uniwise International Co., Ltd, China), gabapentin (99 %, MKB Pharmaceuticals Pvt Ltd Peshawar, Pakistan), diazepam (Valium 10 mg/ 2 ml, Roche, Pakistan), pentylenetetrazole (≥98 %, Sigma Aldrich, UK) , streptozotocin (≥98 %, Sigma Aldrich, UK) and commercial grade methanol (Haq Chemicals Ltd Peshawar, Pakistan).

Preparation of Passiflora incarnata methanolic extract

P. incarnata whole plant was collected from the botanical garden of the Department of Pharmacy, University of Peshawar. It was authenticated by Prof. Dr. Mohammad Ibrar of the Department of Botany, University of Peshawar and a specimen was deposited in the herbarium with a voucher number 20062 (PUP). The aerial parts were separated, shade dried, and coarsely powdered (1000 g). It was macerated for 7 days with commercial grade methanol (5 L). The extract was filtered and concentrated under reduced pressure at 60 °C in a rotary evaporator until a semisolid extract containing no methanol was obtained (yield: 31.20 %).

Phytochemical analysis

PI-ME was preliminary evaluated by qualitative phytochemical analysis [47] and was further screened by quantitative analysis of flavonoids, alkaloids, saponins and tannins [48, 49]. It was also subjected to gas chromatography/mass spectrometry (GC/MS) analysis which was carried out on a 6890 N Agilent gas chromatograph coupled to a JMS 600 H JEOL mass spectrometer. The compound mixture was separated on a fused silica capillary SPBI column, 30 m × 0.32 mm, 0.25 μm film thickness, in a temperature program from 50 to 256 °C with a rate of 4 °C/min with 2 min hold. The injector was at 260 °C and the flow rate of the carrier gas, helium was 1 mL/min. The EI mode of the JMS 600 H JEOL mass spectrometer had an ionization voltage of 70 eV, electron emission of 100 μA, ion source temperature of 250 °C and analyzer temperature of 250 °C. Samples were injected manually in split mode and the total elution time was 90 min. MS scanning was performed from m/z 85 to 390. Identification of the active constituents was based on the computer evaluation of mass spectra of the sample through NIST-based AMDIS (automated mass spectral deconvolution and identification software), direct comparison of peaks and retention times with those of standard compounds as well as by following the characteristic fragmentation patterns of the mass spectra of particular classes of compounds.

Animals

BALB/c mice (18–26 g) and female Sprague Dawley rats (150-200 g) maintained in a 12 h light/dark cycle at 22 ± 2 °C were used in the experiments. Food and water were provided ad libitum. Experiments on animals were performed in accordance with the UK Animals (Scientific Procedures) Act 1986 and according to the rules and ethics set forth by the Ethical Committee of the Department of Pharmacy, University of Peshawar. Approval for this study was granted with the registration number: 06/EC-14/Pharm (dated: April 06, 2014). The animal control groups used in experiments were given normal saline which was also the vehicle for all the drugs administered throughout all the experiments.

Abdominal constriction assay

BALB/c mice (18–22 g, n = 8 mice per group) of either sex were injected with 0.6 % acetic acid (10 mL/kg, i.p) to induce an abdominal constriction response [50, 51]. In the abdominal constriction assay, the mean incidence of constrictions expressed as % protection across all experiments was normalized relative to untreated controls. PI-ME (150, 200 and 250 mg/kg, p.o), morphine (5 mg/kg, i.p) or diclofenac (50 mg/kg, i.p) were administered 30 min before acetic acid injection. In the opioid antagonism study, the animals were pretreated with naloxone (0.5 mg/kg, s.c), 5 min before acetic acid administration. Percentage protection was calculated as:
$$ \%\ \mathrm{Protection} = \left(1\ \hbox{--}\ \mathrm{Number}\ \mathrm{of}\ \mathrm{abdominal}\ \mathrm{constrictions}\ \mathrm{after}\ \mathrm{treatment}/\mathrm{Number}\ \mathrm{of}\ \mathrm{abdominal}\ \mathrm{constrictions}\ \mathrm{of}\kern0.5em \mathrm{untreated}\kern0.5em \mathrm{control}\right) \times 100 $$

Hot plate test

BALB/c mice (18–22 g, n = 8 mice per group) of either sex were pretested for their response latencies on a hot plate (Harvard apparatus, USA) maintained at 54.0 ± 0.1 °C. The response end-point was signified by hind limb flick, lick or jumping at which point animals were immediately removed from the thermal nociceptive stimulus in order to avoid any tissue damage or possibility of subsequent hyperalgesia. A cut-off time of 30 s was imposed such that if they did not respond within this latency period then they were immediately removed from the hot plate stimulus [51]. Thirty minutes after pretesting, the animals were administered PI-ME (100, 150, 200 mg/kg; p.o), morphine (5 mg/kg; i.p) or diclofenac (50 mg/kg, i.p). In the antagonism studies, naloxone (1.0 mg/kg, s.c) or PTZ (10 mg/kg, i.p) were administered 10 or 30 min respectively before treatment and the animal response latencies were measured at 30, 60, 90 and 120 min. The percentage antinociception was calculated as:
$$ \%\ \mathrm{Antinociception} = \left(\mathrm{Test}\ \mathrm{latency}\ \hbox{--}\ \mathrm{control}\ \mathrm{latency}\right)/\ \left(\mathrm{Cut}\hbox{-} \mathrm{off}\ \mathrm{time}\ \hbox{--}\ \mathrm{control}\ \mathrm{latency}\right) \times 100 $$

Anxiolytic activity (Staircase test)

BALB/c mice (18–24 g, n = 8 mice per group) of either sex were administered PI-ME (200, 400 and 600 mg/kg, p.o) or diazepam (2 mg/kg, i.p). In the drug combination experiments, PTZ (10 mg/kg, i.p) was administered 30 min prior to drug treatment. The number of rears and steps climbed by each animal was observed for 3 min using the staircase apparatus and the methods described by Simiand and coworkers [52]. A step was considered to be climbed only if the criterion was met whereby an animal placed all four paws on the step.

Locomotor activity

BALB/c mice (18–26 g, n = 6 mice per group) of either sex were administered with PI-ME (200, 400 and 600 mg/kg, p.o) or diazepam (4 mg/kg, i.p). In the drug combination experiments, PTZ (10 mg/kg, i.p) was administered 30 min prior to drug treatment. Thirty min later, the animals were placed in the recording apparatus with a floor area of 50 × 40 cm divided into four equal quadrants by lines. The number of lines crossed by each animal was recorded for 30 min using a digital camera (Cat’s Eye IR IP Camera, Taiwan) [53].

Streptozotocin induced neuropathic pain

Induction of mechanical allodynia and vulvodynia

Female Sprague Dawley rats (150– 200 g, n = 6 rats per group) food withdrawn for 16 h were administered streptozotocin (50 mg/kg, i.p) and food was immediately provided. On the 5th day, animals exhibiting random blood glucose levels greater than 270 mg/dl were included in the study [54]. Body weights and blood glucose were measured at specified time periods. The bedding material was frequently changed to avoid any infection due to excessive urination. On the 29th day post streptozotocin administration, animals were transferred to wire mesh cages and acclimatized for 15–45 min. They were then assessed for mechanical allodynia or vulvodynia before and after PI-ME or standard gabapentin administration using the von Frey up-down method [55].

Treatment schedule

Animals were divided into five groups. Group I received normal saline and served as control. Group II remained as the streptozotocin positive control group. Group III received a single intraperitoneal dose of gabapentin (75 mg/kg) and served as the standard. Group IV and V were treated with PI-ME at doses of 200 and 300 mg/kg respectively. The therapeutic doses of PI-ME for evaluation in neuropathic pain were selected on the basis of its analgesic, anxiolytic, locomotor and respective antagonistic activities.

Assessment of static and dynamic allodynia

Static allodynia was assessed using a series of von Frey filaments (0.4, 0.6, 1, 1.4, 2, 4, 6, 8, 10, 15 g), starting with a 2.0 g force applied perpendicularly to the plantar surface of the right hind paw for 5 s or until the animal displayed a withdrawal response (lifting of the paw). Animals responding to 3.63 g force or below were included in the study and 15 g was selected as the cut-off force [54].
Dynamic allodynia was assessed by lightly stroking the plantar surface of the hind paw with a cotton bud. Lifting or licking the paw was considered as a withdrawal response and the time taken to show a withdrawal reaction was considered as the paw withdrawal latency (PWL). Animals responding to the cotton bud within 8 s were included in the study and 15 s was selected as the cut off time [54].

Assessment of static and dynamic vulvodynia

Static vulvodynia was assessed by shaving the anogenital area including the mons pubis. A series of von Frey filaments (0.008, 0.02, 0.04, 0.07, 0.16, 0.4, 0.6, 1 g), were applied perpendicularly to the mucous membrane of the anogenital region for 4 s starting with a 0.04 g force, until a flinching response occurred. Animals responding to a 0.16 g force or below were included in the study and a 1.0 g force was selected as the cut-off force [56].
Dynamic vulvodynia was assessed by lightly brushing a cotton bud over the mucous membrane of the anogenital region for 10 s or until a flinching response occurred. Animals showing a flinching response within 5 s were included in the study and 10 s was selected as the cut-off time [56].

Statistical analysis

Data were expressed as mean ± SEM. Statistical comparisons were carried out by one way ANOVA followed by Dunnett’s, Bonferroni or Tukey’s multiple comparison tests where appropriate using GraphPad Prism 5 (GraphPad Software Inc. San Diego CA, USA). Statistical significance was deduced at P ≤ 0.05.

Results

Phytochemical analysis of Passiflora incarnata

Preliminary qualitative analysis of PI-ME disclosed the presence of flavonoids, alkaloids, carbohydrates, tannins, glycosides, fixed oils and saponins (Table 1). Subsequent more detailed quantitative analysis revealed the presence of flavonoids (72 %), saponins (10 %) and alkaloids (13.4 %) in PI-ME. The major compounds obtained from GC-MS analysis of PI-ME included: 9-Octadecenamide (Oleamide) (C18H35NO, MW: 281), n-Hexadecanoic acid (Palmitic acid) (C16H32O2, MW: 256), dodecanoic acid, 3-hydroxy- (C12H24O3, MW: 216), 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (C6H8O4, MW: 144), vitamin-E (C29H50O2, MW: 430), cis,cis,cis-7,10,13-Hexadecatrienal (C16H26O, MW: 234), β-Sitosterol (C29H50O, MW: 414), 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol, (3β,5Z,7E)- (C27H44O3, MW: 416), pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate), (3α,5β,11β,20R)- (C25H43BO4, MW: 418), ethyl 9-hexadecenoate (C18H34O2, MW: 282), stigmasterol (C29H48O, MW: 412), octadecanoic acid (C18H36O2, MW: 284), 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,8-dimethyl-2- (4,8,12-trimethyltridecyl)-, [2R-[2R*(4R*,8R*)]]- (C27H46O2, MW: 402), and phytol (C20H40O, MW: 296) among other important constituents (Table 2 and Fig. 1).
Table 1
Preliminary qualitative phytochemical analysis of Passiflora incarnata methanolic extract (PI-ME)
Sample
Test
Observation
Result
1.
Aqueous solution of PI-ME + 10 % ammonium hydroxide solution
Appearance of yellow coloration
Flavonoids present
2.
A portion of PI-ME + few drops of Wagner’s reagent
Reddish brown precipitate
Alkaloids present
3.
A small volume of PI-ME + 1–2 drops of Mayer’s reagent
Creamy or white precipitate
Alkaloids present
4.
0.5 ml PI-ME + 0.5 ml benedict’s reagent → mixed and boiled for 2 min
Characteristic colored precipitate
Carbohydrates present
5.
1 ml PI-ME + 1 ml Barfoed’s reagent → boiled for 2 min
Red precipitate
Carbohydrates present
6.
50 mg PI-ME + 5 ml distilled water + small amount of 5 % ferric chloride solution
Intense green coloration
Tannins and phenolic compounds present
7.
50 mg PI-ME + conc. HCL → heated on water bath for 2 h → resultant hydrolysate filtered → 2 ml hydrolysate + 3 ml chloroform → chloroform layer separated out + 10 % ammonia solution
Pink coloration
Glycosides present
8.
A small amount of PI-ME → compressed between two pieces of filter paper
Formation of oil spot on filter paper
Fixed oils present
9.
50 mg PI-ME + 20 ml distilled water → shaken for 15 min
Formation of 2 cm thick layer of foam
Saponins present
Table 2
GC/MS analysis of Passiflora incarnata methanolic extract
Chemical constituent
Formula
Molecular weight
R.T. (min)
Percent abundance
10-Undecen-1-al, 2-methyl-
C12H22O
182
8.465
0.377
1,3-Pentanediamine
C5H14N2
102
8.809
0.353
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-
C6H8O4
144
10.27
5.477
1-Pentanol, 2-methyl-, acetate
C8H16O2
144
10.83
0.621
1,2,6-Hexanetriol
C6H14O3
134
11.10
0.623
4-Cyclopropylcarbonyloxytridecane
C17H32O2
268
11.32
0.664
5-Cyclopropylcarbonyloxypentadecane
C19H36O2
296
11.60
0.796
9-Tetradecen-1-ol, acetate, (E)-
C16H30O2
254
12.87
0.488
trans-2-undecenoic acid
C11H20O2
184
15.98
0.438
Dodecanoic acid, 3-hydroxy-
C12H24O3
216
15.99
13.64
4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol
C10H12O3
180
18.64
0.393
d-Mannose
C6H12O6
180
18.86
0.378
7-Methyl-Z-tetradecen-1-ol acetate
C17H32O2
268
19.34
0.395
l-Gala-l-ido-octose
C8H16O8
240
19.54
0.406
n-Hexadecanoic acid; (Palmitic acid)
C16H32O2
256
23.68
21.86
Phytol
C20H40O
296
30.20
1.004
9-Hexadecyn-1-ol
C16H30O
238
31.33
0.956
cis,cis,cis-7,10,13-Hexadecatrienal
C16H26O
234
31.81
2.175
Octadecanoic acid
C18H36O2
284
33.09
1.209
9-Octadecenamide, (Z)-; (Oleamide)
C18H35NO
281
42.11
33.52
9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol, (3β,5Z,7E)-
C27H44O3
416
42.79
1.762
Pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate), (3α,5β,11β,20R)-
C25H43BO4
418
42.98
1.422
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,8-dimethyl-2-(4,8,12-trimethyltridecyl)-, [2R-[2R*(4R*,8R*)]]-
C27H46O2
402
43.69
1.033
Ethyl 9-hexadecenoate
C18H34O2
282
45.78
1.390
Vitamin E
C29H50O2
430
45.99
2.579
Stigmasterol
C29H48O
412
48.01
1.229
β-Sitosterol
C29H50O
414
49.08
1.776

Antinociceptive activity of Passiflora incarnata

Abdominal constriction assay (tonic visceral chemically-induced nociception)

A significant attenuation (F (5,42) = 91.99, P < 0.001) of acetic acid incited abdominal constriction was produced by PI-ME at doses of 200 mg/kg (P < 0.01) and 250 mg/kg (P < 0.001) compared to saline control. Similarly, a significant increase (P < 0.001) in the percentage protection against abdominal constriction was observed with diclofenac (50 mg/kg) and morphine (5 mg/kg) (Fig. 2a). Naloxone (0.5 mg/kg) (F (9,70) = 44.75, P < 0.001) significantly reversed the antinociceptive activity of morphine (P < 0.001) and PI-ME (200 and 250 mg/kg) (P < 0.05) but not that of diclofenac (50 mg/kg) as shown in Fig. 2b.

Hot plate test (acute phasic thermal nociception)

In the hot plate test, 30 min after drug administration (F (5,42) = 200.2, P < 0.001) a marked increase in percentage antinociception was observed with morphine (5 mg/kg) (P < 0.001), diclofenac (50 mg/kg) (P < 0.05) and PI-ME at a dose of 200 mg/kg (P < 0.05). After 60 min (F (5,42) = 55.36, P < 0.001), the increase in percentage response was less significant (P < 0.05) for morphine whilst it was highly significant (P < 0.001) for PI-ME (150 and 200 mg/kg), the activity being retained in the latter case up to 90 min (F (5,42) = 36.61, P < 0.001, not shown). However, after 120 min (F (5,42) = 4.352, P < 0.01) it was only PI-ME at doses of 150 mg/kg (P < 0.05) and 200 mg/kg (P < 0.01) that afforded protection against thermal nociception (Fig. 3). Naloxone (1.0 mg/kg) (F (7,56) = 46.60, P < 0.001) reduced the % antinociceptive effect of both morphine (P < 0.001) and PI-ME (150 and 200 mg/kg) (P < 0.01) (Fig. 4a). Pentylenetetrazole (10 mg/kg) (F (7,56) = 35.91, P < 0.001) by way of contrast, significantly reduced the antinociceptive effect of PI-ME only at the 150 mg/kg dose (P < 0.05) (Fig. 4b).

Anxiolytic-like activity of Passiflora incarnata

In the staircase test, there was a substantial increase in the number of steps climbed (F (4,25) = 21.04, P < 0.001) in response to both diazepam (2 mg/kg, P < 0.001) and PI-ME (200 mg/kg, P < 0.05) versus the animal control group treated with saline vehicle. However, at the highest dose (600 mg/kg) the passiflora extract significantly reduced (P < 0.05) the number of steps climbed in comparison with the controls (Fig. 5a). In contrast, the number of rears (F (4,25) = 5.403, P < 0.01) was inhibited not only by treatment with diazepam (P < 0.01) but also by all three doses of PI-ME (200 and 400 mg/kg, P < 0.05; 600 mg/kg, P < 0.01) in comparison with the saline vehicle controls (Fig. 5b). The post hoc test revealed that there was no significant effect of pentylenetetrazole (10 mg/kg) by itself on step climbing nor was there any modification of the stair climbing responses when it was administered in combination with diazepam or PI-ME (Fig. 6a). However, it did reverse the decrement in rears initiated by PI-ME (200, 400 and 600 mg/kg) and actually augmented (P < 0.05) the overall rearing incidence (F (9,50) = 6.497, P < 0.001) as shown in Fig. 6b.

Sedative activity of Passiflora incarnata

Locomotor activity

In the locomotor activity study, there was a pronounced reduction in cage line crossing instigated by both (F (4,25) = 15.39, P < 0.001) diazepam (4.0 mg/kg, P < 0.001) and PI-ME at 400 mg/kg (P < 0.01) and 600 mg/kg (P < 0.001) though there was no significant motoric decline at the lowest PI-ME dose (200 mg/kg, P > 0.05) (Fig. 7a). Pentylenetetrazole (10 mg/kg) (F (7,40) = 26.88, P < 0.001) blocked (P < 0.05) the reduced locomotor effect of PI-ME (400 and 600 mg/kg) by increasing the incidence of line crossing but it did not modify the diazepam locomotor regression (Fig. 7b).

Effect of Passiflora incarnata on mechanical allodynia and vulvodynia

Animals administered a single streptozotocin (50 mg/kg) treatment developed both static and dynamic allodynia in their hind paws when tested 29 days later (Fig. 8). Hence, there was a substantial decrease (P < 0.001) in PWT and PWL in comparison with saline treated animals. One hour after PI-ME dosing in STZ-pretreated animals on the test day, there was an ensuing increase in PWT (F (4,25) = 31.41, P < 0.001) and PWL (F (4,25) = 20.25, P < 0.001) observed for PI-ME at doses of 200 mg/kg (P < 0.001, P < 0.01) and 300 mg/kg (P < 0.001). Similarly, 2 h following treatment with PI-ME on the test day in the STZ-pretreated group, there was a sizeable increase in PWT (F (4,25) = 17.92, P < 0.001) noted at doses of 200 mg/kg (P < 0.01) and 300 mg/kg (P < 0.001) of PI-ME. However, at the 2 h test, PWL (F (4,25) = 59.63, P < 0.001) was increased only by the 300 mg/kg (P < 0.001) rather than the 200 mg/kg PI-ME dose. Gabapentin (75 mg/kg) administered as a positive control, also generated an alleviation of mechanical allodynia by elevating (P < 0.001) PWT and PWL compared to the 29-day streptozotocin alone pretreated animals at both the 1 and 2 h testing times (Fig. 8).
The animal group pretreated with streptozotocin by itself 29 days earlier expressed mechanical static and dynamic vulvodynia (P < 0.001) compared to the saline vehicle treated controls on the test day (Fig. 9). It was notable that PI-ME (200 and 300 mg/kg) did not modify the diminished FRT (streptozotocin induced static vulvodynia) at either the 1 h (F (4,25) = 49.85, P < 0.001) or 2 h (F (4,25) = 17.12, P < 0.001) test day readings. However, there was a significant increase in streptozotocin-shortened FRL (dynamic vulvodynia) within 1 h (F (4,25) = 27.38, P < 0.001) and 2 h (F (4,25) = 10.08, P < 0.001) of PI-ME treatment at 200 mg/kg (P < 0.001, P < 0.05) and 300 mg/kg (P < 0.001, P < 0.01). The single test day positive control dose of gabapentin (75 mg/kg) alleviated both mechanical static and dynamic vulvodynia at the 1 and 2 h readings as evidenced by significant increases in FRT (P < 0.001, P < 0.01) and FRL (P < 0.001) versus the streptozotocin alone pretreated animals.

Discussion

The antinociceptive activity of P. incarnata methanolic extract (PI-ME) was evaluated in mice using the hot plate test which is suitable for assessing centrally mediated acute phasic nociception [57] and the acetic acid induced abdominal constriction assay for tonic visceral nociception [58, 59]. Mice were selected as the species of choice in these specific tests because they are manifestly sensitive not only to opioid mediated effects but also to coexistent non-steroidal anti-inflammatory drug (NSAID) activity [51]. What is more, accumulating evidence indicates that GABAergic transmission plays a pivotal role in the inhibitory regulation of the nociceptive process, and the murine abdominal constriction assay as well as the hot plate test both detect dose dependent GABA agonist antinociception in this species [60, 61]. In both tests, diclofenac as a standard anti-inflammatory analgesic and PI-ME produced antinociceptive activity consistent with previous studies [16, 31, 62]. It was notable that the antinociceptive effect of PI-ME was reversed by the opioid- and GABAA- receptor antagonists, naloxone and pentylenetetrazole (PTZ) respectively, suggesting an involvement of opioidergic and GABAergic mechanisms in the mediation of the antinociception. Opioid agonists decrease pain transmission by activating descending nerve fibers from the periaqueductal gray and raphe nuclei supraspinally and also by inhibition of afferent nerve transmission by binding to pre- and postsynaptic opioid receptors within the spinal cord dorsal horn [63]. Furthermore, GABAergic neurons and receptors that are intercalated within the spinal cord and higher brain pathways are important for the origination, transmission, and modification of pain impulses in such a way that alteration of GABA transmission yields antinociception [64]. P. incarnata has been shown to modulate the activity of GABAergic and opioid systems [21] to produce central analgesic activity as evaluated by a reduced duration of paw licking in neurogenic and inflammatory nociceptive phases in the formalin test [31]. Due to a prevalence of GABA as a non-α-amino acid constituent of P. incarnata extract [65], several of its pharmacological effects have been ascribed to mediation via the GABA system. These include not only affinity for GABAA but also GABAB receptors in addition to modification of GABA uptake [66]. The antinociceptive effects of both GABAA and GABAB receptor agonists are known to involve activation or inhibition of other neurotransmitter or neuromodulator pathways [64] and it is evident that central GABAergic systems are involved in opioid-mediated analgesia [67]. Thus, it is possible that administration of GABA receptor agonists in combination with other agents may yield GABA receptor-related therapies for the treatment of acute and chronic pain [64].
The anxiolytic-like activity of PI-ME was assessed by the incidence of rears or steps climbed in the stair case test. The extract at a dose of 200 mg/kg significantly increased the number of climbed steps, although at a higher dose (600 mg/kg) it decreased this parameter. Similarly, the frequency of rears was diminished by the extract at all three doses tested and this outcome was blocked by PTZ. Anxiolytic-like activity has been shown to be associated with an increase in the number of steps climbed by mice whilst sedative activity is thought to be linked to a decrease in the frequency of rears [18] and this is the very reason why this paradigm was chosen in this species to evaluate P. incarnarta. Other studies have attributed an increased rearing incidence to an anxiety-like behavior and a decreased number of steps climbed to a sedative effect [68]. In conjunction with this, anxiolytic activity has been coupled with lower doses while sedative effects have been related to higher doses of plant extracts or reference drugs [69]. In this context, PI-ME displayed an anxiolytic-like effect at 200 mg/kg, while at 600 mg/kg it exhibited sedative activity. This was also confirmed in the open field test where it was observed that PI-ME decreased the number of lines crossed at doses of 400 and 600 mg/kg comparable to that of diazepam and these findings concur with the literature [1719, 70]. Since PTZ reversed the anxiolytic-like and sedative actions of PI-ME, underlying GABA mediated mechanisms may well be implicated. In a selection of studies, the sedative and anxiolytic properties of P. incarnata have been attributed to benzodiazepine and GABA receptor mediated biochemical processes in the body [18, 19, 71, 72], binding to GABAA/B sites and inhibition of GABA uptake being of particular consequence [66].
The modulatory effect of P. incarnata on GABAergic and opioid systems may provide some insight into its beneficial effect in various painful neuropathic conditions. Neuropathy induced hypersensitivity is known to involve disruption of tonic GABAergic transmission [73] and GABA agonists and metabolic inhibitors have been shown to be effective in various neuropathic nociceptive models [7476]. Neuropathic pain has been reported to be refractory to opioids [77, 78]. However, several studies have shown that neuropathic pain can be attenuated by morphine and other μ-opioid receptor agonists [7981] and these reports suggest that local μ-opioid receptors on the terminals of uninjured primary afferent nociceptive neurons are an essential target for alleviating mechanical allodynia. In the current study we have evaluated the methanolic extract of P. incarnata in a novel streptozotocin induced diabetic animal model of neuropathic pain established exclusively in rats [56]. The results showed that PI-ME (200 and 300 mg/kg) induced mechanical anti-allodynic activity exemplified by an increase in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) 1 and 2 h post treatment. Similarly, PI-ME also relieved dynamic vulvodynia by increasing the flinching response latency (FRL) although the extract was devoid of activity on the static component of vulvodynia. The intensity of the PI-ME dynamic anti-vulvodynia response was comparable to that of gabapentin which was used as a reference drug due to the fact that it has proven pain relieving effects in various neuropathic pain models [54]. Gabapentin also exhibits an established propensity to alleviate both static and dynamic components of allodynia and vulvodynia [56] and the current study corroborates this assertion. The present findings also indicate that the behavioural and antinociceptive effects of PI-ME involve GABAergic and opioidergic mechanisms because they were reversed by PTZ and naloxone respectively. Consequently, it might be inferred that analogous processes are implicated in PI-ME anti-allodynic/vulvodynic activity and this requires a direct focus of further study. In relation to this notion, Ingale and Kasture [31] suggested that opioidergic as well as the nicotinic cholinergic system are involved in the central analgesic activity of butanolic P. incarnata extract in the eye wipe test. This paradigm is used to study trigeminal pain because corneal nociceptive receptors have a large representation in the trigeminal ganglion through the ophthalmic branch of the trigeminal nerve [82]. Moreover, it has been suggested from radioligand binding studies that it is very unlikely that P. incarnata acts via the benzodiazepine-site of the GABAA-receptor [66]. In this connection, it has been postulated that GABAA α1-sparing benzodiazepine-site ligands might constitute a class of analgesics suitable for the treatment of chronic pain syndromes [83]. Furthermore, there is considerable evidence implicating an important role for diminished GABAergic tone in the development of central sensitization and hyperalgesia in neuropathic pain models [8486].
The phytochemical screening results of our study verify the presence of a preponderance of flavonoids as well as alkaloids in P. incarnata as described elsewhere [25, 87, 88]. Flavonoids are reported to be the major phytoconstituents of P. incarnata and include chrysin, vitexin, isovitexin, orientin, isoorientin, apigenin and kampferol [14, 30, 89]. These polyphenolic metabolites may play a role in the neuropharmacological activity of several plants [9092] including P. incarnata [18, 93, 94]. Additionally, flavonoids have been reported to elicit an analgesic effect through opioid [95] as well as GABAergic systems [96] and have a beneficial role in relieving neuropathic pain conditions [9799]. Some flavonoids like quercetin have also been identified in P. incarnata extract [100] and are believed to be effective in diabetes mellitus induced peripheral neuropathy [101, 102] the activity being mediated through an opioidergic mechanism [103]. The GCMS analysis in this study revealed that P. incarnata contains a predominance of the fatty acid amide 9-octadecenamide (also known as oleamide), which has hypnotic, analgesic, and anxiolytic actions [104]. Many of oleamide’s behavioural effects stem from its activity on various receptor systems including GABAA [105107], 5HT1A, 5HT2A, 5HT2C, 5HT7 [108110], G-proteins [111], voltage gated sodium channels [107, 112] and CB1 receptors [113]. In this respect, oleamide enhances GABA receptor activity and specifically potentiates the peak chloride current when applied with GABA to benzodiazepine-sensitive GABAA receptors [106]. The cannabimimetic action of oleamide resulting from its agonist action at CB1 receptors [110, 113] gives rise to cannabinoid antagonist reversible antinociception which is also sensitive to blockade by the GABAA antagonist bicuculline [104]. It has been posited that endogenous fatty acid derivatives such as oleamide interact with endocannabinoids like anandamide in the modulation of pain sensitivity [114] which may well contribute to the inhibitory effect of P. incarnata on allodynia and vulvodynia observed in this study.
Other important constituents present in P. incarnata include hexadecanoic acid (palmitic acid), 3-hydroxy-dodecanoic acid, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one, and vitamin-E, that have strong antioxidant and neuroprotective activities and/or modulate the GABAergic system [115119].
The modulation of GABAergic and/or opioidergic systems by P. incarnata reported in this study may constitute a proportion of the mechanisms implicated in the amelioration of diabetic neuropathy. Additional processes however, like a cannabimimetic action [110, 113, 114] cannot be ignored inasmuch as P. incarnata exhibits antihyperglycemic and hypolipidemic activities in streptozotocin induced diabetes mellitus [25] which would otherwise lead to neuropathic allodynia and vulvodynia [56]. Hyperglycemia and dyslipidaemia driven oxidative stress is a major contributor to reduced nerve function [120, 121] and diabetes mellitus is a major cause of peripheral neuropathy, commonly manifested as distal symmetrical polyneuropathy [122]. Furthermore, diabetes mellitus has been reported to be linked with vulvodynia either as an isolated symptom or as part of a constellation of other neuropathic abnormalities. Such neuropathic morbidity has been termed ‘diabetic vulvopathy’ and it profoundly affects patient’s quality of life and management needs in order to address the physical, psychological and relationship problems caused by the pain [123]. Our study showed that the methanolic extract of P. incarnata significantly alleviated only the dynamic component of vulvodynia which has been reported more likely to be provoked by contact with clothing among other triggers [124] and the cotton swab test is usually used to localize painful areas in vulvodynia [125].

Conclusion

In conclusion, the methanolic extract of P. incarnata possesses peripheral and central phasic as well as tonic antinociceptive activity mediated through modulation of GABAA and opioid receptors (GABAergic and opioidergic mechanisms shown in Fig. 10) which are disclosed by their naloxone and PTZ reversibility. The findings also manifest anxiolytic-like and higher dose sedative activity of the extract, resulting from GABAergic stimulation as indicated by their sensitivity to PTZ inhibition. The extract also exhibited significant mechanical anti-allodynic and dynamic anti-vulvodynic effects (Fig. 10) that may be attributable at least in part to the oleamide content and a cannabinoid-like action [110, 113, 114]. The outcomes from our study advocate an effectiveness of P. incarnata in the treatment of various neuropathic pain conditions. However, further studies are warranted in order to determine a more precise association between the active constituents responsible for the analgesic, anxiolytic and sedative effects of P. incarnata as well as the specific molecular mechanisms underlying its actions on allodynia and vulvodynia.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FS initiated the idea and guided the research group as supervisor in planning and conducting experiments throughout the research project. UA conducted the experiments and carried out calculations and statistical analysis. She also prepared the initial draft of the manuscript. MS helped in the analysis and interpretation of data as well as in preparing the final version of the manuscript. SA provided her help during pharmacological experiments throughout the study. NA assisted in the extraction of plant material and other pharmacological activities. GA helped in the neuropathic pain related experiments. KF attributed materials during pharmacological screening of the plant extract. RDES guided the research group and interpreted the results as well as critically revised the manuscript for important intellectual content. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Merskey H, Bogduk N. Task Force on Taxonomy of the International Association for the Study of Pain. Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms. 2nd ed. Seattle: IASP Press; 1994. p. 210–3. Merskey H, Bogduk N. Task Force on Taxonomy of the International Association for the Study of Pain. Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms. 2nd ed. Seattle: IASP Press; 1994. p. 210–3.
2.
Zurück zum Zitat Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64.PubMedCrossRef Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64.PubMedCrossRef
4.
Zurück zum Zitat Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35.PubMedCrossRef Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35.PubMedCrossRef
5.
Zurück zum Zitat Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2(2):95–106.PubMedCrossRef Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2(2):95–106.PubMedCrossRef
6.
Zurück zum Zitat Tatsumi S, Mabuchi T, Abe T, Xu L, Minami T, Ito S. Analgesic effect of extracts of Chinese medicinal herbs Moutan cortex and Coicis semen on neuropathic pain in mice. Neurosci Lett. 2004;370(2):130–4.PubMedCrossRef Tatsumi S, Mabuchi T, Abe T, Xu L, Minami T, Ito S. Analgesic effect of extracts of Chinese medicinal herbs Moutan cortex and Coicis semen on neuropathic pain in mice. Neurosci Lett. 2004;370(2):130–4.PubMedCrossRef
7.
Zurück zum Zitat Bortalanza LB, Ferreira J, Hess SC, Delle Monache F, Yunes RA, Calixto JB. Anti-allodynic action of the tormentic acid, a triterpene isolated from plant, against neuropathic and inflammatory persistent pain in mice. Eur J Pharmacol. 2002;453(2):203–8.PubMedCrossRef Bortalanza LB, Ferreira J, Hess SC, Delle Monache F, Yunes RA, Calixto JB. Anti-allodynic action of the tormentic acid, a triterpene isolated from plant, against neuropathic and inflammatory persistent pain in mice. Eur J Pharmacol. 2002;453(2):203–8.PubMedCrossRef
8.
Zurück zum Zitat Kassuya CA, Silvestre AA, Rehder VLG, Calixto JB. Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur J Pharmacol. 2003;478(2):145–53.PubMedCrossRef Kassuya CA, Silvestre AA, Rehder VLG, Calixto JB. Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur J Pharmacol. 2003;478(2):145–53.PubMedCrossRef
9.
Zurück zum Zitat Rosenberg JM, Harrell C, Ristic H, Werner RA, de Rosayro AM. The effect of gabapentin on neuropathic pain. Clin J Pain. 1997;13(3):251–5.PubMedCrossRef Rosenberg JM, Harrell C, Ristic H, Werner RA, de Rosayro AM. The effect of gabapentin on neuropathic pain. Clin J Pain. 1997;13(3):251–5.PubMedCrossRef
10.
Zurück zum Zitat Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352(13):1324–34.PubMedCrossRef Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352(13):1324–34.PubMedCrossRef
11.
Zurück zum Zitat Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain. 2002;18(6):343–9.PubMedCrossRef Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain. 2002;18(6):343–9.PubMedCrossRef
12.
Zurück zum Zitat Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J Ethnopharmacol. 2004;94(1):1–23.PubMedCrossRef Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J Ethnopharmacol. 2004;94(1):1–23.PubMedCrossRef
13.
Zurück zum Zitat Marchart E, Krenn L, Kopp B. Quantification of the flavonoid glycosides in Passiflora incarnata by capillary electrophoresis. Planta Med. 2003;69(5):452–6.PubMedCrossRef Marchart E, Krenn L, Kopp B. Quantification of the flavonoid glycosides in Passiflora incarnata by capillary electrophoresis. Planta Med. 2003;69(5):452–6.PubMedCrossRef
14.
Zurück zum Zitat Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S. Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol. 2013;150(3):791–804.PubMedCrossRef Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S. Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol. 2013;150(3):791–804.PubMedCrossRef
15.
Zurück zum Zitat Menghini A, Capuccella M, Mercati V, Mancini L, Buratta M. Flavonoid contents in Passiflora spp. Pharmacol Res. 1993;27:13–4. Menghini A, Capuccella M, Mercati V, Mancini L, Buratta M. Flavonoid contents in Passiflora spp. Pharmacol Res. 1993;27:13–4.
16.
Zurück zum Zitat Speroni E, Minghetti A. Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med. 1988;54(6):488.PubMedCrossRef Speroni E, Minghetti A. Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med. 1988;54(6):488.PubMedCrossRef
17.
Zurück zum Zitat Grundmann O, Wähling C, Staiger C, Butterweck V. Anxiolytic effects of a passion flower (Passiflora incarnata L.) extract in the elevated plus maze in mice. Pharmazie. 2009;64(1):63–4.PubMed Grundmann O, Wähling C, Staiger C, Butterweck V. Anxiolytic effects of a passion flower (Passiflora incarnata L.) extract in the elevated plus maze in mice. Pharmazie. 2009;64(1):63–4.PubMed
18.
Zurück zum Zitat Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol. 1997;57(1):11–20.PubMedCrossRef Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol. 1997;57(1):11–20.PubMedCrossRef
19.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol. 2001;78(2):165–70.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol. 2001;78(2):165–70.PubMedCrossRef
20.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground parts of Passiflora incarnata. Fitoterapia. 2001;72(8):922–6.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground parts of Passiflora incarnata. Fitoterapia. 2001;72(8):922–6.PubMedCrossRef
21.
Zurück zum Zitat Nassiri-Asl M, Shariati-Rad S, Zamansoltani F. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors. BMC Complement Altern Med. 2007;7(1):26.PubMedCentralPubMedCrossRef Nassiri-Asl M, Shariati-Rad S, Zamansoltani F. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors. BMC Complement Altern Med. 2007;7(1):26.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Dhawan K, Sharma A. Antitussive activity of the methanol extract of Passiflora incarnata leaves. Fitoterapia. 2002;73(5):397–9.PubMedCrossRef Dhawan K, Sharma A. Antitussive activity of the methanol extract of Passiflora incarnata leaves. Fitoterapia. 2002;73(5):397–9.PubMedCrossRef
23.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Aphrodisiac activity of methanol extract of leaves of Passiflora incarnata Linn. in mice. Phytother Res. 2003;17(4):401–3.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Aphrodisiac activity of methanol extract of leaves of Passiflora incarnata Linn. in mice. Phytother Res. 2003;17(4):401–3.PubMedCrossRef
24.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Antiasthmatic activity of the methanol extract of leaves of Passiflora incarnata. Phytother Res. 2003;17(7):821–2.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Antiasthmatic activity of the methanol extract of leaves of Passiflora incarnata. Phytother Res. 2003;17(7):821–2.PubMedCrossRef
25.
Zurück zum Zitat Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharmacol. 2012;139(3):801–6.PubMedCrossRef Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharmacol. 2012;139(3):801–6.PubMedCrossRef
26.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Reversal of cannabinoids (Δ9-THC) by the benzoflavone moiety from methanol extract of Passiflora incarnata Linneaus in mice: a possible therapy for cannabinoid addiction. J Pharm Pharmacol. 2002;54(6):875–81.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Reversal of cannabinoids (Δ9-THC) by the benzoflavone moiety from methanol extract of Passiflora incarnata Linneaus in mice: a possible therapy for cannabinoid addiction. J Pharm Pharmacol. 2002;54(6):875–81.PubMedCrossRef
27.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Reversal of morphine tolerance and dependence by Passiflora incarnata-A traditional medicine to combat morphine addiction. Pharm Biol. 2002;40(8):576–80.CrossRef Dhawan K, Kumar S, Sharma A. Reversal of morphine tolerance and dependence by Passiflora incarnata-A traditional medicine to combat morphine addiction. Pharm Biol. 2002;40(8):576–80.CrossRef
28.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Nicotine reversal effects of the benzoflavone moiety from Passiflora incarnata Linneaus in mice. Addict Biol. 2002;7(4):435–41.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Nicotine reversal effects of the benzoflavone moiety from Passiflora incarnata Linneaus in mice. Addict Biol. 2002;7(4):435–41.PubMedCrossRef
29.
Zurück zum Zitat Dhawan K. Drug/substance reversal effects of a novel tri-substituted benzoflavone moiety (BZF) isolated from Passiflora incarnata Linn.–a brief perspective. Addict Biol. 2003;8(4):379–86.PubMedCrossRef Dhawan K. Drug/substance reversal effects of a novel tri-substituted benzoflavone moiety (BZF) isolated from Passiflora incarnata Linn.–a brief perspective. Addict Biol. 2003;8(4):379–86.PubMedCrossRef
30.
Zurück zum Zitat Patel S, Mohamed Saleem T, Ravi V, Shrestha B, Verma N, Gauthaman K. Passiflora incarnata Linn: a phytopharmacological review. Int J Green Pharm. 2009;3(4):277.CrossRef Patel S, Mohamed Saleem T, Ravi V, Shrestha B, Verma N, Gauthaman K. Passiflora incarnata Linn: a phytopharmacological review. Int J Green Pharm. 2009;3(4):277.CrossRef
31.
Zurück zum Zitat Ingale S, Kasture S. Evaluation of analgesic activity of the leaves of Passiflora incarnata Linn. Int J Green Pharm. 2012;6(1):36.CrossRef Ingale S, Kasture S. Evaluation of analgesic activity of the leaves of Passiflora incarnata Linn. Int J Green Pharm. 2012;6(1):36.CrossRef
32.
Zurück zum Zitat Akhondzadeh S, Naghavi H, Vazirian M, Shayeganpour A, Rashidi H, Khani M. Passionflower in the treatment of generalized anxiety: a pilot double-blind randomized controlled trial with oxazepam. J Clin Pharm Ther. 2001;26(5):363–7.PubMedCrossRef Akhondzadeh S, Naghavi H, Vazirian M, Shayeganpour A, Rashidi H, Khani M. Passionflower in the treatment of generalized anxiety: a pilot double-blind randomized controlled trial with oxazepam. J Clin Pharm Ther. 2001;26(5):363–7.PubMedCrossRef
33.
Zurück zum Zitat Movafegh A, Alizadeh R, Hajimohamadi F, Esfehani F, Nejatfar M. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study. Anesth Analg. 2008;106(6):1728–32.PubMedCrossRef Movafegh A, Alizadeh R, Hajimohamadi F, Esfehani F, Nejatfar M. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study. Anesth Analg. 2008;106(6):1728–32.PubMedCrossRef
34.
Zurück zum Zitat Schulz H, Jobert M, Hubner W. The quantitative EEG as a screening instrument to identify sedative effects of single doses of plant extracts in comparison with diazepam. Phytomedicine. 1998;5(6):449–58.PubMedCrossRef Schulz H, Jobert M, Hubner W. The quantitative EEG as a screening instrument to identify sedative effects of single doses of plant extracts in comparison with diazepam. Phytomedicine. 1998;5(6):449–58.PubMedCrossRef
35.
Zurück zum Zitat Akhondzadeh S, Kashani L, Mobaseri M, Hosseini S, Nikzad S, Khani M. Passionflower in the treatment of opiates withdrawal: a double-blind randomized controlled trial. J Clin Pharm Ther. 2001;26(5):369–73.PubMedCrossRef Akhondzadeh S, Kashani L, Mobaseri M, Hosseini S, Nikzad S, Khani M. Passionflower in the treatment of opiates withdrawal: a double-blind randomized controlled trial. J Clin Pharm Ther. 2001;26(5):369–73.PubMedCrossRef
36.
Zurück zum Zitat Akhondzadeh S, Mohammadi M, Momeni F. Passiflora incarnata in the treatment of attention-deficit hyperactivity disorder in children and adolescents. Future Medicine. 2005;2(4):609–14. Akhondzadeh S, Mohammadi M, Momeni F. Passiflora incarnata in the treatment of attention-deficit hyperactivity disorder in children and adolescents. Future Medicine. 2005;2(4):609–14.
37.
Zurück zum Zitat Fahami F, Asali Z, Aslani A, Fathizadeh N. A comparative study on the effects of Hypericum perforatum and Passion flower on the menopausal symptoms of women referring to Isfahan city health care centers. Iran J Nurs Midwifery Res. 2010;15(4):202–7.PubMedCentralPubMed Fahami F, Asali Z, Aslani A, Fathizadeh N. A comparative study on the effects of Hypericum perforatum and Passion flower on the menopausal symptoms of women referring to Isfahan city health care centers. Iran J Nurs Midwifery Res. 2010;15(4):202–7.PubMedCentralPubMed
38.
39.
Zurück zum Zitat Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum. 2012;18(1, Peripheral Neuropathy):161–75.PubMed Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum. 2012;18(1, Peripheral Neuropathy):161–75.PubMed
40.
Zurück zum Zitat Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3, Supplement):S3–14.PubMedCentralPubMedCrossRef Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3, Supplement):S3–14.PubMedCentralPubMedCrossRef
41.
42.
Zurück zum Zitat Brunelli B, Gorson KC. The use of complementary and alternative medicines by patients with peripheral neuropathy. J Neurol Sci. 2004;218(1):59–66.PubMedCrossRef Brunelli B, Gorson KC. The use of complementary and alternative medicines by patients with peripheral neuropathy. J Neurol Sci. 2004;218(1):59–66.PubMedCrossRef
43.
Zurück zum Zitat Muthuraman A, Singh N, Jaggi AS. Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: an evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol. 2011;49(10):2557–63.PubMedCrossRef Muthuraman A, Singh N, Jaggi AS. Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: an evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol. 2011;49(10):2557–63.PubMedCrossRef
44.
Zurück zum Zitat Kaeidi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M, Rasoulian B, Hajializadeh Z, et al. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: In vitro and in vivo studies. J Ethnopharmacol. 2011;136(1):188–96.PubMedCrossRef Kaeidi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M, Rasoulian B, Hajializadeh Z, et al. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: In vitro and in vivo studies. J Ethnopharmacol. 2011;136(1):188–96.PubMedCrossRef
45.
Zurück zum Zitat Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC Complement Altern Med. 2011;11(1):24.PubMedCentralPubMedCrossRef Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC Complement Altern Med. 2011;11(1):24.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Garg G, Adams JD. Treatment of neuropathic pain with plant medicines. Chin J Integr Med. 2012;18(8):565–70.PubMedCrossRef Garg G, Adams JD. Treatment of neuropathic pain with plant medicines. Chin J Integr Med. 2012;18(8):565–70.PubMedCrossRef
47.
Zurück zum Zitat Raaman N. Qualitative phytochemical screening. Phytochemical techniques. New India Publishing. 2006. Raaman N. Qualitative phytochemical screening. Phytochemical techniques. New India Publishing. 2006.
48.
Zurück zum Zitat Krishnaiah D, Devi T, Bono A, Sarbatly R. Studies on phytochemical constituents of six Malaysian medicinal plants. J Med Plant Res. 2009;3(2):067–72. Krishnaiah D, Devi T, Bono A, Sarbatly R. Studies on phytochemical constituents of six Malaysian medicinal plants. J Med Plant Res. 2009;3(2):067–72.
49.
Zurück zum Zitat Edeoga H, Okwu D, Mbaebie B. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–8.CrossRef Edeoga H, Okwu D, Mbaebie B. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–8.CrossRef
50.
Zurück zum Zitat Dogrul A, Yesilyurt O. Effects of intrathecally administered aminoglycoside antibiotics, calcium-channel blockers, nickel and calcium on acetic acid-induced writhing test in mice. General Pharmacol. 1998;30(4):613–6.CrossRef Dogrul A, Yesilyurt O. Effects of intrathecally administered aminoglycoside antibiotics, calcium-channel blockers, nickel and calcium on acetic acid-induced writhing test in mice. General Pharmacol. 1998;30(4):613–6.CrossRef
51.
Zurück zum Zitat Subhan F, Abbas M, Rauf K, Arfan M, Sewell RD, Ali G. The role of opioidergic mechanism in the activity of Bacopa monnieri extract against tonic and acute phasic pain modalities. Pharmacology Online. 2010;3:903–14. Subhan F, Abbas M, Rauf K, Arfan M, Sewell RD, Ali G. The role of opioidergic mechanism in the activity of Bacopa monnieri extract against tonic and acute phasic pain modalities. Pharmacology Online. 2010;3:903–14.
52.
Zurück zum Zitat Simiand J, Keane P, Morre M. The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology (Berl). 1984;84(1):48–53.CrossRef Simiand J, Keane P, Morre M. The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology (Berl). 1984;84(1):48–53.CrossRef
53.
Zurück zum Zitat Subhan F, Karim N, Gilani AH, Sewell RD. Terpenoid content of Valeriana wallichii extracts and antidepressant like response profiles. Phytother Res. 2010;24(5):686–91.PubMed Subhan F, Karim N, Gilani AH, Sewell RD. Terpenoid content of Valeriana wallichii extracts and antidepressant like response profiles. Phytother Res. 2010;24(5):686–91.PubMed
54.
Zurück zum Zitat John Field M, McCleary S, Hughes J, Singh L. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain. 1999;80(1):391–8.CrossRef John Field M, McCleary S, Hughes J, Singh L. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain. 1999;80(1):391–8.CrossRef
55.
Zurück zum Zitat Chaplan S, Bach F, Pogrel J, Chung J, Yaksh T. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.PubMedCrossRef Chaplan S, Bach F, Pogrel J, Chung J, Yaksh T. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.PubMedCrossRef
56.
Zurück zum Zitat Ali G, Subhan F, Abbas M, Zeb J, Shahid M, Sewell RD. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1129–40.PubMedCentralPubMedCrossRef Ali G, Subhan F, Abbas M, Zeb J, Shahid M, Sewell RD. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1129–40.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;2(1):7–14.PubMedCentralPubMedCrossRef Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;2(1):7–14.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Verma PR, Joharapurkar AA, Chatpalliwar VA, Asnani AJ. Antinociceptive activity of alcoholic extract of Hemidesmus indicus R. Br. in mice. J Ethnopharmacol. 2005;102(2):298–301.PubMedCrossRef Verma PR, Joharapurkar AA, Chatpalliwar VA, Asnani AJ. Antinociceptive activity of alcoholic extract of Hemidesmus indicus R. Br. in mice. J Ethnopharmacol. 2005;102(2):298–301.PubMedCrossRef
59.
Zurück zum Zitat Sulaiman MR, Hussain M, Zakaria ZA, Somchit M, Moin S, Mohamad A, et al. Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia. 2008;79(7):557–61.PubMedCrossRef Sulaiman MR, Hussain M, Zakaria ZA, Somchit M, Moin S, Mohamad A, et al. Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia. 2008;79(7):557–61.PubMedCrossRef
60.
Zurück zum Zitat Sałat K, Więckowska A, Więckowski K, Höfner GC, Kamiński J, Wanner KT, et al. Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol Rep. 2012;64(4):817–33.PubMedCrossRef Sałat K, Więckowska A, Więckowski K, Höfner GC, Kamiński J, Wanner KT, et al. Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol Rep. 2012;64(4):817–33.PubMedCrossRef
61.
Zurück zum Zitat Britto GF, Subash K, Rao NJ, Cheriyan BV, Kumar SV. A synergistic approach to evaluate the anti-nociceptive activity of a GABA agonist with opioids in albino mice. J Clin Diagn Res. 2012;6:682–7. Britto GF, Subash K, Rao NJ, Cheriyan BV, Kumar SV. A synergistic approach to evaluate the anti-nociceptive activity of a GABA agonist with opioids in albino mice. J Clin Diagn Res. 2012;6:682–7.
62.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Evaluation of central nervous system effects of Passiflora incarnata in experimental animals. Pharm Biol. 2003;41(2):87–91.CrossRef Dhawan K, Kumar S, Sharma A. Evaluation of central nervous system effects of Passiflora incarnata in experimental animals. Pharm Biol. 2003;41(2):87–91.CrossRef
63.
Zurück zum Zitat Yaksh T. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol Scand. 1997;41(1):94–111.PubMedCrossRef Yaksh T. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol Scand. 1997;41(1):94–111.PubMedCrossRef
64.
Zurück zum Zitat McCarson KE, Enna S. GABA pharmacology: the search for analgesics. Neurochem Res. 2014;1–16. McCarson KE, Enna S. GABA pharmacology: the search for analgesics. Neurochem Res. 2014;1–16.
65.
Zurück zum Zitat Elsas S-M, Rossi D, Raber J, White G, Seeley C-A, Gregory W, et al. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine. 2010;17(12):940–9.PubMedCentralPubMedCrossRef Elsas S-M, Rossi D, Raber J, White G, Seeley C-A, Gregory W, et al. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine. 2010;17(12):940–9.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Appel K, Rose T, Fiebich B, Kammler T, Hoffmann C, Weiss G. Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L. Phytother Res. 2011;25(6):838–43.PubMedCrossRef Appel K, Rose T, Fiebich B, Kammler T, Hoffmann C, Weiss G. Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L. Phytother Res. 2011;25(6):838–43.PubMedCrossRef
67.
Zurück zum Zitat DeFeudis F. Central GABA‐ergic systems and analgesia. Drug Dev Res. 1983;3(1):1–15.CrossRef DeFeudis F. Central GABA‐ergic systems and analgesia. Drug Dev Res. 1983;3(1):1–15.CrossRef
68.
Zurück zum Zitat Gries DA, Condouris GA, Shey Z, Houpt M. Anxiolytic-like action in mice treated with nitrous oxide and oral triazolam or diazepam. Life Sci. 2005;76(15):1667–74.PubMedCrossRef Gries DA, Condouris GA, Shey Z, Houpt M. Anxiolytic-like action in mice treated with nitrous oxide and oral triazolam or diazepam. Life Sci. 2005;76(15):1667–74.PubMedCrossRef
69.
Zurück zum Zitat Rolland A, Fleurentin J, Lanhers M-C, Younos C, Misslin R, Mortier F, et al. Behavioural effects of the American traditional plant Eschscholzia californica: Sedative and anxiolytic properties. Planta Med. 1991;57(03):212–6.PubMedCrossRef Rolland A, Fleurentin J, Lanhers M-C, Younos C, Misslin R, Mortier F, et al. Behavioural effects of the American traditional plant Eschscholzia californica: Sedative and anxiolytic properties. Planta Med. 1991;57(03):212–6.PubMedCrossRef
70.
Zurück zum Zitat Sampath C, Holbik M, Krenn L, Butterweck V. Anxiolytic effects of fractions obtained from Passiflora incarnata L. in the elevated plus maze in mice. Phytother Res. 2011;25(6):789–95.PubMedCrossRef Sampath C, Holbik M, Krenn L, Butterweck V. Anxiolytic effects of fractions obtained from Passiflora incarnata L. in the elevated plus maze in mice. Phytother Res. 2011;25(6):789–95.PubMedCrossRef
71.
Zurück zum Zitat Brown E, Hurd NS, McCall S, Ceremuga TE. Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J. 2007;75(5):333–7. Brown E, Hurd NS, McCall S, Ceremuga TE. Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J. 2007;75(5):333–7.
72.
Zurück zum Zitat Grundmann O, Wang J, McGregor GP, Butterweck V. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med. 2008;74(15):1769–73.PubMedCrossRef Grundmann O, Wang J, McGregor GP, Butterweck V. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med. 2008;74(15):1769–73.PubMedCrossRef
73.
Zurück zum Zitat Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao J-X, Hökfelt T, Xu X-J. Central inhibitory dysfunctions: mechanisms and clinical implications. Behav Brain Sci. 1997;20(03):420–5.PubMed Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao J-X, Hökfelt T, Xu X-J. Central inhibitory dysfunctions: mechanisms and clinical implications. Behav Brain Sci. 1997;20(03):420–5.PubMed
74.
Zurück zum Zitat Hyun Hwang J,L, Yaksh T. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain. 1997;70(1):15–22.CrossRef Hyun Hwang J,L, Yaksh T. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain. 1997;70(1):15–22.CrossRef
75.
Zurück zum Zitat Giardina WJ, Decker MW, Porsolt RD, Roux S, Collins SD, Kim DJ, et al. An evaluation of the GABA uptake blocker tiagabine in animal models of neuropathic and nociceptive pain. Drug Dev Res. 1998;44(2‐3):106–13.CrossRef Giardina WJ, Decker MW, Porsolt RD, Roux S, Collins SD, Kim DJ, et al. An evaluation of the GABA uptake blocker tiagabine in animal models of neuropathic and nociceptive pain. Drug Dev Res. 1998;44(2‐3):106–13.CrossRef
76.
Zurück zum Zitat Urban MO, Ren K, Park KT, Campbell B, Anker N, Stearns B, et al. Comparison of the antinociceptive profiles of gabapentin and 3-methylgabapentin in rat models of acute and persistent pain: Implications for mechanism of action. J Pharmacol Exp Ther. 2005;313(3):1209–16.PubMedCrossRef Urban MO, Ren K, Park KT, Campbell B, Anker N, Stearns B, et al. Comparison of the antinociceptive profiles of gabapentin and 3-methylgabapentin in rat models of acute and persistent pain: Implications for mechanism of action. J Pharmacol Exp Ther. 2005;313(3):1209–16.PubMedCrossRef
77.
Zurück zum Zitat Przewlocki R, Przewlocka B. Opioids in neuropathic pain. Curr Pharm Des. 2005;11(23):3013–25.PubMedCrossRef Przewlocki R, Przewlocka B. Opioids in neuropathic pain. Curr Pharm Des. 2005;11(23):3013–25.PubMedCrossRef
78.
Zurück zum Zitat Arnér S, Meyerson BA. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain. 1988;33(1):11–23.PubMedCrossRef Arnér S, Meyerson BA. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain. 1988;33(1):11–23.PubMedCrossRef
79.
Zurück zum Zitat Guan Y, Johanek LM, Hartke TV, Shim B, Tao Y-X, Ringkamp M, et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain. 2008;138(2):318–29.PubMedCentralPubMedCrossRef Guan Y, Johanek LM, Hartke TV, Shim B, Tao Y-X, Ringkamp M, et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain. 2008;138(2):318–29.PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Eisenberg E, McNicol ED, Carr DB. Efficacy of mu‐opioid agonists in the treatment of evoked neuropathic pain: systematic review of randomized controlled trials. Eur J Pain. 2006;10(8):667.PubMedCrossRef Eisenberg E, McNicol ED, Carr DB. Efficacy of mu‐opioid agonists in the treatment of evoked neuropathic pain: systematic review of randomized controlled trials. Eur J Pain. 2006;10(8):667.PubMedCrossRef
81.
Zurück zum Zitat Desmeules JA, Kayser V, Guilbaud G. Selective opioid receptor agonists modulate mechanical allodynia in an animal model of neuropathic pain. Pain. 1993;53(3):277–85.PubMedCrossRef Desmeules JA, Kayser V, Guilbaud G. Selective opioid receptor agonists modulate mechanical allodynia in an animal model of neuropathic pain. Pain. 1993;53(3):277–85.PubMedCrossRef
82.
Zurück zum Zitat Felipe C, Gonzalez GG, Gallar J, Belmonte C. Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: effect of corneal wounding. Eur J Pain. 1999;3(1):31–9.PubMedCrossRef Felipe C, Gonzalez GG, Gallar J, Belmonte C. Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: effect of corneal wounding. Eur J Pain. 1999;3(1):31–9.PubMedCrossRef
83.
Zurück zum Zitat Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451(7176):330–4.PubMedCrossRef Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451(7176):330–4.PubMedCrossRef
84.
Zurück zum Zitat Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I–III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma. 2010;27(4):729–37.PubMedCrossRef Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I–III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma. 2010;27(4):729–37.PubMedCrossRef
85.
Zurück zum Zitat Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain. 2011;152(4):844–52.PubMedCentralPubMedCrossRef Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain. 2011;152(4):844–52.PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.PubMed Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.PubMed
87.
Zurück zum Zitat Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci. 1966;55(3):225–76.PubMedCrossRef Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci. 1966;55(3):225–76.PubMedCrossRef
88.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Comparative biological activity study on Passiflora incarnata and P. edulis. Fitoterapia. 2001;72(6):698–702.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Comparative biological activity study on Passiflora incarnata and P. edulis. Fitoterapia. 2001;72(6):698–702.PubMedCrossRef
89.
Zurück zum Zitat Raffaelli A, Moneti G, Mercati V, Toja E. Mass spectrometric characterization of flavonoids in extracts from Passiflora incarnata. J Chromatogr A. 1997;777(1):223–31.CrossRef Raffaelli A, Moneti G, Mercati V, Toja E. Mass spectrometric characterization of flavonoids in extracts from Passiflora incarnata. J Chromatogr A. 1997;777(1):223–31.CrossRef
90.
Zurück zum Zitat Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, Lima TCM, et al. Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub‐fractions and flavonoid constituents. Phytother Res. 2006;20(12):1067–73.PubMedCrossRef Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, Lima TCM, et al. Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub‐fractions and flavonoid constituents. Phytother Res. 2006;20(12):1067–73.PubMedCrossRef
91.
Zurück zum Zitat Sena LM, Zucolotto SM, Reginatto FH, Schenkel EP, De Lima TCM. Neuropharmacological activity of the pericarp of Passiflora edulis flavicarpa degener: putative involvement of C-glycosylflavonoids. Exp Biol Med. 2009;234(8):967–75.CrossRef Sena LM, Zucolotto SM, Reginatto FH, Schenkel EP, De Lima TCM. Neuropharmacological activity of the pericarp of Passiflora edulis flavicarpa degener: putative involvement of C-glycosylflavonoids. Exp Biol Med. 2009;234(8):967–75.CrossRef
92.
Zurück zum Zitat Herrera-Ruiz M, Zamilpa A, González-Cortazar M, Reyes-Chilpa R, León E, García M, et al. Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from Byrsonima crassifolia. Phytomedicine. 2011;18(14):1255–61.PubMedCrossRef Herrera-Ruiz M, Zamilpa A, González-Cortazar M, Reyes-Chilpa R, León E, García M, et al. Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from Byrsonima crassifolia. Phytomedicine. 2011;18(14):1255–61.PubMedCrossRef
93.
Zurück zum Zitat Dhawan K, Dhawan S, Chhabra S. Attenuation of benzodiazepine dependence in mice by a tri-substituted benzoflavone moiety of Passiflora incarnata Linneaus: a non-habit forming anxiolytic. J Pharm Pharm Sci. 2003;6(2):215–22.PubMed Dhawan K, Dhawan S, Chhabra S. Attenuation of benzodiazepine dependence in mice by a tri-substituted benzoflavone moiety of Passiflora incarnata Linneaus: a non-habit forming anxiolytic. J Pharm Pharm Sci. 2003;6(2):215–22.PubMed
94.
Zurück zum Zitat Dhawan K, Kumar S, Sharma A. Suppression of alcohol-cessation-oriented hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linneaus in mice. J Ethnopharmacol. 2002;81(2):239–44.PubMedCrossRef Dhawan K, Kumar S, Sharma A. Suppression of alcohol-cessation-oriented hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linneaus in mice. J Ethnopharmacol. 2002;81(2):239–44.PubMedCrossRef
95.
Zurück zum Zitat Higgs J, Wasowski C, Loscalzo LM, Marder M. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3, 3-dibromoflavanone in mice. Neuropharmacology. 2013;72:9–19.PubMedCrossRef Higgs J, Wasowski C, Loscalzo LM, Marder M. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3, 3-dibromoflavanone in mice. Neuropharmacology. 2013;72:9–19.PubMedCrossRef
96.
Zurück zum Zitat Willain Filho A, Cechinel Filho V, Olinger L, de Souza MM. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 2008;31(6):713–21.CrossRef Willain Filho A, Cechinel Filho V, Olinger L, de Souza MM. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 2008;31(6):713–21.CrossRef
97.
Zurück zum Zitat Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia. 2012;83(4):650–9.PubMedCrossRef Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia. 2012;83(4):650–9.PubMedCrossRef
98.
Zurück zum Zitat Meotti FC, Missau FC, Ferreira J, Pizzolatti MG, Mizuzaki C, Nogueira CW, et al. Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochem Pharmacol. 2006;72(12):1707–13.PubMedCrossRef Meotti FC, Missau FC, Ferreira J, Pizzolatti MG, Mizuzaki C, Nogueira CW, et al. Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochem Pharmacol. 2006;72(12):1707–13.PubMedCrossRef
99.
Zurück zum Zitat Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol. 2006;536(3):256–61.PubMedCrossRef Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol. 2006;536(3):256–61.PubMedCrossRef
100.
Zurück zum Zitat Gavasheli N, Moniavo I, Eristavi L. Flavonoids from Passiflora incarnata. Chem Nat Compounds. 1974;10(1):99.CrossRef Gavasheli N, Moniavo I, Eristavi L. Flavonoids from Passiflora incarnata. Chem Nat Compounds. 1974;10(1):99.CrossRef
101.
Zurück zum Zitat Feng C, Zhang L, Liu X. Progress in research of aldose reductase inhibitors in traditional medicinal herbs. Zhongguo Zhong Yao Za Zhi. 2005;30(19):1496–500.PubMed Feng C, Zhang L, Liu X. Progress in research of aldose reductase inhibitors in traditional medicinal herbs. Zhongguo Zhong Yao Za Zhi. 2005;30(19):1496–500.PubMed
102.
Zurück zum Zitat Galuppo M, Giacoppo S, Bramanti P, Mazzon E. Use of natural compounds in the management of diabetic peripheral neuropathy. Molecules. 2014;19(3):2877–95.PubMedCrossRef Galuppo M, Giacoppo S, Bramanti P, Mazzon E. Use of natural compounds in the management of diabetic peripheral neuropathy. Molecules. 2014;19(3):2877–95.PubMedCrossRef
103.
Zurück zum Zitat Anjaneyulu M, Chopra K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):1001–5.PubMedCrossRef Anjaneyulu M, Chopra K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):1001–5.PubMedCrossRef
104.
Zurück zum Zitat Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanuš LO, Boger DL, et al. Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J Pharmacol Exp Ther. 2001;299(1):332–42.PubMed Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanuš LO, Boger DL, et al. Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J Pharmacol Exp Ther. 2001;299(1):332–42.PubMed
105.
Zurück zum Zitat Laposky AD, Homanics GE, Basile A, Mendelson WB. Deletion of the GABAA receptor β3 subunit eliminates the hypnotic actions of oleamide in mice. Neuroreport. 2001;12(18):4143–7.PubMedCrossRef Laposky AD, Homanics GE, Basile A, Mendelson WB. Deletion of the GABAA receptor β3 subunit eliminates the hypnotic actions of oleamide in mice. Neuroreport. 2001;12(18):4143–7.PubMedCrossRef
106.
Zurück zum Zitat Yost CS, Hampson AJ, Leonoudakis D, Koblin DD, Bornheim LM, Gray AT. Oleamide potentiates benzodiazepine-sensitive gamma-aminobutyric acid receptor activity but does not alter minimum alveolar anesthetic concentration. Anesth Analg. 1998;86(6):1294–300.PubMed Yost CS, Hampson AJ, Leonoudakis D, Koblin DD, Bornheim LM, Gray AT. Oleamide potentiates benzodiazepine-sensitive gamma-aminobutyric acid receptor activity but does not alter minimum alveolar anesthetic concentration. Anesth Analg. 1998;86(6):1294–300.PubMed
107.
Zurück zum Zitat Verdon B, Zheng J, Nicholson RA, Ganelli CR, Lees G. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na + channels in vitro: a putative endogenous ligand for depressant drug sites in CNS. Br J Pharmacol. 2000;129(2):283–90.PubMedCentralPubMedCrossRef Verdon B, Zheng J, Nicholson RA, Ganelli CR, Lees G. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na + channels in vitro: a putative endogenous ligand for depressant drug sites in CNS. Br J Pharmacol. 2000;129(2):283–90.PubMedCentralPubMedCrossRef
108.
Zurück zum Zitat Thomas EA, Cravatt BF, Sutcliffe JG. The endogenous lipid oleamide activates serotonin 5-HT7 neurons in mouse thalamus and hypothalamus. J Neurochem. 1999;72(6):2370–8.PubMedCrossRef Thomas EA, Cravatt BF, Sutcliffe JG. The endogenous lipid oleamide activates serotonin 5-HT7 neurons in mouse thalamus and hypothalamus. J Neurochem. 1999;72(6):2370–8.PubMedCrossRef
109.
Zurück zum Zitat Boger DL, Patterson JE, Jin Q. Structural requirements for 5-HT2A and 5-HT1A serotonin receptor potentiation by the biologically active lipid oleamide. Proc Natl Acad Sci. 1998;95(8):4102–7.PubMedCentralPubMedCrossRef Boger DL, Patterson JE, Jin Q. Structural requirements for 5-HT2A and 5-HT1A serotonin receptor potentiation by the biologically active lipid oleamide. Proc Natl Acad Sci. 1998;95(8):4102–7.PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Soria-Gómez E, Márquez-Diosdado MI, Montes-Rodríguez CJ, Estrada-González V, Prospéro-García O. Oleamide administered into the nucleus accumbens shell regulates feeding behaviour via CB1 and 5-HT2C receptors. Int J Neuropsychopharmacol. 2010;13(9):1247–54.PubMedCrossRef Soria-Gómez E, Márquez-Diosdado MI, Montes-Rodríguez CJ, Estrada-González V, Prospéro-García O. Oleamide administered into the nucleus accumbens shell regulates feeding behaviour via CB1 and 5-HT2C receptors. Int J Neuropsychopharmacol. 2010;13(9):1247–54.PubMedCrossRef
111.
Zurück zum Zitat Thomas EA, Carson MJ, Neal MJ, Sutcliffe JG. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc Natl Acad Sci. 1997;94(25):14115–9.PubMedCentralPubMedCrossRef Thomas EA, Carson MJ, Neal MJ, Sutcliffe JG. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc Natl Acad Sci. 1997;94(25):14115–9.PubMedCentralPubMedCrossRef
112.
Zurück zum Zitat Nicholson RA, Zheng J, Ganellin CR, Verdon B, Lees G. Anesthetic-like interaction of the sleep-inducing lipid oleamide with voltage-gated sodium channels in mammalian brain. Anesthesiology. 2001;94(1):120–8.PubMedCrossRef Nicholson RA, Zheng J, Ganellin CR, Verdon B, Lees G. Anesthetic-like interaction of the sleep-inducing lipid oleamide with voltage-gated sodium channels in mammalian brain. Anesthesiology. 2001;94(1):120–8.PubMedCrossRef
113.
Zurück zum Zitat Leggett JD, Aspley S, Beckett S, D’Antona A, Kendall D. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141(2):253–62.PubMedCentralPubMedCrossRef Leggett JD, Aspley S, Beckett S, D’Antona A, Kendall D. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141(2):253–62.PubMedCentralPubMedCrossRef
114.
Zurück zum Zitat Walker JM, Krey JF, Chu CJ, Huang SM. Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids. 2002;121(1):159–72.PubMedCrossRef Walker JM, Krey JF, Chu CJ, Huang SM. Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids. 2002;121(1):159–72.PubMedCrossRef
115.
Zurück zum Zitat Yu X, Zhao M, Liu F, Zeng S, Hu J. Identification of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Res Int. 2013;51(1):397–403.CrossRef Yu X, Zhao M, Liu F, Zeng S, Hu J. Identification of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Res Int. 2013;51(1):397–403.CrossRef
116.
Zurück zum Zitat Čechovská L, Cejpek K, Konečný M, Velíšek J. On the role of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes. Eur Food Res Technol. 2011;233(3):367–76.CrossRef Čechovská L, Cejpek K, Konečný M, Velíšek J. On the role of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes. Eur Food Res Technol. 2011;233(3):367–76.CrossRef
117.
Zurück zum Zitat Rathenberg J, Kittler JT, Moss SJ. Palmitoylation regulates the clustering and cell surface stability of GABA A receptors. Mol Cell Neurosci. 2004;26(2):251–7.PubMedCrossRef Rathenberg J, Kittler JT, Moss SJ. Palmitoylation regulates the clustering and cell surface stability of GABA A receptors. Mol Cell Neurosci. 2004;26(2):251–7.PubMedCrossRef
118.
Zurück zum Zitat Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol. 2003;21(5):927–31.PubMedCrossRef Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol. 2003;21(5):927–31.PubMedCrossRef
119.
Zurück zum Zitat Argyriou A, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology. 2005;64(1):26–31.PubMedCrossRef Argyriou A, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology. 2005;64(1):26–31.PubMedCrossRef
120.
Zurück zum Zitat Cameron N, Eaton S, Cotter M, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973–88.PubMedCrossRef Cameron N, Eaton S, Cotter M, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973–88.PubMedCrossRef
121.
Zurück zum Zitat Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. Int Rev Neurobiol. 2002;50:205–28.PubMedCrossRef Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. Int Rev Neurobiol. 2002;50:205–28.PubMedCrossRef
122.
Zurück zum Zitat Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.PubMedCrossRef Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.PubMedCrossRef
125.
Zurück zum Zitat Haefner HK, Collins ME, Davis GD, Edwards L, Foster DC, Hartmann EDH, et al. The vulvodynia guideline. J Low Genit Tract Dis. 2005;9(1):40–51.PubMedCrossRef Haefner HK, Collins ME, Davis GD, Edwards L, Foster DC, Hartmann EDH, et al. The vulvodynia guideline. J Low Genit Tract Dis. 2005;9(1):40–51.PubMedCrossRef
Metadaten
Titel
Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms
verfasst von
Urooj Aman
Fazal Subhan
Muhammad Shahid
Shehla Akbar
Nisar Ahmad
Gowhar Ali
Khwaja Fawad
Robert D. E. Sewell
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Complementary Medicine and Therapies / Ausgabe 1/2016
Elektronische ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1048-6

Weitere Artikel der Ausgabe 1/2016

BMC Complementary Medicine and Therapies 1/2016 Zur Ausgabe