Skip to main content
Erschienen in: Inflammation Research 9/2020

23.06.2020 | Review

Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease

verfasst von: Ekta, Manisha Gupta, Amarjot Kaur, Thakur Gurjeet Singh, Onkar Bedi

Erschienen in: Inflammation Research | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Poor dietary habits such as an over consumption of high fructose and high fat diet are considered as the major culprit for the induction of diabetes associated liver injury. Diabetes mellitus is a metabolic disorder that affects various vital organs of the body especially the kidney, brain, heart, and liver. The high fructose and high fat (HFHF) diet worsen the metabolic conditions by producing various pathogenic burdens such as oxidative stress, inflammation, etc. on liver. The hyperlipidemic and hyperglycemic conditions induced by HFHF diet leads to the generation of various proinflammatory mediators like TNFα, interleukin and cytokines.

Aim and methods

The systematic bibliographical literature survey was done with the help of PubMed, Google scholar and MedLine to identify all pathological and molecular concerened with HFHF induced diabetic liver injury. The consumption of HFHF diet leads to an increase in mitochondrial oxidative stress thereby decreases the liver protective antioxidants required for cell viability. HFHF diet disturbs lipid and lipoprotein clearance by elevating the level of apolipoprotein CIII and impairing the hydrolysis of triglyceride. As a result, there is an increase in free fatty acid concentration, triglycerides and diacylglycerol in the liver which further triggers the situation of insulin resistance.

Conclusion

The focus of present review is based upon the various pathological, genetic and molecular mechanism involved in the development of high-fat high fructose diet induced diabetic liver injury. However, the current review also documented few shreds of evidence related to various microRNAs (miR-31, miR-33a, miR-34a, miR-144, miR-146b, miR-150) concerned to HFHF diet which play an important role in the pathogenesis of diabetes associated liver injury Dietary life style modification may prove beneficial in the management of various metabolic disorders.
Literatur
1.
Zurück zum Zitat Dongiovanni P, Anstee Q, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des. 2013;19:5219–38.PubMedPubMedCentral Dongiovanni P, Anstee Q, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des. 2013;19:5219–38.PubMedPubMedCentral
2.
Zurück zum Zitat Musso G, Gambino R, Cassader M, et al. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43:617–49.PubMed Musso G, Gambino R, Cassader M, et al. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43:617–49.PubMed
3.
Zurück zum Zitat Kalra S, Vithalani M, Gulati G, et al. Study of prevalence of nonalcoholic fatty liver disease (NAFLD) in type 2 diabetes patients in India (SPRINT). J Assoc Physicians India. 2013;61:448–53.PubMed Kalra S, Vithalani M, Gulati G, et al. Study of prevalence of nonalcoholic fatty liver disease (NAFLD) in type 2 diabetes patients in India (SPRINT). J Assoc Physicians India. 2013;61:448–53.PubMed
4.
Zurück zum Zitat Trombetta M, Spiazzi G, Zoppini G, et al. type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22:24–7.PubMed Trombetta M, Spiazzi G, Zoppini G, et al. type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22:24–7.PubMed
5.
Zurück zum Zitat Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79:537–43.PubMed Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79:537–43.PubMed
6.
Zurück zum Zitat Jurgens H, Haass W, Castaneda TR, et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res. 2005;13:1146.PubMed Jurgens H, Haass W, Castaneda TR, et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res. 2005;13:1146.PubMed
7.
Zurück zum Zitat Kunde SS, Roede JR, Vos MB, et al. Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Nutrients. 2011;3:987–1002.PubMedPubMedCentral Kunde SS, Roede JR, Vos MB, et al. Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Nutrients. 2011;3:987–1002.PubMedPubMedCentral
8.
Zurück zum Zitat Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:287–312. Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:287–312.
9.
Zurück zum Zitat Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012;23:216–22.PubMedPubMedCentral Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012;23:216–22.PubMedPubMedCentral
10.
Zurück zum Zitat Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013;49:1167–75.PubMedPubMedCentral Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013;49:1167–75.PubMedPubMedCentral
11.
Zurück zum Zitat Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci. 2009;106:17787–92.PubMedPubMedCentral Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci. 2009;106:17787–92.PubMedPubMedCentral
12.
Zurück zum Zitat De Luis DA, Aller R, Izaola O, et al. Effect of two different hypocaloric diets in transaminases and insulin resistance in nonalcoholic fatty liver disease and obese patients. Nutr Hosp. 2010;25:730–5.PubMed De Luis DA, Aller R, Izaola O, et al. Effect of two different hypocaloric diets in transaminases and insulin resistance in nonalcoholic fatty liver disease and obese patients. Nutr Hosp. 2010;25:730–5.PubMed
13.
Zurück zum Zitat Chen Y, Yu M, Jones DP, et al. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. Toxicol Appl Pharmacol. 2006;216:256–62.PubMed Chen Y, Yu M, Jones DP, et al. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. Toxicol Appl Pharmacol. 2006;216:256–62.PubMed
14.
Zurück zum Zitat Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415:339.PubMed Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415:339.PubMed
15.
Zurück zum Zitat Lubis AR, Widia F, Soegondo S, et al. The role of SOCS-3 protein in leptin resistance and obesity. Acta Med Indones. 2008;40:89–95.PubMed Lubis AR, Widia F, Soegondo S, et al. The role of SOCS-3 protein in leptin resistance and obesity. Acta Med Indones. 2008;40:89–95.PubMed
16.
Zurück zum Zitat Vila L, Roglans N, Alegret M, et al. Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. J Hepatol. 2008;48:1506–16. Vila L, Roglans N, Alegret M, et al. Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. J Hepatol. 2008;48:1506–16.
17.
Zurück zum Zitat Li JM, Li YC, Kong LD, et al. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. J Hepatol. 2010;51:1555–666. Li JM, Li YC, Kong LD, et al. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. J Hepatol. 2010;51:1555–666.
18.
Zurück zum Zitat Shapiro A, Mu W, Roncal C, et al. Fructose induced leptin resistance, exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:1370–5. Shapiro A, Mu W, Roncal C, et al. Fructose induced leptin resistance, exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:1370–5.
19.
Zurück zum Zitat Van Dam RM, Willett WC, Rimm EB, et al. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25:417–24.PubMed Van Dam RM, Willett WC, Rimm EB, et al. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25:417–24.PubMed
20.
Zurück zum Zitat Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci. 2016;53:52–67.PubMed Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci. 2016;53:52–67.PubMed
21.
Zurück zum Zitat Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002;123:34–40. Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002;123:34–40.
22.
23.
Zurück zum Zitat Perla F, Prelati M, Lavorato M, et al. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children. 2017;4:46.PubMedCentral Perla F, Prelati M, Lavorato M, et al. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children. 2017;4:46.PubMedCentral
24.
Zurück zum Zitat Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med. 2002;80:753–69.PubMed Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med. 2002;80:753–69.PubMed
25.
Zurück zum Zitat Teff KL, Elliott SS, Tschöp M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab. 2004;89:2963–72.PubMed Teff KL, Elliott SS, Tschöp M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab. 2004;89:2963–72.PubMed
26.
Zurück zum Zitat Fried SK, Russell CD, Grauso NL, et al. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest. 1993;92:2191–8.PubMedPubMedCentral Fried SK, Russell CD, Grauso NL, et al. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest. 1993;92:2191–8.PubMedPubMedCentral
27.
Zurück zum Zitat Shachter NS. Apolipoproteins CI and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001;12:297–304.PubMed Shachter NS. Apolipoproteins CI and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001;12:297–304.PubMed
28.
Zurück zum Zitat Su Q, Tsai J, Xu E, et al. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. J Hepatol. 2009;50:77–84. Su Q, Tsai J, Xu E, et al. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. J Hepatol. 2009;50:77–84.
29.
Zurück zum Zitat Altomonte J, Cong L, Harbaran S, et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Investig. 2004;10:1493–503. Altomonte J, Cong L, Harbaran S, et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Investig. 2004;10:1493–503.
30.
Zurück zum Zitat Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–32.PubMed Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–32.PubMed
31.
Zurück zum Zitat Savard C, Tartaglione EV, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. J Hepatol. 2013;57:81–92. Savard C, Tartaglione EV, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. J Hepatol. 2013;57:81–92.
32.
Zurück zum Zitat Bedi O, Aggarwal S, Trehanpati N, et al. Molecular and pathological events involved in the pathogenesis of diabetes associated non-alcoholic fatty liver disease. J Clin Exp Pathol. 2019;9(5):607–18. Bedi O, Aggarwal S, Trehanpati N, et al. Molecular and pathological events involved in the pathogenesis of diabetes associated non-alcoholic fatty liver disease. J Clin Exp Pathol. 2019;9(5):607–18.
33.
Zurück zum Zitat Sen T, Cawthon CR, Ihde BT, et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–17.PubMedPubMedCentral Sen T, Cawthon CR, Ihde BT, et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–17.PubMedPubMedCentral
34.
Zurück zum Zitat Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMed Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMed
35.
Zurück zum Zitat Houghton D, Stewart C, Day C, et al. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 2016;17:447.PubMedPubMedCentral Houghton D, Stewart C, Day C, et al. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 2016;17:447.PubMedPubMedCentral
36.
Zurück zum Zitat Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;7:412. Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;7:412.
37.
Zurück zum Zitat Saez-Lara M, Robles-Sanchez C, Ruiz-Ojeda F, et al. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. 2016;17:928.PubMedCentral Saez-Lara M, Robles-Sanchez C, Ruiz-Ojeda F, et al. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. 2016;17:928.PubMedCentral
38.
Zurück zum Zitat Di Baise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008;83:460–9. Di Baise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008;83:460–9.
39.
Zurück zum Zitat Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102:11070–5.PubMedPubMedCentral Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102:11070–5.PubMedPubMedCentral
40.
Zurück zum Zitat Murphy EF, Cotter PD, Healy S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–42.PubMed Murphy EF, Cotter PD, Healy S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–42.PubMed
41.
Zurück zum Zitat Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.PubMed Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.PubMed
42.
Zurück zum Zitat Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103.PubMed Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103.PubMed
43.
Zurück zum Zitat Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11:440–9.PubMed Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11:440–9.PubMed
44.
Zurück zum Zitat Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;12:3049–57. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;12:3049–57.
45.
Zurück zum Zitat Nikkilä EA. Control of plasma and liver triglyceride kinetics by carbohydrate metabolism and insulin. J Lipid Res. 1969;7:63–134. Nikkilä EA. Control of plasma and liver triglyceride kinetics by carbohydrate metabolism and insulin. J Lipid Res. 1969;7:63–134.
46.
Zurück zum Zitat Naismith DJ, Rana IA. Sucrose and hyperlipidaemia. Ann Nutr Metab. 1974;16(4):238–48. Naismith DJ, Rana IA. Sucrose and hyperlipidaemia. Ann Nutr Metab. 1974;16(4):238–48.
47.
Zurück zum Zitat Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005;54:73–8. Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005;54:73–8.
48.
Zurück zum Zitat Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612–7.PubMed Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612–7.PubMed
49.
Zurück zum Zitat Ravikumar B, Carey PE, Snaar JE, et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005;288:789–97. Ravikumar B, Carey PE, Snaar JE, et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005;288:789–97.
50.
Zurück zum Zitat Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51:2005–111.PubMed Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51:2005–111.PubMed
51.
Zurück zum Zitat Liu L, Zhang Y, Chen N, et al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679–89.PubMedPubMedCentral Liu L, Zhang Y, Chen N, et al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679–89.PubMedPubMedCentral
52.
Zurück zum Zitat Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2017;114:1752–61. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2017;114:1752–61.
53.
Zurück zum Zitat Meier JJ, Gethmann A, Götze O, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006;49:452–8.PubMed Meier JJ, Gethmann A, Götze O, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006;49:452–8.PubMed
54.
Zurück zum Zitat Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr. 2003;77:05–11. Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr. 2003;77:05–11.
55.
Zurück zum Zitat Kuhre RE, Gribble FM, Hartmann B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol. 2014;306:G622–G630630.PubMedPubMedCentral Kuhre RE, Gribble FM, Hartmann B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol. 2014;306:G622–G630630.PubMedPubMedCentral
56.
Zurück zum Zitat Trevaskis JL, Griffin PS, Wittmer C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–G772772.PubMed Trevaskis JL, Griffin PS, Wittmer C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–G772772.PubMed
57.
Zurück zum Zitat Mells JE, Fu PP, Sharma S, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol. 2011;302:G225–G23535.PubMedPubMedCentral Mells JE, Fu PP, Sharma S, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol. 2011;302:G225–G23535.PubMedPubMedCentral
58.
Zurück zum Zitat Zhang L, Yang M, Ren H, et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int. 2013;33:794–804.PubMed Zhang L, Yang M, Ren H, et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int. 2013;33:794–804.PubMed
59.
Zurück zum Zitat Sharma S, Mells JE, Fu PP, et al. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PloS one. 2011;6(9):e25269.PubMedPubMedCentral Sharma S, Mells JE, Fu PP, et al. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PloS one. 2011;6(9):e25269.PubMedPubMedCentral
60.
Zurück zum Zitat Tomas E, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1 (28–36) amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept. 2011;167:177–84.PubMed Tomas E, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1 (28–36) amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept. 2011;167:177–84.PubMed
61.
Zurück zum Zitat Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.PubMedPubMedCentral Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.PubMedPubMedCentral
62.
Zurück zum Zitat Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. Clin J Am Soc Nephrol. 2009;20:45–53. Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. Clin J Am Soc Nephrol. 2009;20:45–53.
63.
Zurück zum Zitat Chen Q, Wang T, Li J, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 2017;9:96.PubMedCentral Chen Q, Wang T, Li J, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 2017;9:96.PubMedCentral
64.
Zurück zum Zitat Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J hepatol. 2008;48:983–92.PubMed Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J hepatol. 2008;48:983–92.PubMed
65.
Zurück zum Zitat Stojsavljević S, Palčić MG, Jukić LV, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070.PubMedPubMedCentral Stojsavljević S, Palčić MG, Jukić LV, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070.PubMedPubMedCentral
66.
Zurück zum Zitat Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54:114–24. Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54:114–24.
67.
Zurück zum Zitat Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.PubMed Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.PubMed
68.
Zurück zum Zitat Wullaert A, van Loo G, Heyninck K, et al. Hepatic tumor necrosis factor signaling and nuclear factor-κB: effects on liver homeostasis and beyond. Endocr Rev. 2007;28:365–86.PubMed Wullaert A, van Loo G, Heyninck K, et al. Hepatic tumor necrosis factor signaling and nuclear factor-κB: effects on liver homeostasis and beyond. Endocr Rev. 2007;28:365–86.PubMed
69.
Zurück zum Zitat Diehl AM, Li ZP, Lin HZ, et al. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54:303–6.PubMedPubMedCentral Diehl AM, Li ZP, Lin HZ, et al. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54:303–6.PubMedPubMedCentral
70.
Zurück zum Zitat Bastard JP, Maachi M, van Nhieu JT, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002;87:2084–9.PubMed Bastard JP, Maachi M, van Nhieu JT, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002;87:2084–9.PubMed
71.
Zurück zum Zitat Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434–46.PubMedPubMedCentral Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434–46.PubMedPubMedCentral
72.
Zurück zum Zitat Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.PubMedPubMedCentral Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.PubMedPubMedCentral
73.
Zurück zum Zitat Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.PubMedPubMedCentral Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.PubMedPubMedCentral
74.
Zurück zum Zitat Sindhu S, Akhter N, Arefanian H, et al. Increased circulatory levels of fractalkine (CX3CL1) are associated with inflammatory chemokines and cytokines in individuals with type-2 diabetes. J Diabetes Metab Disorders. 2017;16:15. Sindhu S, Akhter N, Arefanian H, et al. Increased circulatory levels of fractalkine (CX3CL1) are associated with inflammatory chemokines and cytokines in individuals with type-2 diabetes. J Diabetes Metab Disorders. 2017;16:15.
75.
Zurück zum Zitat Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–7.PubMed Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–7.PubMed
76.
Zurück zum Zitat Jarrar MH, Baranova A, Collantes R, et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2008;27:412–21.PubMed Jarrar MH, Baranova A, Collantes R, et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2008;27:412–21.PubMed
77.
Zurück zum Zitat Xu L, Kitade H, Ni Y, et al. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5:1563–79.PubMedPubMedCentral Xu L, Kitade H, Ni Y, et al. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5:1563–79.PubMedPubMedCentral
78.
Zurück zum Zitat Rull A, Rodríguez F, Aragonès G, et al. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine. 2009;48:273–9.PubMed Rull A, Rodríguez F, Aragonès G, et al. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine. 2009;48:273–9.PubMed
79.
Zurück zum Zitat Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24.PubMed Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24.PubMed
80.
Zurück zum Zitat Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.PubMed Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.PubMed
81.
Zurück zum Zitat Obstfeld AE, Sugaru E, Thearle M, et al. CC chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59:916–25.PubMedPubMedCentral Obstfeld AE, Sugaru E, Thearle M, et al. CC chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59:916–25.PubMedPubMedCentral
82.
Zurück zum Zitat Xi L, Qian Z, Xu G, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem. 2007;18:64–72.PubMed Xi L, Qian Z, Xu G, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem. 2007;18:64–72.PubMed
83.
Zurück zum Zitat Miller AW, Hoenig ME, Ujhelyi MR. Mechanisms of impaired endothelial function associated with insulin resistance. J Cardiovasc Pharmacol Ther. 1998;3:125–33.PubMed Miller AW, Hoenig ME, Ujhelyi MR. Mechanisms of impaired endothelial function associated with insulin resistance. J Cardiovasc Pharmacol Ther. 1998;3:125–33.PubMed
84.
Zurück zum Zitat Nawrocki AR, Scherer PE. The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol. 2004;4:281–9.PubMed Nawrocki AR, Scherer PE. The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol. 2004;4:281–9.PubMed
85.
Zurück zum Zitat Mackawy AM. Association of the+ 45T> G adiponectin gene polymorphism with insulin resistance in non-diabetic Saudi women. Gene. 2013;530:158–63.PubMed Mackawy AM. Association of the+ 45T> G adiponectin gene polymorphism with insulin resistance in non-diabetic Saudi women. Gene. 2013;530:158–63.PubMed
86.
Zurück zum Zitat Shklyaev S, Aslanidi G, Tennant M, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rat. Proc Natl Acad Sci. 2003;100:14217–22.PubMedPubMedCentral Shklyaev S, Aslanidi G, Tennant M, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rat. Proc Natl Acad Sci. 2003;100:14217–22.PubMedPubMedCentral
87.
Zurück zum Zitat Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:9–83. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:9–83.
88.
Zurück zum Zitat Hui JM, Hodge A, Farrell GC, et al. Beyond insulin resistance in NASH: TNF-α or adiponectin? J Hepatol. 2004;40:46–544. Hui JM, Hodge A, Farrell GC, et al. Beyond insulin resistance in NASH: TNF-α or adiponectin? J Hepatol. 2004;40:46–544.
89.
Zurück zum Zitat Maeda N, Takahashi M, Funahashi T, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094–9.PubMed Maeda N, Takahashi M, Funahashi T, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094–9.PubMed
90.
Zurück zum Zitat Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277:25863–6.PubMed Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277:25863–6.PubMed
91.
Zurück zum Zitat Wang Y, Zhou M, Lam KS, et al. Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53:201–12.PubMed Wang Y, Zhou M, Lam KS, et al. Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53:201–12.PubMed
92.
Zurück zum Zitat Pettinelli P, Videla LA. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96:1424–30.PubMed Pettinelli P, Videla LA. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96:1424–30.PubMed
93.
Zurück zum Zitat Bundalo M, Zivkovic M, Culafic T, et al. Oestradiol treatment counteracts the effect of fructose-rich diet on matrix metalloproteinase 9 expression and NF [kappa] B activation. Folia Boil. 2015;61:233. Bundalo M, Zivkovic M, Culafic T, et al. Oestradiol treatment counteracts the effect of fructose-rich diet on matrix metalloproteinase 9 expression and NF [kappa] B activation. Folia Boil. 2015;61:233.
94.
Zurück zum Zitat Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. New York: Thieme Medical Publishers; 2001. p. 584–4662. Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. New York: Thieme Medical Publishers; 2001. p. 584–4662.
95.
Zurück zum Zitat Hemmann S, Graf J, Roderfeld M, et al. Expression of MMPs and TIMPs in liver fibrosis—a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46:955–75.PubMed Hemmann S, Graf J, Roderfeld M, et al. Expression of MMPs and TIMPs in liver fibrosis—a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46:955–75.PubMed
96.
Zurück zum Zitat Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.PubMed Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.PubMed
97.
Zurück zum Zitat Statnick MA, Beavers LS, Conner LJ, et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Exp Diabetes Res. 2000;1:81–8. Statnick MA, Beavers LS, Conner LJ, et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Exp Diabetes Res. 2000;1:81–8.
98.
Zurück zum Zitat Ljumovic D, Diamantis I, Alegakis AK, et al. Differential expression of matrix metalloproteinases in viral and non-viral chronic liver diseases. Clin Chim Acta. 2004;349:203–11.PubMed Ljumovic D, Diamantis I, Alegakis AK, et al. Differential expression of matrix metalloproteinases in viral and non-viral chronic liver diseases. Clin Chim Acta. 2004;349:203–11.PubMed
99.
Zurück zum Zitat Wanninger J, Walter R, Bauer S, et al. MMP-9 activity is increased by adiponectin in primary human hepatocytes but even negatively correlates with serum adiponectin in a rodent model of non-alcoholic steatohepatitis. Exp Mol Pathol. 2011;91:603–7.PubMed Wanninger J, Walter R, Bauer S, et al. MMP-9 activity is increased by adiponectin in primary human hepatocytes but even negatively correlates with serum adiponectin in a rodent model of non-alcoholic steatohepatitis. Exp Mol Pathol. 2011;91:603–7.PubMed
100.
Zurück zum Zitat Cao Q, Mak KM, Lieber CS. Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J hepatol. 2007;46:124–33.PubMed Cao Q, Mak KM, Lieber CS. Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J hepatol. 2007;46:124–33.PubMed
101.
Zurück zum Zitat Hou JF, Wang XG, Wei J. Alteration of liver MMP-9/TIMP-1 and plasma type IV collagen in the development of rat insulin resistance. In: Frontier and future development of information technology in medicine and education. Dordrecht: Springer; 2014. p. 531–43. ISBN 978-94-007-7618-0. Hou JF, Wang XG, Wei J. Alteration of liver MMP-9/TIMP-1 and plasma type IV collagen in the development of rat insulin resistance. In: Frontier and future development of information technology in medicine and education. Dordrecht: Springer; 2014. p. 531–43. ISBN 978-94-007-7618-0.
103.
Zurück zum Zitat Willner IR, Waters B, Patil SR, et al. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J Gastroenterol. 2001;96:2957.PubMed Willner IR, Waters B, Patil SR, et al. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J Gastroenterol. 2001;96:2957.PubMed
104.
Zurück zum Zitat Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis. 2011;31:128–46.PubMed Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis. 2011;31:128–46.PubMed
105.
Zurück zum Zitat Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20:351–8.PubMed Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20:351–8.PubMed
106.
Zurück zum Zitat Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131:1145–52.PubMedPubMedCentral Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131:1145–52.PubMedPubMedCentral
107.
Zurück zum Zitat Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63:133–57.PubMed Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63:133–57.PubMed
108.
Zurück zum Zitat Nagai Y, Yonemitsu S, Erion DM, et al. The role of peroxisome proliferator-activated receptor γ coactivator-1 β in the pathogenesis of fructose-induced insulin resistance. Cell metab. 2009;9:252–64.PubMedPubMedCentral Nagai Y, Yonemitsu S, Erion DM, et al. The role of peroxisome proliferator-activated receptor γ coactivator-1 β in the pathogenesis of fructose-induced insulin resistance. Cell metab. 2009;9:252–64.PubMedPubMedCentral
109.
Zurück zum Zitat Bergman RN, Kim SP, Hsu IR, et al. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med. 2007;120:S3–8.PubMed Bergman RN, Kim SP, Hsu IR, et al. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med. 2007;120:S3–8.PubMed
110.
Zurück zum Zitat Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.PubMed Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.PubMed
111.
Zurück zum Zitat Van Den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977;162:601–9.PubMedPubMedCentral Van Den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977;162:601–9.PubMedPubMedCentral
113.
Zurück zum Zitat Abdelmalek MF, Lazo M, Horska A, Fatty Liver Subgroup of the Look AHEAD Research Group, et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. J Hepatol. 2012;56:952–60. Abdelmalek MF, Lazo M, Horska A, Fatty Liver Subgroup of the Look AHEAD Research Group, et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. J Hepatol. 2012;56:952–60.
114.
Zurück zum Zitat Parks EJ, Hellerstein MK. Carbohydrate-induced hyper triacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr. 2000;71:412–33.PubMed Parks EJ, Hellerstein MK. Carbohydrate-induced hyper triacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr. 2000;71:412–33.PubMed
115.
Zurück zum Zitat Boden G, Chen X, Rosner J, et al. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995;44:1239–42.PubMed Boden G, Chen X, Rosner J, et al. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995;44:1239–42.PubMed
116.
Zurück zum Zitat Pagliassotti MJ. Sucrose, insulin action and biologic complexity. Rec Res Dev Physiol. 2004;2:337–53. Pagliassotti MJ. Sucrose, insulin action and biologic complexity. Rec Res Dev Physiol. 2004;2:337–53.
117.
Zurück zum Zitat Bantle JP, Raatz SK, Thomas W, et al. Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr. 2000;72:1128–34.PubMed Bantle JP, Raatz SK, Thomas W, et al. Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr. 2000;72:1128–34.PubMed
118.
Zurück zum Zitat Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.PubMedPubMedCentral Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.PubMedPubMedCentral
119.
Zurück zum Zitat Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.PubMed Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.PubMed
120.
Zurück zum Zitat Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterol. 2007;132:2169–80. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterol. 2007;132:2169–80.
121.
Zurück zum Zitat de Moura RF, Ribeiro C, de Oliveira JA, et al. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr. 2008;101:1178–84.PubMed de Moura RF, Ribeiro C, de Oliveira JA, et al. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr. 2008;101:1178–84.PubMed
122.
Zurück zum Zitat Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMed Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMed
123.
Zurück zum Zitat Abid A, Taha O, Nseir W, et al. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J hepatol. 2009;51:918–24.PubMed Abid A, Taha O, Nseir W, et al. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J hepatol. 2009;51:918–24.PubMed
124.
Zurück zum Zitat Yang S, Zhu H, Li Y, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys. 2000;378:259–68.PubMed Yang S, Zhu H, Li Y, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys. 2000;378:259–68.PubMed
125.
Zurück zum Zitat Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2009;275:047–54. Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2009;275:047–54.
126.
Zurück zum Zitat Mantena SK, Vaughn DP, Andringa KK, et al. High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. J Biol Chem. 2009;417:183–93. Mantena SK, Vaughn DP, Andringa KK, et al. High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. J Biol Chem. 2009;417:183–93.
127.
Zurück zum Zitat Marchesini G, Brizi M, Bianchi G, et al. Metformin in nonalcoholic steatohepatitis. Lancet. 2001;358:893–4.PubMed Marchesini G, Brizi M, Bianchi G, et al. Metformin in nonalcoholic steatohepatitis. Lancet. 2001;358:893–4.PubMed
128.
Zurück zum Zitat Nair S, Diehl AM, Wiseman M, et al. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther. 2004;20:23–8.PubMed Nair S, Diehl AM, Wiseman M, et al. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther. 2004;20:23–8.PubMed
129.
Zurück zum Zitat Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.PubMedPubMedCentral Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.PubMedPubMedCentral
130.
Zurück zum Zitat Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. J Hepatol. 2004;39:188–96. Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. J Hepatol. 2004;39:188–96.
131.
Zurück zum Zitat Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;32:66–75. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;32:66–75.
132.
Zurück zum Zitat Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5.PubMedPubMedCentral Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5.PubMedPubMedCentral
133.
Zurück zum Zitat Salic K, Kleemann R, Wilkins-Port C, et al. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr−/− Leiden mice. PLoS One. 2019;14(6):e0218459.PubMedPubMedCentral Salic K, Kleemann R, Wilkins-Port C, et al. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr−/− Leiden mice. PLoS One. 2019;14(6):e0218459.PubMedPubMedCentral
134.
Zurück zum Zitat Mu J, Pinkstaff J, Li Z, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes. 2012;61:505–12.PubMedPubMedCentral Mu J, Pinkstaff J, Li Z, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes. 2012;61:505–12.PubMedPubMedCentral
135.
Zurück zum Zitat Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96:519.PubMed Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96:519.PubMed
136.
Zurück zum Zitat Luyckx FH, Desaive C, Thiry A, et al. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes. 1998;22:222. Luyckx FH, Desaive C, Thiry A, et al. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes. 1998;22:222.
137.
Zurück zum Zitat Dushay J, Lai M. Is trimming the fat enough? Fibroblast growth factor 21 as an emerging treatment for nonalcoholic fatty liver disease. Hepatology. 2019;70(5):1860–2.PubMed Dushay J, Lai M. Is trimming the fat enough? Fibroblast growth factor 21 as an emerging treatment for nonalcoholic fatty liver disease. Hepatology. 2019;70(5):1860–2.PubMed
138.
Zurück zum Zitat Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, et al. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine-and choline-deficient diet. Hepatol Res. 2011;4:647–59. Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, et al. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine-and choline-deficient diet. Hepatol Res. 2011;4:647–59.
139.
Zurück zum Zitat McCarthy EM, Rinella ME. The role of diet and nutrient composition in nonalcoholic fatty liver disease. J Acad Nutr Diet. 2012;112:401–9.PubMed McCarthy EM, Rinella ME. The role of diet and nutrient composition in nonalcoholic fatty liver disease. J Acad Nutr Diet. 2012;112:401–9.PubMed
140.
Zurück zum Zitat Ryan MC, Abbasi F, Lamendola C, et al. Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care. 2007;30:1075–80.PubMed Ryan MC, Abbasi F, Lamendola C, et al. Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care. 2007;30:1075–80.PubMed
141.
Zurück zum Zitat Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67:829–46.PubMed Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67:829–46.PubMed
142.
Zurück zum Zitat Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. J Hepatol. 2001;34:745–50. Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. J Hepatol. 2001;34:745–50.
143.
Zurück zum Zitat Tuomola M, Vahva M, Kallio H. High-performance liquid chromatography determination of skatole and indole levels in pig serum, subcutaneous fat, and submaxillary salivary glands. J Agric Food Chem. 1996;44:1265–70. Tuomola M, Vahva M, Kallio H. High-performance liquid chromatography determination of skatole and indole levels in pig serum, subcutaneous fat, and submaxillary salivary glands. J Agric Food Chem. 1996;44:1265–70.
144.
Zurück zum Zitat Karnik S, Charlton M, Li L, et al. Efficacy of an ASK1 inhibitor to reduce fibrosis and steatosis in a murine model of NASH is associated with normalization of lipids and hepatic gene expression and a reduction in serum biomarkers of inflammation and fibrosis. J Hepatol. 2015;62(5). Karnik S, Charlton M, Li L, et al. Efficacy of an ASK1 inhibitor to reduce fibrosis and steatosis in a murine model of NASH is associated with normalization of lipids and hepatic gene expression and a reduction in serum biomarkers of inflammation and fibrosis. J Hepatol. 2015;62(5).
145.
Zurück zum Zitat Loomba R, Lawitz E, Mantry PS, et al. GS-4997, an inhibitor of apoptosis signal-regulating kinase (ASK1), alone or in combination with simtuzumab for the treatment of nonalcoholic steatohepatitis (NASH): a randomized, phase 2 trial. J Hepatol. 1120A;64:1119A–20A. Loomba R, Lawitz E, Mantry PS, et al. GS-4997, an inhibitor of apoptosis signal-regulating kinase (ASK1), alone or in combination with simtuzumab for the treatment of nonalcoholic steatohepatitis (NASH): a randomized, phase 2 trial. J Hepatol. 1120A;64:1119A–20A.
146.
Zurück zum Zitat Larter CZ, Yeh MM. Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol. 2008;23:1635–48.PubMed Larter CZ, Yeh MM. Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol. 2008;23:1635–48.PubMed
147.
Zurück zum Zitat Lim JS, Mietus-Snyder M, Valente A, et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–64.PubMed Lim JS, Mietus-Snyder M, Valente A, et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–64.PubMed
149.
Zurück zum Zitat Engel MM, Kusumastuty I, Anita KW, et al. The effect of high fat high fructose diet (modification of AIN-93M) on nuclear factor kappa beta expression in the liver tissue of male Sprague Dawley rats. J Phys Conf Ser. 2019;1374:012042. Engel MM, Kusumastuty I, Anita KW, et al. The effect of high fat high fructose diet (modification of AIN-93M) on nuclear factor kappa beta expression in the liver tissue of male Sprague Dawley rats. J Phys Conf Ser. 2019;1374:012042.
150.
Zurück zum Zitat Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018;8:424.PubMedPubMedCentral Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018;8:424.PubMedPubMedCentral
151.
Zurück zum Zitat Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab. 2016;13:15. Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab. 2016;13:15.
152.
Zurück zum Zitat Clapper JR, Hendricks MD, Gu G, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol. 2013;305:G483–G495495.PubMed Clapper JR, Hendricks MD, Gu G, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol. 2013;305:G483–G495495.PubMed
153.
Zurück zum Zitat Zaki SM, Fattah SA, Hassan DS. The differential effects of high-fat and high–fructose diets on the liver of male albino rat and the proposed underlying mechanisms. Folia Morphol. 2019;78:24–36. Zaki SM, Fattah SA, Hassan DS. The differential effects of high-fat and high–fructose diets on the liver of male albino rat and the proposed underlying mechanisms. Folia Morphol. 2019;78:24–36.
154.
Zurück zum Zitat Wada T, Kenmochi H, Miyashita Y, et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology. 2010;151:2040–9.PubMed Wada T, Kenmochi H, Miyashita Y, et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology. 2010;151:2040–9.PubMed
155.
Zurück zum Zitat Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans-fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. J Hepatolol. 2010;52:934–44. Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans-fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. J Hepatolol. 2010;52:934–44.
156.
Zurück zum Zitat Abdelmalek MF, Suzuki A, Guy C, Nonalcoholic Steatohepatitis Clinical Research Network, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. J Hepatol. 2010;51:1961–71. Abdelmalek MF, Suzuki A, Guy C, Nonalcoholic Steatohepatitis Clinical Research Network, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. J Hepatol. 2010;51:1961–71.
157.
Zurück zum Zitat Hsieh FC, Lee CL, Chai CY, et al. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab. 2013;10:35. Hsieh FC, Lee CL, Chai CY, et al. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab. 2013;10:35.
158.
Zurück zum Zitat Gerhard GS, DiStefano JK. Micro RNAs in the development of non-alcoholic fatty liver disease. World J Hepatol. 2015;27:226. Gerhard GS, DiStefano JK. Micro RNAs in the development of non-alcoholic fatty liver disease. World J Hepatol. 2015;27:226.
159.
Zurück zum Zitat Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia. 2013;56:444–56.PubMed Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia. 2013;56:444–56.PubMed
160.
Zurück zum Zitat Cheung O, Puri P, Eicken C. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. J Hepatol. 2008;48:1810–20. Cheung O, Puri P, Eicken C. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. J Hepatol. 2008;48:1810–20.
161.
Zurück zum Zitat Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez HA, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMed Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez HA, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMed
162.
Zurück zum Zitat Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Investig. 2012;122:2773–6.PubMedPubMedCentral Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Investig. 2012;122:2773–6.PubMedPubMedCentral
163.
Zurück zum Zitat Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203.PubMed Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203.PubMed
164.
Zurück zum Zitat Sud N, Zhang H, Pan K, et al. Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J Nutr Biochem. 2017;43:125–31.PubMedPubMedCentral Sud N, Zhang H, Pan K, et al. Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J Nutr Biochem. 2017;43:125–31.PubMedPubMedCentral
165.
Zurück zum Zitat Tessitore A, Cicciarelli G, Del Vecchio F, et al. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer. 2016;16:3.PubMedPubMedCentral Tessitore A, Cicciarelli G, Del Vecchio F, et al. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer. 2016;16:3.PubMedPubMedCentral
166.
Zurück zum Zitat Kalaki-Jouybari F, Shanaki M, Delfan M, et al. High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Arch Physiol Biochem. 2018;3:1–8. Kalaki-Jouybari F, Shanaki M, Delfan M, et al. High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Arch Physiol Biochem. 2018;3:1–8.
167.
Zurück zum Zitat Hanousková B, Neprašová B, Skálová L, et al. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J Nutr Biochem. 2019;68:42–50.PubMed Hanousková B, Neprašová B, Skálová L, et al. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J Nutr Biochem. 2019;68:42–50.PubMed
168.
Zurück zum Zitat Chyau CC, Wang HF, Zhang WJ, et al. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int J Mol Sci. 2020;21:360.PubMedCentral Chyau CC, Wang HF, Zhang WJ, et al. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int J Mol Sci. 2020;21:360.PubMedCentral
169.
Zurück zum Zitat Stephenson K, Kennedy L, Hargrove L, et al. Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Exp J Liver Res. 2018;18:5–17. Stephenson K, Kennedy L, Hargrove L, et al. Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Exp J Liver Res. 2018;18:5–17.
Metadaten
Titel
Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease
verfasst von
Ekta
Manisha Gupta
Amarjot Kaur
Thakur Gurjeet Singh
Onkar Bedi
Publikationsdatum
23.06.2020
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 9/2020
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-020-01373-7

Weitere Artikel der Ausgabe 9/2020

Inflammation Research 9/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.