Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Pathogenese und Pathophysiologie der akuten Pankreatitis

verfasst von : Matthias Sendler, Julia Mayerle, Markus M. Lerch

Erschienen in: Erkrankungen des Pankreas

Verlag: Springer Berlin Heidelberg

Zusammenfassung

Die Pankreatitis ist eine primär sterile Entzündung des Pankreas, deren Ursprung in einer vorzeitigen intrazellulären Proteaseaktivierung liegt. Eine wichtige Rolle nimmt hierbei die Serinprotease Trypsin ein. Die pathologische intrazelluläre Proteaseaktivierung führt zu einer ausgedehnten Zellschädigung. Ausgelöst durch den lokalen Zellschaden kommt es zu einer systemischen Immunantwort. Die lokale Immunantwort unterstützt den lokalen pankreatischen Schaden und führt zu einer weiter gesteigerten Aktivierung von Proteasen. Auf der anderen Seite kann die systemische Immunantwort zu einem Multiorganversagen, verbunden mit einer erhöhten Mortalität, führen. Sowohl die lokale als auch die systemische Immunantwort definieren letztendlich den Schweregrad der Erkrankung.
Literatur
Zurück zum Zitat van Acker GJ, Perides G et al (2006) Co-localization hypothesis: a mechanism for the intrapancreatic activation of digestive enzymes during the early phases of acute pancreatitis. World J Gastroenterol 12(13): 1985–1990PubMed van Acker GJ, Perides G et al (2006) Co-localization hypothesis: a mechanism for the intrapancreatic activation of digestive enzymes during the early phases of acute pancreatitis. World J Gastroenterol 12(13): 1985–1990PubMed
Zurück zum Zitat Algul H, Tando Y et al (2002) Acute experimental pancreatitis and NF-kappaB/Rel activation. Pancreatology 2(6): 503–509PubMedCrossRef Algul H, Tando Y et al (2002) Acute experimental pancreatitis and NF-kappaB/Rel activation. Pancreatology 2(6): 503–509PubMedCrossRef
Zurück zum Zitat Arias AE, Boldicke T et al (1993) Absence of trypsinogen autoactivation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro. In Vitro Cell Dev Biol 29A(3 Pt 1): 221–227PubMedCrossRef Arias AE, Boldicke T et al (1993) Absence of trypsinogen autoactivation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro. In Vitro Cell Dev Biol 29A(3 Pt 1): 221–227PubMedCrossRef
Zurück zum Zitat Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82(3): 701–734PubMed Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82(3): 701–734PubMed
Zurück zum Zitat Behrendorff N, Floetenmeyer M et al (2010) Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139(5): 1711–1720, 1720e1–5PubMedCrossRef Behrendorff N, Floetenmeyer M et al (2010) Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139(5): 1711–1720, 1720e1–5PubMedCrossRef
Zurück zum Zitat Bhatia M, Brady M et al (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190(2): 117–125PubMedCrossRef Bhatia M, Brady M et al (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190(2): 117–125PubMedCrossRef
Zurück zum Zitat Brown WJ, Farquhar MG (1984) Accumulation of coated vesicles bearing mannose 6-phosphate receptors for lysosomal enzymes in the Golgi region of I-cell fibroblasts. Proc Natl Acad Sci USA 81(16): 5135–5139PubMedCrossRef Brown WJ, Farquhar MG (1984) Accumulation of coated vesicles bearing mannose 6-phosphate receptors for lysosomal enzymes in the Golgi region of I-cell fibroblasts. Proc Natl Acad Sci USA 81(16): 5135–5139PubMedCrossRef
Zurück zum Zitat Chen X, Ji B et al (2002) NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122(2): 448–457PubMedCrossRef Chen X, Ji B et al (2002) NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122(2): 448–457PubMedCrossRef
Zurück zum Zitat Dawra R, Sah RP et al (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141(6): 2210–2217 e2PubMedCrossRef Dawra R, Sah RP et al (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141(6): 2210–2217 e2PubMedCrossRef
Zurück zum Zitat Demols A, Le Moine O et al (2000) CD4(+) T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118(3): 582–590PubMedCrossRef Demols A, Le Moine O et al (2000) CD4(+) T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118(3): 582–590PubMedCrossRef
Zurück zum Zitat Grady T, Mah‘Moud M et al (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275(5 Pt 1): G1010–1017PubMed Grady T, Mah‘Moud M et al (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275(5 Pt 1): G1010–1017PubMed
Zurück zum Zitat Greenbaum LM, Hirshkowitz A et al (1959) The activation of trypsinogen by cathepsin B. J Biol Chem 234: 2885–2890PubMed Greenbaum LM, Hirshkowitz A et al (1959) The activation of trypsinogen by cathepsin B. J Biol Chem 234: 2885–2890PubMed
Zurück zum Zitat Gukovskaya AS, Vaquero E et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122(4): 974–984PubMedCrossRef Gukovskaya AS, Vaquero E et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122(4): 974–984PubMedCrossRef
Zurück zum Zitat Gukovskaya AS, Gukovsky I et al (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100(7): 1853–1862PubMedCrossRef Gukovskaya AS, Gukovsky I et al (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100(7): 1853–1862PubMedCrossRef
Zurück zum Zitat Gukovsky I, Gukovskaya AS et al (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275(6 Pt 1): G1402–1414PubMed Gukovsky I, Gukovskaya AS et al (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275(6 Pt 1): G1402–1414PubMed
Zurück zum Zitat Gunjaca I, Zunic J et al (2012) Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity. Inflammation 35(2): 758–763PubMedCrossRef Gunjaca I, Zunic J et al (2012) Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity. Inflammation 35(2): 758–763PubMedCrossRef
Zurück zum Zitat Halangk W, Sturzebecher J et al (1997) Trypsinogen activation in rat pancreatic acinar cells hyperstimulated by caerulein. Biochim Biophys Acta 1362(2–3): 243–251PubMed Halangk W, Sturzebecher J et al (1997) Trypsinogen activation in rat pancreatic acinar cells hyperstimulated by caerulein. Biochim Biophys Acta 1362(2–3): 243–251PubMed
Zurück zum Zitat Halangk W, Lerch MM et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106(6): 773–781PubMedCrossRef Halangk W, Lerch MM et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106(6): 773–781PubMedCrossRef
Zurück zum Zitat Hirano T, Saluja A et al (1991) Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J Clin Invest 87(3): 865–869PubMedCrossRef Hirano T, Saluja A et al (1991) Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J Clin Invest 87(3): 865–869PubMedCrossRef
Zurück zum Zitat Hofbauer B, Saluja AK et al (1998) Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Physiol 275(2 Pt 1): G352–362PubMed Hofbauer B, Saluja AK et al (1998) Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Physiol 275(2 Pt 1): G352–362PubMed
Zurück zum Zitat Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348(6303): 735–738PubMedCrossRef Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348(6303): 735–738PubMedCrossRef
Zurück zum Zitat Kereszturi E, Kiraly O et al (2009) Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 58(4): 545–549PubMedCrossRef Kereszturi E, Kiraly O et al (2009) Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 58(4): 545–549PubMedCrossRef
Zurück zum Zitat Koike H, Steer ML et al (1982) Pancreatic effects of ethionine: blockade of exocytosis and appearance of crinophagy and autophagy precede cellular necrosis. Am J Physiol 242(4): G297–307PubMed Koike H, Steer ML et al (1982) Pancreatic effects of ethionine: blockade of exocytosis and appearance of crinophagy and autophagy precede cellular necrosis. Am J Physiol 242(4): G297–307PubMed
Zurück zum Zitat Kruger B, Albrecht E et al (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157(1): 43–50PubMedCrossRef Kruger B, Albrecht E et al (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157(1): 43–50PubMedCrossRef
Zurück zum Zitat Kukor Z, Mayerle J et al (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277(24): 21389–21396PubMedCrossRef Kukor Z, Mayerle J et al (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277(24): 21389–21396PubMedCrossRef
Zurück zum Zitat Lee MG, Xu X et al (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25): 15771–15776PubMedCrossRef Lee MG, Xu X et al (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25): 15771–15776PubMedCrossRef
Zurück zum Zitat Lerch MM, Saluja AK et al (1992) Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology 103(1): 205–213PubMed Lerch MM, Saluja AK et al (1992) Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology 103(1): 205–213PubMed
Zurück zum Zitat Maroux S, Baratti J et al (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246(16): 5031–5039PubMed Maroux S, Baratti J et al (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246(16): 5031–5039PubMed
Zurück zum Zitat Marrache F, Tu SP et al (2008) Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology 135(4): 1277–1287PubMedCrossRef Marrache F, Tu SP et al (2008) Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology 135(4): 1277–1287PubMedCrossRef
Zurück zum Zitat Maruyama Y, Petersen OH (1994) Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium 16(5): 419–430PubMedCrossRef Maruyama Y, Petersen OH (1994) Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium 16(5): 419–430PubMedCrossRef
Zurück zum Zitat Mayerle J, Schnekenburger J et al (2005) Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. Gastroenterology 129(4): 1251–1267PubMedCrossRef Mayerle J, Schnekenburger J et al (2005) Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. Gastroenterology 129(4): 1251–1267PubMedCrossRef
Zurück zum Zitat Mayerle J, Sendler M et al (2011) Breaking down haem attenuates acute pancreatitis: a new treatment option? Gut 60(5): 569–570PubMedCrossRef Mayerle J, Sendler M et al (2011) Breaking down haem attenuates acute pancreatitis: a new treatment option? Gut 60(5): 569–570PubMedCrossRef
Zurück zum Zitat Niederau C, Grendell JH (1988) Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment. J Clin Invest 81(1): 229–236PubMedCrossRef Niederau C, Grendell JH (1988) Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment. J Clin Invest 81(1): 229–236PubMedCrossRef
Zurück zum Zitat Park MK, Ashby MC et al (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8): 1863–1874PubMedCrossRef Park MK, Ashby MC et al (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8): 1863–1874PubMedCrossRef
Zurück zum Zitat Pastor CM, Vonlaufen A et al (2006) Neutrophil depletion – but not prevention of Kupffer cell activation – decreases the severity of cerulein-induced acute pancreatitis. World J Gastroenterol 12(8): 1219–1224PubMed Pastor CM, Vonlaufen A et al (2006) Neutrophil depletion – but not prevention of Kupffer cell activation – decreases the severity of cerulein-induced acute pancreatitis. World J Gastroenterol 12(8): 1219–1224PubMed
Zurück zum Zitat Perides G, Weiss ER et al (2011) TNF-alpha-dependent regulation of acute pancreatitis severity by Ly-6C(hi) monocytes in mice. J Biol Chem 286(15): 13327–13335PubMedCrossRef Perides G, Weiss ER et al (2011) TNF-alpha-dependent regulation of acute pancreatitis severity by Ly-6C(hi) monocytes in mice. J Biol Chem 286(15): 13327–13335PubMedCrossRef
Zurück zum Zitat Petersen OH (2005) Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 38(3–4): 171–200PubMedCrossRef Petersen OH (2005) Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 38(3–4): 171–200PubMedCrossRef
Zurück zum Zitat Petersen OH, Sutton R et al (2006) Failure of calcium microdomain generation and pathological consequences. Cell Calcium 40(5–6): 593–600PubMedCrossRef Petersen OH, Sutton R et al (2006) Failure of calcium microdomain generation and pathological consequences. Cell Calcium 40(5–6): 593–600PubMedCrossRef
Zurück zum Zitat Poch B, Gansauge F et al (1999) The role of polymorphonuclear leukocytes and oxygen-derived free radicals in experimental acute pancreatitis: mediators of local destruction and activators of inflammation. FEBS Lett 461(3): 268–272PubMedCrossRef Poch B, Gansauge F et al (1999) The role of polymorphonuclear leukocytes and oxygen-derived free radicals in experimental acute pancreatitis: mediators of local destruction and activators of inflammation. FEBS Lett 461(3): 268–272PubMedCrossRef
Zurück zum Zitat Rakonczay Z Jr, Hegyi P et al (2008) The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut 57(2): 259–267PubMedCrossRef Rakonczay Z Jr, Hegyi P et al (2008) The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut 57(2): 259–267PubMedCrossRef
Zurück zum Zitat Rinderknecht H (1988) Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 3(2–3): 105–112PubMed Rinderknecht H (1988) Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 3(2–3): 105–112PubMed
Zurück zum Zitat Rinderknecht H, Renner IG et al (1979) Lysosomal enzymes in pure pancreatic juice from normal healthy volunteers and chronic alcoholics. Dig Dis Sci 24(3): 180–186PubMedCrossRef Rinderknecht H, Renner IG et al (1979) Lysosomal enzymes in pure pancreatic juice from normal healthy volunteers and chronic alcoholics. Dig Dis Sci 24(3): 180–186PubMedCrossRef
Zurück zum Zitat Rosendahl J, Witt H et al (2008) Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 40(1): 78–82PubMedCrossRef Rosendahl J, Witt H et al (2008) Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 40(1): 78–82PubMedCrossRef
Zurück zum Zitat Sahin-Toth M (2005) Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept Lett 12(5): 457–464PubMedCrossRef Sahin-Toth M (2005) Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept Lett 12(5): 457–464PubMedCrossRef
Zurück zum Zitat Salameh MA, Soares AS et al (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 283(7): 4115–4123PubMedCrossRef Salameh MA, Soares AS et al (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 283(7): 4115–4123PubMedCrossRef
Zurück zum Zitat Saluja AK, Bhagat L et al (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276(4 Pt 1): G835–842 Saluja AK, Bhagat L et al (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276(4 Pt 1): G835–842
Zurück zum Zitat Saluja AK, Donovan EA et al (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113(1): 304–310PubMedCrossRef Saluja AK, Donovan EA et al (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113(1): 304–310PubMedCrossRef
Zurück zum Zitat Saluja A, Hashimoto S et al (1987) Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol 253(4 Pt 1): G508–516PubMed Saluja A, Hashimoto S et al (1987) Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol 253(4 Pt 1): G508–516PubMed
Zurück zum Zitat Sandoval D, Gukovskaya A et al (1996) The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 111(4): 1081–1091PubMedCrossRef Sandoval D, Gukovskaya A et al (1996) The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 111(4): 1081–1091PubMedCrossRef
Zurück zum Zitat Satoh A, Shimosegawa T et al (1999) Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis. Gut 44(2): 253–258PubMedCrossRef Satoh A, Shimosegawa T et al (1999) Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis. Gut 44(2): 253–258PubMedCrossRef
Zurück zum Zitat Sendler M, Dummer A et al (2013) Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62(3): 430–439PubMedCrossRef Sendler M, Dummer A et al (2013) Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62(3): 430–439PubMedCrossRef
Zurück zum Zitat Steinle AU, Weidenbach H et al (1999) NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology 116(2): 420–430PubMedCrossRef Steinle AU, Weidenbach H et al (1999) NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology 116(2): 420–430PubMedCrossRef
Zurück zum Zitat Szabo A, Sahin-Toth M (2012) Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem 287(24): 20701–20710PubMedCrossRef Szabo A, Sahin-Toth M (2012) Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem 287(24): 20701–20710PubMedCrossRef
Zurück zum Zitat Szmola R, Kukor Z et al (2003) Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem 278(49): 48580–48589PubMedCrossRef Szmola R, Kukor Z et al (2003) Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem 278(49): 48580–48589PubMedCrossRef
Zurück zum Zitat Teich N, Ockenga J et al (2000) Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation. Gastroenterology 119(2): 461–465PubMedCrossRef Teich N, Ockenga J et al (2000) Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation. Gastroenterology 119(2): 461–465PubMedCrossRef
Zurück zum Zitat Teich N, Rosendahl J et al (2006) Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat 27(8): 721–730PubMedCrossRef Teich N, Rosendahl J et al (2006) Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat 27(8): 721–730PubMedCrossRef
Zurück zum Zitat Thorn P, Lawrie AM et al (1993) Ca2+ oscillations in pancreatic acinar cells: spatiotemporal relationships and functional implications. Cell Calcium 14(10): 746–757PubMedCrossRef Thorn P, Lawrie AM et al (1993) Ca2+ oscillations in pancreatic acinar cells: spatiotemporal relationships and functional implications. Cell Calcium 14(10): 746–757PubMedCrossRef
Zurück zum Zitat Threadgold J, Greenhalf W et al (2002) The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50(5): 675–681PubMedCrossRef Threadgold J, Greenhalf W et al (2002) The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50(5): 675–681PubMedCrossRef
Zurück zum Zitat Voronina S, Sukhomlin T et al (2002) Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol 539(Pt 1): 41–52PubMedCrossRef Voronina S, Sukhomlin T et al (2002) Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol 539(Pt 1): 41–52PubMedCrossRef
Zurück zum Zitat Ward JB, Petersen OH et al (1995) Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 346(8981): 1016–1019PubMedCrossRef Ward JB, Petersen OH et al (1995) Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 346(8981): 1016–1019PubMedCrossRef
Zurück zum Zitat Wartmann T, Mayerle J et al (2010) Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138(2): 726–737PubMedCrossRef Wartmann T, Mayerle J et al (2010) Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138(2): 726–737PubMedCrossRef
Zurück zum Zitat Watanabe O, Baccino FM et al (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol 246(4 Pt 1): G457–467PubMed Watanabe O, Baccino FM et al (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol 246(4 Pt 1): G457–467PubMed
Zurück zum Zitat Whitcomb DC, Gorry MC et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14(2): 141–145PubMedCrossRef Whitcomb DC, Gorry MC et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14(2): 141–145PubMedCrossRef
Zurück zum Zitat Witt H, Sahin-Toth M et al (2006) A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 38(6): 668–673PubMedCrossRef Witt H, Sahin-Toth M et al (2006) A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 38(6): 668–673PubMedCrossRef
Zurück zum Zitat Witt H, Luck W et al (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117(1): 7–10PubMedCrossRef Witt H, Luck W et al (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117(1): 7–10PubMedCrossRef
Zurück zum Zitat Witt H, Luck W et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25(2): 213–216PubMedCrossRef Witt H, Luck W et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25(2): 213–216PubMedCrossRef
Zurück zum Zitat Yamasaki M, Thomas JM et al (2005) Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol 15(9): 874–878PubMedCrossRef Yamasaki M, Thomas JM et al (2005) Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol 15(9): 874–878PubMedCrossRef
Metadaten
Titel
Pathogenese und Pathophysiologie der akuten Pankreatitis
verfasst von
Matthias Sendler
Julia Mayerle
Markus M. Lerch
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37964-2_1

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.