Skip to main content
Erschienen in: Seminars in Immunopathology 5/2017

02.05.2017 | Review

Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology

verfasst von: Rudragouda Channappanavar, Stanley Perlman

Erschienen in: Seminars in Immunopathology | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Human coronaviruses (hCoVs) can be divided into low pathogenic and highly pathogenic coronaviruses. The low pathogenic CoVs infect the upper respiratory tract and cause mild, cold-like respiratory illness. In contrast, highly pathogenic hCoVs such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) predominantly infect lower airways and cause fatal pneumonia. Severe pneumonia caused by pathogenic hCoVs is often associated with rapid virus replication, massive inflammatory cell infiltration and elevated pro-inflammatory cytokine/chemokine responses resulting in acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Recent studies in experimentally infected animal strongly suggest a crucial role for virus-induced immunopathological events in causing fatal pneumonia after hCoV infections. Here we review the current understanding of how a dysregulated immune response may cause lung immunopathology leading to deleterious clinical manifestations after pathogenic hCoV infections.
Literatur
1.
Zurück zum Zitat Masters PS, Perlman, S (2013) Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 825–858 Masters PS, Perlman, S (2013) Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 825–858
2.
Zurück zum Zitat Siddell SZJ, Snijder EJ (2005) Coronaviruses, toroviruses, and arteriviruses, vol. 1. Hodder Arnold, London Siddell SZJ, Snijder EJ (2005) Coronaviruses, toroviruses, and arteriviruses, vol. 1. Hodder Arnold, London
3.
Zurück zum Zitat Peck KM et al (2015) Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol 2(1):95–117PubMedCrossRef Peck KM et al (2015) Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol 2(1):95–117PubMedCrossRef
4.
Zurück zum Zitat Su S et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedCrossRef Su S et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedCrossRef
5.
Zurück zum Zitat Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664PubMedPubMedCentralCrossRef Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Heugel J et al (2007) Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J 26(8):753–755PubMedCrossRef Heugel J et al (2007) Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J 26(8):753–755PubMedCrossRef
7.
Zurück zum Zitat Kuypers J et al (2007) Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics 119(1):e70–e76PubMedCrossRef Kuypers J et al (2007) Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics 119(1):e70–e76PubMedCrossRef
8.
Zurück zum Zitat Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976PubMedCrossRef Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976PubMedCrossRef
9.
Zurück zum Zitat Kuiken T et al (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380):263–270PubMedCrossRef Kuiken T et al (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380):263–270PubMedCrossRef
10.
Zurück zum Zitat Peiris JS et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325PubMedCrossRef Peiris JS et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325PubMedCrossRef
11.
Zurück zum Zitat van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6) van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6)
12.
Zurück zum Zitat Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef
14.
Zurück zum Zitat WHO Cumulative number of reported probable cases of SARS. In: 2003 WHO Cumulative number of reported probable cases of SARS. In: 2003
17.
Zurück zum Zitat Adney DR et al (2014) Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20(12):1999–2005PubMedPubMedCentralCrossRef Adney DR et al (2014) Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20(12):1999–2005PubMedPubMedCentralCrossRef
18.
19.
20.
21.
Zurück zum Zitat Arabi YM et al (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 160(6):389–397PubMedCrossRef Arabi YM et al (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 160(6):389–397PubMedCrossRef
22.
Zurück zum Zitat Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761PubMedCrossRef Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761PubMedCrossRef
23.
Zurück zum Zitat Leong HN et al (2006) Clinical and laboratory findings of SARS in Singapore. Ann Acad Med Singap 35(5):332–339PubMed Leong HN et al (2006) Clinical and laboratory findings of SARS in Singapore. Ann Acad Med Singap 35(5):332–339PubMed
24.
Zurück zum Zitat Saad M et al (2014) Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29:301–306PubMedCrossRef Saad M et al (2014) Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29:301–306PubMedCrossRef
25.
Zurück zum Zitat Al-Tawfiq JA et al (2014) Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59(2):160–165PubMedCrossRef Al-Tawfiq JA et al (2014) Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59(2):160–165PubMedCrossRef
27.
28.
Zurück zum Zitat Peiris JS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772PubMedCrossRef Peiris JS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772PubMedCrossRef
29.
Zurück zum Zitat Nicholls J et al (2003) SARS: clinical virology and pathogenesis. Respirology 8(Suppl):S6–S8PubMedCrossRef Nicholls J et al (2003) SARS: clinical virology and pathogenesis. Respirology 8(Suppl):S6–S8PubMedCrossRef
30.
Zurück zum Zitat van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112PubMedCrossRef van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112PubMedCrossRef
32.
Zurück zum Zitat Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778PubMedCrossRef Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778PubMedCrossRef
33.
Zurück zum Zitat van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112 van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112
34.
Zurück zum Zitat Cui W et al (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37(6):857–859PubMedCrossRef Cui W et al (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37(6):857–859PubMedCrossRef
35.
Zurück zum Zitat Li T et al (2004) Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 189(4):648–651PubMedCrossRef Li T et al (2004) Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 189(4):648–651PubMedCrossRef
36.
Zurück zum Zitat Wang YH et al (2004) A cluster of patients with severe acute respiratory syndrome in a chest ward in southern Taiwan. Intensive Care Med 30(6):1228–1231PubMedCrossRef Wang YH et al (2004) A cluster of patients with severe acute respiratory syndrome in a chest ward in southern Taiwan. Intensive Care Med 30(6):1228–1231PubMedCrossRef
37.
Zurück zum Zitat Ng DL et al (2016) Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 186(3):652–658PubMedCrossRef Ng DL et al (2016) Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 186(3):652–658PubMedCrossRef
38.
Zurück zum Zitat Channappanavar R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19(2):181–193PubMedPubMedCentralCrossRef Channappanavar R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19(2):181–193PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Davidson S et al (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res 35(4):252–264CrossRef Davidson S et al (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res 35(4):252–264CrossRef
41.
Zurück zum Zitat Cheung CY et al (2005) Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79(12):7819–7826PubMedPubMedCentralCrossRef Cheung CY et al (2005) Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79(12):7819–7826PubMedPubMedCentralCrossRef
42.
43.
44.
Zurück zum Zitat Chien JY et al (2006) Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 11(6):715–722PubMedCrossRef Chien JY et al (2006) Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 11(6):715–722PubMedCrossRef
45.
Zurück zum Zitat Wang CH et al (2005) Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 6:42PubMedPubMedCentralCrossRef Wang CH et al (2005) Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 6:42PubMedPubMedCentralCrossRef
46.
48.
Zurück zum Zitat Cameron MJ et al (2008) Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133(1):13–19PubMedCrossRef Cameron MJ et al (2008) Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133(1):13–19PubMedCrossRef
49.
Zurück zum Zitat Cameron MJRL, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, Seneviratne C, Bosinger SE, Persad D, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ (2007) Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81(16):8692–8706PubMedPubMedCentralCrossRef Cameron MJRL, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, Seneviratne C, Bosinger SE, Persad D, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ (2007) Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81(16):8692–8706PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Huang KJ et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194PubMedCrossRef Huang KJ et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194PubMedCrossRef
51.
Zurück zum Zitat Theron M et al (2005) A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 32(1):30–38PubMedCrossRef Theron M et al (2005) A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 32(1):30–38PubMedCrossRef
52.
Zurück zum Zitat Lau SK et al (2013) Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94(Pt 12):2679–2690PubMedCrossRef Lau SK et al (2013) Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94(Pt 12):2679–2690PubMedCrossRef
53.
Zurück zum Zitat Chu H et al (2015) Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 213(6):904–14 Chu H et al (2015) Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 213(6):904–14
54.
Zurück zum Zitat Tynell J et al (2016) Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 97(2):344–355PubMedPubMedCentralCrossRef Tynell J et al (2016) Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 97(2):344–355PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zhou J et al (2014) Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209(9):1331–1342PubMedCrossRef Zhou J et al (2014) Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209(9):1331–1342PubMedCrossRef
56.
Zurück zum Zitat Scheuplein VA et al (2015) High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89(7):3859–3869PubMedPubMedCentralCrossRef Scheuplein VA et al (2015) High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89(7):3859–3869PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Kim ES et al (2016) Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 31(11):1717–1725PubMedPubMedCentralCrossRef Kim ES et al (2016) Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 31(11):1717–1725PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Min CK et al (2016) Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 6:25359PubMedPubMedCentralCrossRef Min CK et al (2016) Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 6:25359PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Roberts A et al (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79(9):5833–5838PubMedPubMedCentralCrossRef Roberts A et al (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79(9):5833–5838PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Day CW et al (2009) A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395(2):210–222PubMedPubMedCentralCrossRef Day CW et al (2009) A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395(2):210–222PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Nagata N et al (2008) Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Am J Pathol 172(6):1625–1637PubMedPubMedCentralCrossRef Nagata N et al (2008) Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Am J Pathol 172(6):1625–1637PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Frieman MB et al (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 6(4):e1000849PubMedPubMedCentralCrossRef Frieman MB et al (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 6(4):e1000849PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Zhao J et al (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930PubMedPubMedCentralCrossRef Zhao J et al (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Graham RL et al (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18(12):1820–1826PubMedPubMedCentralCrossRef Graham RL et al (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18(12):1820–1826PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Rockx B et al (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83(14):7062–7074PubMedPubMedCentralCrossRef Rockx B et al (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83(14):7062–7074PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Totura AL et al (2015) Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6(3):e00638–e00615PubMedPubMedCentralCrossRef Totura AL et al (2015) Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6(3):e00638–e00615PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Jimenez-Guardeno JM et al (2014) The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 10(8):e1004320PubMedPubMedCentralCrossRef Jimenez-Guardeno JM et al (2014) The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 10(8):e1004320PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Nieto-Torres JL et al (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10(5):e1004077PubMedPubMedCentralCrossRef Nieto-Torres JL et al (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10(5):e1004077PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Nieto-Torres JL et al (2015) Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–339PubMedPubMedCentralCrossRef Nieto-Torres JL et al (2015) Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–339PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat de Wit E et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 110(41):16598–16603PubMedPubMedCentralCrossRef de Wit E et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 110(41):16598–16603PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Houser KV et al (2016) Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection. J Infect Dis 213(10):1557–1561PubMedPubMedCentralCrossRef Houser KV et al (2016) Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection. J Infect Dis 213(10):1557–1561PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Johnson RF et al (2015) Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology 485:422–430PubMedPubMedCentralCrossRef Johnson RF et al (2015) Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology 485:422–430PubMedPubMedCentralCrossRef
77.
78.
81.
Zurück zum Zitat Pascal KE et al (2015) Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 112(28):8738–8743PubMedPubMedCentralCrossRef Pascal KE et al (2015) Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 112(28):8738–8743PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Cockrell A et al (2016) A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature Microbiology 2:16226 Cockrell A et al (2016) A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature Microbiology 2:16226
83.
Zurück zum Zitat Li K et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences 114(15):E3119–E3128 Li K et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences 114(15):E3119–E3128
84.
Zurück zum Zitat Frieman M et al (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824PubMedPubMedCentralCrossRef Frieman M et al (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Kindler E et al (2016) Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 96:219–243PubMedCrossRef Kindler E et al (2016) Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 96:219–243PubMedCrossRef
86.
Zurück zum Zitat Narayanan K et al (2008) Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82(9):4471–4479PubMedPubMedCentralCrossRef Narayanan K et al (2008) Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82(9):4471–4479PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Sun L et al (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7(2):e30802PubMedPubMedCentralCrossRef Sun L et al (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7(2):e30802PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19(2):121–132PubMedCrossRef Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19(2):121–132PubMedCrossRef
89.
Zurück zum Zitat Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current Opinion in Virology 2(3):264–275PubMedCrossRef Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current Opinion in Virology 2(3):264–275PubMedCrossRef
90.
Zurück zum Zitat Wathelet MG et al (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633PubMedPubMedCentralCrossRef Wathelet MG et al (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Fehr AR et al (2016) The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 7(6):e01721–16 Fehr AR et al (2016) The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 7(6):e01721–16
92.
Zurück zum Zitat Frieman M et al (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 83(13):6689–6705PubMedPubMedCentralCrossRef Frieman M et al (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 83(13):6689–6705PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Kopecky-Bromberg SA et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81(2):548–557PubMedCrossRef Kopecky-Bromberg SA et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81(2):548–557PubMedCrossRef
94.
Zurück zum Zitat Lu XL et al (2011) SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42(1):37–45PubMedCrossRef Lu XL et al (2011) SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42(1):37–45PubMedCrossRef
95.
Zurück zum Zitat Siu KL et al (2014) Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11(2):141–149PubMedPubMedCentralCrossRef Siu KL et al (2014) Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11(2):141–149PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Lui PY et al (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect 5:e39PubMedPubMedCentralCrossRef Lui PY et al (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect 5:e39PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Yang Y et al (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4(12):951–961PubMedPubMedCentralCrossRef Yang Y et al (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4(12):951–961PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Ng ML et al (2003) Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 84(Pt 12):3291–3303PubMedCrossRef Ng ML et al (2003) Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 84(Pt 12):3291–3303PubMedCrossRef
100.
Zurück zum Zitat Oh MD et al (2016) Viral load kinetics of MERS coronavirus infection. N Engl J Med 375(13):1303–1305PubMedCrossRef Oh MD et al (2016) Viral load kinetics of MERS coronavirus infection. N Engl J Med 375(13):1303–1305PubMedCrossRef
101.
Zurück zum Zitat Herold S et al (2008) Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065–3077PubMedPubMedCentralCrossRef Herold S et al (2008) Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065–3077PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Hogner K et al (2013) Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 9(2):e1003188PubMedPubMedCentralCrossRef Hogner K et al (2013) Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 9(2):e1003188PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Rodrigue-Gervais IG et al (2014) Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15(1):23–35PubMedCrossRef Rodrigue-Gervais IG et al (2014) Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15(1):23–35PubMedCrossRef
104.
Zurück zum Zitat Zhao J et al (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325PubMedPubMedCentralCrossRef Zhao J et al (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Palm NW, Medzhitov R (2007) Not so fast: adaptive suppression of innate immunity. Nat Med 13(10):1142–1144PubMedCrossRef Palm NW, Medzhitov R (2007) Not so fast: adaptive suppression of innate immunity. Nat Med 13(10):1142–1144PubMedCrossRef
107.
Zurück zum Zitat Zornetzer GA et al (2010) Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol 84(21):11297–11309PubMedPubMedCentralCrossRef Zornetzer GA et al (2010) Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol 84(21):11297–11309PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Page C et al (2012) Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol 86(24):13334–13349PubMedPubMedCentralCrossRef Page C et al (2012) Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol 86(24):13334–13349PubMedPubMedCentralCrossRef
109.
110.
Zurück zum Zitat Drosten C et al (2013) Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 13(9):745–751PubMedCrossRef Drosten C et al (2013) Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 13(9):745–751PubMedCrossRef
111.
Zurück zum Zitat Lew TW et al (2003) Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 290(3):374–380PubMedCrossRef Lew TW et al (2003) Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 290(3):374–380PubMedCrossRef
112.
Zurück zum Zitat Jiang Y et al (2005) Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 171(8):850–857PubMedCrossRef Jiang Y et al (2005) Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 171(8):850–857PubMedCrossRef
113.
Zurück zum Zitat Reghunathan R et al (2005) Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunology 6:2 Reghunathan R et al (2005) Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunology 6:2
115.
Zurück zum Zitat Al-Tawfiq JA et al (2014) Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 20:42–46PubMedCrossRef Al-Tawfiq JA et al (2014) Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 20:42–46PubMedCrossRef
116.
Zurück zum Zitat Falzarano D et al (2013) Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 19(10):1313–1317PubMedPubMedCentralCrossRef Falzarano D et al (2013) Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 19(10):1313–1317PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Omrani AS et al (2014) Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 14(11):1090–1095PubMedCrossRef Omrani AS et al (2014) Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 14(11):1090–1095PubMedCrossRef
118.
Zurück zum Zitat Auyeung TW et al (2005) The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect 51(2):98–102PubMedCrossRef Auyeung TW et al (2005) The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect 51(2):98–102PubMedCrossRef
119.
Zurück zum Zitat Ho JC et al (2003) High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am J Respir Crit Care Med 168(12):1449–1456PubMedCrossRef Ho JC et al (2003) High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am J Respir Crit Care Med 168(12):1449–1456PubMedCrossRef
120.
Zurück zum Zitat Yam LY et al (2007) Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect 54(1):28–39PubMedCrossRef Yam LY et al (2007) Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect 54(1):28–39PubMedCrossRef
121.
Zurück zum Zitat Haagmans BL et al (2004) Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10(3):290–293PubMedCrossRef Haagmans BL et al (2004) Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10(3):290–293PubMedCrossRef
122.
Zurück zum Zitat Zumla A et al (2016) Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–47 Zumla A et al (2016) Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–47
123.
Zurück zum Zitat Davidson S et al (2016) IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol Med 8(9):1099–1112PubMedPubMedCentralCrossRef Davidson S et al (2016) IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol Med 8(9):1099–1112PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Blazek K et al (2015) IFN-lambda resolves inflammation via suppression of neutrophil infiltration and IL-1beta production. J Exp Med 212(6):845–853PubMedPubMedCentralCrossRef Blazek K et al (2015) IFN-lambda resolves inflammation via suppression of neutrophil infiltration and IL-1beta production. J Exp Med 212(6):845–853PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Imai Y et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249PubMedCrossRef Imai Y et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249PubMedCrossRef
127.
Zurück zum Zitat Teijaro JR et al (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146(6):980–991PubMedPubMedCentralCrossRef Teijaro JR et al (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146(6):980–991PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Walsh KB et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A 108(29):12018–12023PubMedPubMedCentralCrossRef Walsh KB et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A 108(29):12018–12023PubMedPubMedCentralCrossRef
129.
131.
Zurück zum Zitat Darwish I et al (2011) Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 9(7):807–822PubMedCrossRef Darwish I et al (2011) Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 9(7):807–822PubMedCrossRef
132.
Metadaten
Titel
Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology
verfasst von
Rudragouda Channappanavar
Stanley Perlman
Publikationsdatum
02.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 5/2017
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-017-0629-x

Weitere Artikel der Ausgabe 5/2017

Seminars in Immunopathology 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.