Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2016

27.12.2016

Patient-derived xenograft (PDX) models in basic and translational breast cancer research

verfasst von: Lacey E. Dobrolecki, Susie D. Airhart, Denis G. Alferez, Samuel Aparicio, Fariba Behbod, Mohamed Bentires-Alj, Cathrin Brisken, Carol J. Bult, Shirong Cai, Robert B. Clarke, Heidi Dowst, Matthew J. Ellis, Eva Gonzalez-Suarez, Richard D. Iggo, Peter Kabos, Shunqiang Li, Geoffrey J. Lindeman, Elisabetta Marangoni, Aaron McCoy, Funda Meric-Bernstam, Helen Piwnica-Worms, Marie-France Poupon, Jorge Reis-Filho, Carol A. Sartorius, Valentina Scabia, George Sflomos, Yizheng Tu, François Vaillant, Jane E. Visvader, Alana Welm, Max S. Wicha, Michael T. Lewis

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward “credentialing” of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Literatur
1.
3.
Zurück zum Zitat Allred, D. C., Harvey, J. M., Berardo, M., & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11(2), 155–168.PubMed Allred, D. C., Harvey, J. M., Berardo, M., & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11(2), 155–168.PubMed
4.
5.
Zurück zum Zitat Prat, A., Parker, J. S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J. I., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68. doi:10.1186/bcr2635.PubMedPubMedCentralCrossRef Prat, A., Parker, J. S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J. I., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68. doi:10.​1186/​bcr2635.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. doi:10.1038/35021093.PubMedCrossRef Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. doi:10.​1038/​35021093.PubMedCrossRef
9.
Zurück zum Zitat Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Biochimica et Biophysica Acta, 1805(1), 105–117. doi:10.1016/j.bbcan.2009.11.002.PubMed Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Biochimica et Biophysica Acta, 1805(1), 105–117. doi:10.​1016/​j.​bbcan.​2009.​11.​002.PubMed
10.
Zurück zum Zitat Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(3), 876–887. doi:10.1158/1078-0432.CCR-09-1532.CrossRef Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(3), 876–887. doi:10.​1158/​1078-0432.​CCR-09-1532.CrossRef
11.
Zurück zum Zitat Burstein, H. J., Temin, S., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2014). Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. [Practice guideline]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(21), 2255–2269. doi:10.1200/JCO.2013.54.2258.CrossRef Burstein, H. J., Temin, S., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2014). Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. [Practice guideline]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(21), 2255–2269. doi:10.​1200/​JCO.​2013.​54.​2258.CrossRef
12.
Zurück zum Zitat Ramakrishna, N., Temin, S., Chandarlapaty, S., Crews, J. R., Davidson, N. E., Esteva, F. J., et al. (2014). Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. [Practice guideline research support, non-U.S. Gov’t review]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(19), 2100–2108. doi:10.1200/JCO.2013.54.0955.CrossRef Ramakrishna, N., Temin, S., Chandarlapaty, S., Crews, J. R., Davidson, N. E., Esteva, F. J., et al. (2014). Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. [Practice guideline research support, non-U.S. Gov’t review]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(19), 2100–2108. doi:10.​1200/​JCO.​2013.​54.​0955.CrossRef
13.
Zurück zum Zitat Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(15), 3764–3773. doi:10.1158/1078-0432.CCR-15-2477.CrossRef Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(15), 3764–3773. doi:10.​1158/​1078-0432.​CCR-15-2477.CrossRef
14.
15.
Zurück zum Zitat Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.1038/nm.2000.PubMedCrossRef Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.​1038/​nm.​2000.PubMedCrossRef
16.
Zurück zum Zitat Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Journal of the National Cancer Institute, 100(9), 672–679. doi:10.1093/jnci/djn123.PubMedCrossRef Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Journal of the National Cancer Institute, 100(9), 672–679. doi:10.​1093/​jnci/​djn123.PubMedCrossRef
17.
Zurück zum Zitat Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 405–409. doi:10.1038/nature11154.PubMedPubMedCentralCrossRef Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 405–409. doi:10.​1038/​nature11154.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 346–352. doi:10.1038/nature10983.PubMedPubMedCentral Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 346–352. doi:10.​1038/​nature10983.PubMedPubMedCentral
19.
Zurück zum Zitat Network, T. C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 490(7418), 61–70. doi:10.1038/nature11412.CrossRef Network, T. C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 490(7418), 61–70. doi:10.​1038/​nature11412.CrossRef
20.
Zurück zum Zitat Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 486(7403), 395–399. doi:10.1038/nature10933.PubMed Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 486(7403), 395–399. doi:10.​1038/​nature10933.PubMed
21.
Zurück zum Zitat Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 400–404. doi:10.1038/nature11017.PubMedPubMedCentral Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 400–404. doi:10.​1038/​nature11017.PubMedPubMedCentral
22.
Zurück zum Zitat Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). Erratum: the somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11908. doi:10.1038/ncomms11908.PubMedPubMedCentralCrossRef Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). Erratum: the somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11908. doi:10.​1038/​ncomms11908.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. doi:10.1038/ncomms11479.PubMedPubMedCentralCrossRef Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. doi:10.​1038/​ncomms11479.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Le Du, F., Eckhardt, B. L., Lim, B., Litton, J. K., Moulder, S., Meric-Bernstam, F., et al. (2015). Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Oncotarget, 6(15), 12890–12908. doi:10.18632/oncotarget.3849.PubMedPubMedCentralCrossRef Le Du, F., Eckhardt, B. L., Lim, B., Litton, J. K., Moulder, S., Meric-Bernstam, F., et al. (2015). Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Oncotarget, 6(15), 12890–12908. doi:10.​18632/​oncotarget.​3849.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Clinical Cancer Research, 21(7), 1688–1698. doi:10.1158/1078-0432.CCR-14-0432.PubMedCrossRef Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Clinical Cancer Research, 21(7), 1688–1698. doi:10.​1158/​1078-0432.​CCR-14-0432.PubMedCrossRef
28.
Zurück zum Zitat Abramson, V. G., Lehmann, B. D., Ballinger, T. J., & Pietenpol, J. A. (2015). Subtyping of triple-negative breast cancer: implications for therapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cancer, 121(1), 8–16. doi:10.1002/cncr.28914.PubMedCrossRef Abramson, V. G., Lehmann, B. D., Ballinger, T. J., & Pietenpol, J. A. (2015). Subtyping of triple-negative breast cancer: implications for therapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cancer, 121(1), 8–16. doi:10.​1002/​cncr.​28914.PubMedCrossRef
29.
Zurück zum Zitat Prabhu, J. S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., et al. (2014). A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. Journal of Cancer, 5(2), 156–165. doi:10.7150/jca.7668.PubMedPubMedCentralCrossRef Prabhu, J. S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., et al. (2014). A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. Journal of Cancer, 5(2), 156–165. doi:10.​7150/​jca.​7668.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., et al. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907–922. doi:10.1043/1543-2165-134.6.907. Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., et al. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907–922. doi:10.​1043/​1543-2165-134.​6.​907.
32.
Zurück zum Zitat Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., et al. (2014). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. [Practice guideline]. Archives of Pathology & Laboratory Medicine, 138(2), 241–256. doi:10.5858/arpa.2013-0953-SA.CrossRef Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., et al. (2014). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. [Practice guideline]. Archives of Pathology & Laboratory Medicine, 138(2), 241–256. doi:10.​5858/​arpa.​2013-0953-SA.CrossRef
33.
Zurück zum Zitat Nowell, P. C. (1976). The clonal evolution of tumor cell populations. [Research support, U.S. Gov’t, P.H.S.]. Science, 194(4260), 23–28.PubMedCrossRef Nowell, P. C. (1976). The clonal evolution of tumor cell populations. [Research support, U.S. Gov’t, P.H.S.]. Science, 194(4260), 23–28.PubMedCrossRef
34.
Zurück zum Zitat De Luca, F., Rotunno, G., Salvianti, F., Galardi, F., Pestrin, M., Gabellini, S., et al. (2016). Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. doi:10.18632/oncotarget.8431. De Luca, F., Rotunno, G., Salvianti, F., Galardi, F., Pestrin, M., Gabellini, S., et al. (2016). Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. doi:10.​18632/​oncotarget.​8431.
35.
38.
Zurück zum Zitat Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. [Research support, non-U.S. Gov’t]. Genome Research, 24(11), 1881–1893. doi:10.1101/gr.180281.114.PubMedPubMedCentralCrossRef Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. [Research support, non-U.S. Gov’t]. Genome Research, 24(11), 1881–1893. doi:10.​1101/​gr.​180281.​114.PubMedPubMedCentralCrossRef
40.
41.
Zurück zum Zitat Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., et al. (2012). Clonal architecture of secondary acute myeloid leukemia. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(12), 1090–1098. doi:10.1056/NEJMoa1106968.PubMedPubMedCentralCrossRef Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., et al. (2012). Clonal architecture of secondary acute myeloid leukemia. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(12), 1090–1098. doi:10.​1056/​NEJMoa1106968.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2012). Genome-wide copy number analysis of single cells. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature Protocols, 7(6), 1024–1041. doi:10.1038/nprot.2012.039.PubMedPubMedCentralCrossRef Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2012). Genome-wide copy number analysis of single cells. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature Protocols, 7(6), 1024–1041. doi:10.​1038/​nprot.​2012.​039.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2016). Corrigendum: genome-wide copy number analysis of single cells. [Published erratum]. Nature Protocols, 11(3), 616. doi:10.1038/nprot0316.616b.PubMedCrossRef Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2016). Corrigendum: genome-wide copy number analysis of single cells. [Published erratum]. Nature Protocols, 11(3), 616. doi:10.​1038/​nprot0316.​616b.PubMedCrossRef
44.
Zurück zum Zitat Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. [Research support, non-U.S. Gov’t]. Nature, 518(7539), 422–426. doi:10.1038/nature13952.PubMedCrossRef Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. [Research support, non-U.S. Gov’t]. Nature, 518(7539), 422–426. doi:10.​1038/​nature13952.PubMedCrossRef
45.
Zurück zum Zitat Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., et al. (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. [Research support, non-U.S. Gov’t]. Cell, 148(5), 873–885. doi:10.1016/j.cell.2012.02.028.PubMedCrossRef Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., et al. (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. [Research support, non-U.S. Gov’t]. Cell, 148(5), 873–885. doi:10.​1016/​j.​cell.​2012.​02.​028.PubMedCrossRef
46.
Zurück zum Zitat Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 472(7341), 90–94. doi:10.1038/nature09807.PubMedPubMedCentralCrossRef Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 472(7341), 90–94. doi:10.​1038/​nature09807.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Potter, N. E., Ermini, L., Papaemmanuil, E., Cazzaniga, G., Vijayaraghavan, G., Titley, I., et al. (2013). Single-cell mutational profiling and clonal phylogeny in cancer. [Research support, non-U.S. Gov’t]. Genome Research, 23(12), 2115–2125. doi:10.1101/gr.159913.113.PubMedPubMedCentralCrossRef Potter, N. E., Ermini, L., Papaemmanuil, E., Cazzaniga, G., Vijayaraghavan, G., Titley, I., et al. (2013). Single-cell mutational profiling and clonal phylogeny in cancer. [Research support, non-U.S. Gov’t]. Genome Research, 23(12), 2115–2125. doi:10.​1101/​gr.​159913.​113.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 512(7513), 155–160. doi:10.1038/nature13600.PubMedPubMedCentralCrossRef Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 512(7513), 155–160. doi:10.​1038/​nature13600.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.1038/nature08489.PubMedCrossRef Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.​1038/​nature08489.PubMedCrossRef
50.
Zurück zum Zitat Campbell, P. J., Pleasance, E. D., Stephens, P. J., Dicks, E., Rance, R., Goodhead, I., et al. (2008). Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13081–13086. doi:10.1073/pnas.0801523105.PubMedPubMedCentralCrossRef Campbell, P. J., Pleasance, E. D., Stephens, P. J., Dicks, E., Rance, R., Goodhead, I., et al. (2008). Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13081–13086. doi:10.​1073/​pnas.​0801523105.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 514(7520), 54–58. doi:10.1038/nature13556.PubMedPubMedCentralCrossRef Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 514(7520), 54–58. doi:10.​1038/​nature13556.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Beckhove, P., Schutz, F., Diel, I. J., Solomayer, E. F., Bastert, G., Foerster, J., et al. (2003). Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 105(4), 444–453. doi:10.1002/ijc.11125.PubMedCrossRef Beckhove, P., Schutz, F., Diel, I. J., Solomayer, E. F., Bastert, G., Foerster, J., et al. (2003). Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 105(4), 444–453. doi:10.​1002/​ijc.​11125.PubMedCrossRef
53.
Zurück zum Zitat Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152(5), 1299–1311.PubMedPubMedCentral Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152(5), 1299–1311.PubMedPubMedCentral
54.
Zurück zum Zitat Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73(15), 4885–4897. doi:10.1158/0008-5472.CAN-12-4081.PubMedPubMedCentralCrossRef Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73(15), 4885–4897. doi:10.​1158/​0008-5472.​CAN-12-4081.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat McManus, M. J., & Welsch, C. W. (1980). DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. An in vivo model to study hormonal influences on growth of human breast tissues. Cancer, 45(8), 2160–2165.PubMedCrossRef McManus, M. J., & Welsch, C. W. (1980). DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. An in vivo model to study hormonal influences on growth of human breast tissues. Cancer, 45(8), 2160–2165.PubMedCrossRef
57.
Zurück zum Zitat Murthy, M. S., Scanlon, E. F., Jelachich, M. L., Klipstein, S., & Goldschmidt, R. A. (1995). Growth and metastasis of human breast cancers in athymic nude mice. Clinical & Experimental Metastasis, 13(1), 3–15.CrossRef Murthy, M. S., Scanlon, E. F., Jelachich, M. L., Klipstein, S., & Goldschmidt, R. A. (1995). Growth and metastasis of human breast cancers in athymic nude mice. Clinical & Experimental Metastasis, 13(1), 3–15.CrossRef
58.
Zurück zum Zitat Naundorf, H., Fichtner, I., Buttner, B., & Frege, J. (1992). Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. Journal of Cancer Research and Clinical Oncology, 119(1), 35–40.PubMedCrossRef Naundorf, H., Fichtner, I., Buttner, B., & Frege, J. (1992). Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. Journal of Cancer Research and Clinical Oncology, 119(1), 35–40.PubMedCrossRef
59.
Zurück zum Zitat Noel, A., Borcy, V., Bracke, M., Gilles, C., Bernard, J., Birembaut, P., et al. (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Research, 15(1), 1–7.PubMed Noel, A., Borcy, V., Bracke, M., Gilles, C., Bernard, J., Birembaut, P., et al. (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Research, 15(1), 1–7.PubMed
60.
Zurück zum Zitat Outzen, H. C., & Custer, R. P. (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. Journal of the National Cancer Institute, 55(6), 1461–1466.PubMed Outzen, H. C., & Custer, R. P. (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. Journal of the National Cancer Institute, 55(6), 1461–1466.PubMed
61.
Zurück zum Zitat Rae-Venter, B., & Reid, L. M. (1980). Growth of human breast carcinomas in nude mice and subsequent establishment in tissue culture. Cancer Research, 40(1), 95–100.PubMed Rae-Venter, B., & Reid, L. M. (1980). Growth of human breast carcinomas in nude mice and subsequent establishment in tissue culture. Cancer Research, 40(1), 95–100.PubMed
62.
Zurück zum Zitat Sakakibara, T., Xu, Y., Bumpers, H. L., Chen, F. A., Bankert, R. B., Arredondo, M. A., et al. (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. The Cancer Journal from Scientific American, 2(5), 291–300.PubMed Sakakibara, T., Xu, Y., Bumpers, H. L., Chen, F. A., Bankert, R. B., Arredondo, M. A., et al. (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. The Cancer Journal from Scientific American, 2(5), 291–300.PubMed
63.
Zurück zum Zitat Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C., & Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. Journal of the National Cancer Institute, 63(6), 1331–1337.PubMed Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C., & Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. Journal of the National Cancer Institute, 63(6), 1331–1337.PubMed
64.
Zurück zum Zitat Sheffield, L. G., & Welsch, C. W. (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. International Journal of Cancer, 41(5), 713–719.PubMedCrossRef Sheffield, L. G., & Welsch, C. W. (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. International Journal of Cancer, 41(5), 713–719.PubMedCrossRef
65.
Zurück zum Zitat Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Reviews. Immunology, 7(2), 118–130. doi:10.1038/nri2017.PubMedCrossRef Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Reviews. Immunology, 7(2), 118–130. doi:10.​1038/​nri2017.PubMedCrossRef
67.
Zurück zum Zitat Zhang, H., Cohen, A. L., Krishnakumar, S., Wapnir, I. L., Veeriah, S., Deng, G., et al. (2014). Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 16(2), R36. doi:10.1186/bcr3640.PubMedPubMedCentralCrossRef Zhang, H., Cohen, A. L., Krishnakumar, S., Wapnir, I. L., Veeriah, S., Deng, G., et al. (2014). Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 16(2), R36. doi:10.​1186/​bcr3640.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.1158/1078-0432.CCR-07-0078.PubMedCrossRef Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.​1158/​1078-0432.​CCR-07-0078.PubMedCrossRef
69.
Zurück zum Zitat Kabos, P., Finlay-Schultz, J., Li, C., Kline, E., Finlayson, C., Wisell, J., et al. (2012). Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 135(2), 415–432. doi:10.1007/s10549-012-2164-8.PubMedCrossRef Kabos, P., Finlay-Schultz, J., Li, C., Kline, E., Finlayson, C., Wisell, J., et al. (2012). Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 135(2), 415–432. doi:10.​1007/​s10549-012-2164-8.PubMedCrossRef
70.
Zurück zum Zitat Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988. doi:10.1073/pnas.0530291100.PubMedPubMedCentralCrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988. doi:10.​1073/​pnas.​0530291100.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520. doi:10.1038/nm.2454.PubMedPubMedCentralCrossRef DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520. doi:10.​1038/​nm.​2454.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., et al. (2013). Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol, Chapter 14(Unit14), 23. doi:10.1002/0471141755.ph1423s60.PubMed DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., et al. (2013). Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol, Chapter 14(Unit14), 23. doi:10.​1002/​0471141755.​ph1423s60.PubMed
73.
75.
Zurück zum Zitat Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMedPubMedCentralCrossRef Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Lewis, M. T. (2012). Xenograft models of the normal and malignant human breast. In X. Wang (Ed.), Translational animal models in drug discovery and development (pp. 122–138). Sharjah: Bentham Science Publishers. Lewis, M. T. (2012). Xenograft models of the normal and malignant human breast. In X. Wang (Ed.), Translational animal models in drug discovery and development (pp. 122–138). Sharjah: Bentham Science Publishers.
77.
Zurück zum Zitat Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Breast Cancer Research, 17, 17. doi:10.1186/s13058-015-0523-1.PubMedPubMedCentralCrossRef Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Breast Cancer Research, 17, 17. doi:10.​1186/​s13058-015-0523-1.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Lum, D. H., Matsen, C., Welm, A. L., & Welm, B. E. (2012). Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Curr Protoc Pharmacol, Chapter 14(Unit 14), 22. doi:10.1002/0471141755.ph1422s59.PubMed Lum, D. H., Matsen, C., Welm, A. L., & Welm, B. E. (2012). Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Curr Protoc Pharmacol, Chapter 14(Unit 14), 22. doi:10.​1002/​0471141755.​ph1422s59.PubMed
81.
Zurück zum Zitat Hollestelle, A., Nagel, J. H., Smid, M., Lam, S., Elstrodt, F., Wasielewski, M., et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0460-8. Hollestelle, A., Nagel, J. H., Smid, M., Lam, S., Elstrodt, F., Wasielewski, M., et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0460-8.
82.
83.
Zurück zum Zitat Bonnefoi, H., Potti, A., Delorenzi, M., Mauriac, L., Campone, M., Tubiana-Hulin, M., et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The Lancet Oncology, 8(12), 1071–1078. doi:10.1016/S1470-2045(07)70345-5.PubMedCrossRef Bonnefoi, H., Potti, A., Delorenzi, M., Mauriac, L., Campone, M., Tubiana-Hulin, M., et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The Lancet Oncology, 8(12), 1071–1078. doi:10.​1016/​S1470-2045(07)70345-5.PubMedCrossRef
84.
Zurück zum Zitat Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., et al. (2006). Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12(11), 1294–1300. doi:10.1038/nm1491.PubMedCrossRef Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., et al. (2006). Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12(11), 1294–1300. doi:10.​1038/​nm1491.PubMedCrossRef
86.
Zurück zum Zitat Liedtke, C., Wang, J., Tordai, A., Symmans, W. F., Hortobagyi, G. N., Kiesel, L., et al. (2009). Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0445-7.PubMed Liedtke, C., Wang, J., Tordai, A., Symmans, W. F., Hortobagyi, G. N., Kiesel, L., et al. (2009). Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0445-7.PubMed
87.
Zurück zum Zitat Wu, M., & Robinson, M. O. (2009). Human-in-mouse breast cancer model. Cell Cycle, 8(15), 2317–2318.PubMedCrossRef Wu, M., & Robinson, M. O. (2009). Human-in-mouse breast cancer model. Cell Cycle, 8(15), 2317–2318.PubMedCrossRef
88.
Zurück zum Zitat Rottenberg, S., Pajic, M., & Jonkers, J. (2010). Studying drug resistance using genetically engineered mouse models for breast cancer. [Research support, non-U.S. Gov’t]. Methods in Molecular Biology, 596, 33–45. doi:10.1007/978-1-60761-416-6_3.PubMedCrossRef Rottenberg, S., Pajic, M., & Jonkers, J. (2010). Studying drug resistance using genetically engineered mouse models for breast cancer. [Research support, non-U.S. Gov’t]. Methods in Molecular Biology, 596, 33–45. doi:10.​1007/​978-1-60761-416-6_​3.PubMedCrossRef
91.
Zurück zum Zitat Clarke, R. (1996). Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 39(1), 69–86.PubMedCrossRef Clarke, R. (1996). Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 39(1), 69–86.PubMedCrossRef
93.
Zurück zum Zitat Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W., & Bissell, M. J. (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0502-2.PubMedCentral Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W., & Bissell, M. J. (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0502-2.PubMedCentral
94.
Zurück zum Zitat Gillet, J. P., Calcagno, A. M., Varma, S., Marino, M., Green, L. J., Vora, M. I., et al. (2011). Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18708–18713. doi:10.1073/pnas.1111840108.PubMedPubMedCentralCrossRef Gillet, J. P., Calcagno, A. M., Varma, S., Marino, M., Green, L. J., Vora, M. I., et al. (2011). Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18708–18713. doi:10.​1073/​pnas.​1111840108.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.1054/bjoc.2001.1796.PubMedPubMedCentralCrossRef Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.​1054/​bjoc.​2001.​1796.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Hampton, O. A., Den Hollander, P., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C., et al. (2009). A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research, 19(2), 167–177. doi:10.1101/gr.080259.108.PubMedPubMedCentralCrossRef Hampton, O. A., Den Hollander, P., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C., et al. (2009). A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research, 19(2), 167–177. doi:10.​1101/​gr.​080259.​108.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat du Manoir, S., Orsetti, B., Bras-Goncalves, R., Nguyen, T. T., Lasorsa, L., Boissiere, F., et al. (2014). Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Molecular Oncology, 8(2), 431–443. doi:10.1016/j.molonc.2013.11.010.PubMedCrossRef du Manoir, S., Orsetti, B., Bras-Goncalves, R., Nguyen, T. T., Lasorsa, L., Boissiere, F., et al. (2014). Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Molecular Oncology, 8(2), 431–443. doi:10.​1016/​j.​molonc.​2013.​11.​010.PubMedCrossRef
101.
Zurück zum Zitat Petrillo, L. A., Wolf, D. M., Kapoun, A. M., Wang, N. J., Barczak, A., Xiao, Y., et al. (2012). Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Research and Treatment, 135(3), 913–922. doi:10.1007/s10549-012-2226-y.PubMedCrossRef Petrillo, L. A., Wolf, D. M., Kapoun, A. M., Wang, N. J., Barczak, A., Xiao, Y., et al. (2012). Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Research and Treatment, 135(3), 913–922. doi:10.​1007/​s10549-012-2226-y.PubMedCrossRef
102.
Zurück zum Zitat Giuliano, M., Herrera, S., Christiny, P., Shaw, C., Creighton, C. J., Mitchell, T., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Breast Cancer Research, 17(3). doi:10.1186/s13058-014-0508-5. Giuliano, M., Herrera, S., Christiny, P., Shaw, C., Creighton, C. J., Mitchell, T., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Breast Cancer Research, 17(3). doi:10.​1186/​s13058-014-0508-5.
103.
Zurück zum Zitat Powell, E., Shao, J., Yuan, Y., Chen, H. C., Cai, S., Echeverria, G. V., et al. (2016). p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 18(1), 13. doi:10.1186/s13058-016-0673-9.PubMedPubMedCentralCrossRef Powell, E., Shao, J., Yuan, Y., Chen, H. C., Cai, S., Echeverria, G. V., et al. (2016). p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 18(1), 13. doi:10.​1186/​s13058-016-0673-9.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Flanagan, S. P. (1966). ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genetical Research, 8(3), 295–309.PubMedCrossRef Flanagan, S. P. (1966). ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genetical Research, 8(3), 295–309.PubMedCrossRef
106.
Zurück zum Zitat Wortis, H. H., Nehlsen, S., & Owen, J. J. (1971). Abnormal development of the thymus in “nude” mice. The Journal of Experimental Medicine, 134(3 Pt 1), 681–692.PubMedPubMedCentralCrossRef Wortis, H. H., Nehlsen, S., & Owen, J. J. (1971). Abnormal development of the thymus in “nude” mice. The Journal of Experimental Medicine, 134(3 Pt 1), 681–692.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146. Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146.
108.
Zurück zum Zitat Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., & Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 372(6501), 103–107. doi:10.1038/372103a0.PubMedCrossRef Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., & Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 372(6501), 103–107. doi:10.​1038/​372103a0.PubMedCrossRef
109.
Zurück zum Zitat Osborne, C. K., Hobbs, K., & Clark, G. M. (1985). Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2), 584–590.PubMed Osborne, C. K., Hobbs, K., & Clark, G. M. (1985). Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2), 584–590.PubMed
110.
Zurück zum Zitat Seibert, K., Shafie, S. M., Triche, T. J., Whang-Peng, J. J., O’Brien, S. J., Toney, J. H., et al. (1983). Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Research, 43(5), 2223–2239.PubMed Seibert, K., Shafie, S. M., Triche, T. J., Whang-Peng, J. J., O’Brien, S. J., Toney, J. H., et al. (1983). Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Research, 43(5), 2223–2239.PubMed
111.
Zurück zum Zitat Popnikolov, N. K., Yang, J., Guzman, R. C., Swanson, S. M., Thordarson, G., Collins, G., et al. (1995). In vivo growth stimulation of collagen gel embedded normal human and mouse primary mammary epithelial cells. Journal of Cellular Physiology, 163(1), 51–60. doi:10.1002/jcp.1041630107.PubMedCrossRef Popnikolov, N. K., Yang, J., Guzman, R. C., Swanson, S. M., Thordarson, G., Collins, G., et al. (1995). In vivo growth stimulation of collagen gel embedded normal human and mouse primary mammary epithelial cells. Journal of Cellular Physiology, 163(1), 51–60. doi:10.​1002/​jcp.​1041630107.PubMedCrossRef
112.
Zurück zum Zitat Soule, H. D., & McGrath, C. M. (1980). Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters, 10(2), 177–189.PubMedCrossRef Soule, H. D., & McGrath, C. M. (1980). Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters, 10(2), 177–189.PubMedCrossRef
113.
Zurück zum Zitat McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2016). Correction: ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [published erratum]. PloS One, 11(3), e0151121. doi:10.1371/journal.pone.0151121.PubMedPubMedCentralCrossRef McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2016). Correction: ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [published erratum]. PloS One, 11(3), e0151121. doi:10.​1371/​journal.​pone.​0151121.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2015). Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 10(9), e0136851. doi:10.1371/journal.pone.0136851.PubMedPubMedCentralCrossRef McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2015). Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 10(9), e0136851. doi:10.​1371/​journal.​pone.​0136851.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., & Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68(5), 869–877.PubMedCrossRef Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., & Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68(5), 869–877.PubMedCrossRef
116.
Zurück zum Zitat Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., et al. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. [Research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Blood, 121(12), e90–e97. doi:10.1182/blood-2012-10-464677.PubMedPubMedCentralCrossRef Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., et al. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. [Research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Blood, 121(12), e90–e97. doi:10.​1182/​blood-2012-10-464677.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., & Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. The Journal of Experimental Medicine, 167(3), 1016–1033.PubMedCrossRef Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., & Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. The Journal of Experimental Medicine, 167(3), 1016–1033.PubMedCrossRef
118.
Zurück zum Zitat Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527–530.PubMedCrossRef Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527–530.PubMedCrossRef
119.
Zurück zum Zitat Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., et al. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 80(5), 813–823.PubMedCrossRef Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., et al. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 80(5), 813–823.PubMedCrossRef
120.
Zurück zum Zitat Nonoyama, S., Smith, F. O., Bernstein, I. D., & Ochs, H. D. (1993). Strain-dependent leakiness of mice with severe combined immune deficiency. Journal of Immunology, 150(9), 3817–3824. Nonoyama, S., Smith, F. O., Bernstein, I. D., & Ochs, H. D. (1993). Strain-dependent leakiness of mice with severe combined immune deficiency. Journal of Immunology, 150(9), 3817–3824.
121.
Zurück zum Zitat Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The American Journal of Pathology, 120(3), 464–477.PubMedPubMedCentral Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The American Journal of Pathology, 120(3), 464–477.PubMedPubMedCentral
122.
Zurück zum Zitat Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171(2), 186–199. doi:10.1006/cimm.1996.0193.PubMedCrossRef Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171(2), 186–199. doi:10.​1006/​cimm.​1996.​0193.PubMedCrossRef
123.
Zurück zum Zitat Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., et al. (1995). Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. The American Journal of Pathology, 146(4), 888–902.PubMedPubMedCentral Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., et al. (1995). Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. The American Journal of Pathology, 146(4), 888–902.PubMedPubMedCentral
124.
Zurück zum Zitat Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033.PubMedCrossRef Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033.PubMedCrossRef
125.
Zurück zum Zitat Dewan, M. Z., Terunuma, H., Ahmed, S., Ohba, K., Takada, M., Tanaka, Y., et al. (2005). Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomedicine & Pharmacotherapy, 59(Suppl 2), S375–S379.CrossRef Dewan, M. Z., Terunuma, H., Ahmed, S., Ohba, K., Takada, M., Tanaka, Y., et al. (2005). Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomedicine & Pharmacotherapy, 59(Suppl 2), S375–S379.CrossRef
126.
Zurück zum Zitat Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278(5703), 451–453.PubMedCrossRef Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278(5703), 451–453.PubMedCrossRef
127.
Zurück zum Zitat Xia, Z., Taylor, P. R., Locklin, R. M., Gordon, S., Cui, Z., & Triffitt, J. T. (2006). Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 98(4), 966–980.PubMedCrossRef Xia, Z., Taylor, P. R., Locklin, R. M., Gordon, S., Cui, Z., & Triffitt, J. T. (2006). Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 98(4), 966–980.PubMedCrossRef
128.
Zurück zum Zitat Gouon-Evans, V., Lin, E. Y., & Pollard, J. W. (2002). Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Research, 4(4), 155–164.PubMedPubMedCentralCrossRef Gouon-Evans, V., Lin, E. Y., & Pollard, J. W. (2002). Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Research, 4(4), 155–164.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed
131.
Zurück zum Zitat Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., et al. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Research, 72(11), 2705–2713. doi:10.1158/0008-5472.CAN-11-3287.PubMedCrossRef Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., et al. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Research, 72(11), 2705–2713. doi:10.​1158/​0008-5472.​CAN-11-3287.PubMedCrossRef
132.
Zurück zum Zitat Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154(1), 180–191. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154(1), 180–191.
133.
Zurück zum Zitat Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., & Coulombel, L. (1996). Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88(10), 3731–3740.PubMed Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., & Coulombel, L. (1996). Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88(10), 3731–3740.PubMed
134.
Zurück zum Zitat Cashman, J. D., Lapidot, T., Wang, J. C., Doedens, M., Shultz, L. D., Lansdorp, P., et al. (1997). Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 89(12), 4307–4316.PubMed Cashman, J. D., Lapidot, T., Wang, J. C., Doedens, M., Shultz, L. D., Lansdorp, P., et al. (1997). Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 89(12), 4307–4316.PubMed
135.
Zurück zum Zitat Sikora, M. J., Cooper, K. L., Bahreini, A., Luthra, S., Wang, G., Chandran, U. R., et al. (2014). Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Research, 74(5), 1463–1474. doi:10.1158/0008-5472.CAN-13-2779.PubMedPubMedCentralCrossRef Sikora, M. J., Cooper, K. L., Bahreini, A., Luthra, S., Wang, G., Chandran, U. R., et al. (2014). Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Research, 74(5), 1463–1474. doi:10.​1158/​0008-5472.​CAN-13-2779.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Eyre, R., Alferez, D. G., & Clarke, R. B. (2016). Journal of Mammary Gland Biology and Neoplasia, (in press). Eyre, R., Alferez, D. G., & Clarke, R. B. (2016). Journal of Mammary Gland Biology and Neoplasia, (in press).
137.
Zurück zum Zitat Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174(10), 6477–6489.CrossRef Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174(10), 6477–6489.CrossRef
138.
Zurück zum Zitat Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182. doi:10.1182/blood-2001-12-0207.PubMedCrossRef Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182. doi:10.​1182/​blood-2001-12-0207.PubMedCrossRef
139.
Zurück zum Zitat Oakes, S. R., Vaillant, F., Lim, E., Lee, L., Breslin, K., Feleppa, F., et al. (2012). Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. [Research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2766–2771. doi:10.1073/pnas.1104778108.PubMedCrossRef Oakes, S. R., Vaillant, F., Lim, E., Lee, L., Breslin, K., Feleppa, F., et al. (2012). Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. [Research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2766–2771. doi:10.​1073/​pnas.​1104778108.PubMedCrossRef
140.
Zurück zum Zitat Nolan, E., Vaillant, F., Branstetter, D., Pal, B., Giner, G., Whitehead, L., et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nature Medicine, 22(8), 933–939. doi:10.1038/nm.4118.PubMedCrossRef Nolan, E., Vaillant, F., Branstetter, D., Pal, B., Giner, G., Whitehead, L., et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nature Medicine, 22(8), 933–939. doi:10.​1038/​nm.​4118.PubMedCrossRef
141.
Zurück zum Zitat Richard, E., Grellety, T., Velasco, V., MacGrogan, G., Bonnefoi, H., & Iggo, R. (2016). The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. The Journal of Pathology. doi:10.1002/path.4772.PubMed Richard, E., Grellety, T., Velasco, V., MacGrogan, G., Bonnefoi, H., & Iggo, R. (2016). The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. The Journal of Pathology. doi:10.​1002/​path.​4772.PubMed
142.
Zurück zum Zitat McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M., & Dick, J. E. (2010). Comparison of human cord blood engraftment between immunocompromised mouse strains. [Comparative study research support, non-U.S. Gov’t]. Blood, 116(2), 193–200. doi:10.1182/blood-2010-02-271841.PubMedCrossRef McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M., & Dick, J. E. (2010). Comparison of human cord blood engraftment between immunocompromised mouse strains. [Comparative study research support, non-U.S. Gov’t]. Blood, 116(2), 193–200. doi:10.​1182/​blood-2010-02-271841.PubMedCrossRef
143.
Zurück zum Zitat Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., et al. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neoplasia, 17(9), 735–741. doi:10.1016/j.neo.2015.09.004.PubMedPubMedCentralCrossRef Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., et al. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neoplasia, 17(9), 735–741. doi:10.​1016/​j.​neo.​2015.​09.​004.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. [Research support, non-U.S. Gov’t]. The Prostate, 75(6), 585–592. doi:10.1002/pros.22939.PubMedCrossRef Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. [Research support, non-U.S. Gov’t]. The Prostate, 75(6), 585–592. doi:10.​1002/​pros.​22939.PubMedCrossRef
145.
Zurück zum Zitat Moon, H. G., Oh, K., Lee, J., Lee, M., Kim, J. Y., Yoo, T. K., et al. (2015). Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 154(1), 13–22. doi:10.1007/s10549-015-3585-y.PubMedCrossRef Moon, H. G., Oh, K., Lee, J., Lee, M., Kim, J. Y., Yoo, T. K., et al. (2015). Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 154(1), 13–22. doi:10.​1007/​s10549-015-3585-y.PubMedCrossRef
146.
Zurück zum Zitat Gullino, P. M. (1977). Considerations on the preneoplastic lesions of the mammary gland. The American Journal of Pathology, 89(2), 413–430.PubMedPubMedCentral Gullino, P. M. (1977). Considerations on the preneoplastic lesions of the mammary gland. The American Journal of Pathology, 89(2), 413–430.PubMedPubMedCentral
147.
Zurück zum Zitat Brem, S. S., Jensen, H. M., & Gullino, P. M. (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer, 41, 239–244.PubMedCrossRef Brem, S. S., Jensen, H. M., & Gullino, P. M. (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer, 41, 239–244.PubMedCrossRef
148.
Zurück zum Zitat Bogden, A. E., Haskell, P. M., LePage, D. J., Kelton, D. E., Cobb, W. R., & Esber, H. J. (1979). Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Experimental Cell Biology, 47(4), 281–293.PubMed Bogden, A. E., Haskell, P. M., LePage, D. J., Kelton, D. E., Cobb, W. R., & Esber, H. J. (1979). Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Experimental Cell Biology, 47(4), 281–293.PubMed
149.
Zurück zum Zitat Bogden, A. E., Kelton, D. E., Cobb, W. B., & Esber, H. J.. 1978. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Houchens, & Ovejera (Eds.), Symposium on the use of athymic (nude) mice in cancer research, (pp. 231). New York. Bogden, A. E., Kelton, D. E., Cobb, W. B., & Esber, H. J.. 1978. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Houchens, & Ovejera (Eds.), Symposium on the use of athymic (nude) mice in cancer research, (pp. 231). New York.
150.
Zurück zum Zitat Aamdal, S., Fodstad, O., Nesland, J. M., & Pihl, A. (1985). Characteristics of human tumour xenografts transplanted under the renal capsule of immunocompetent mice. British Journal of Cancer, 51(3), 347–356.PubMedPubMedCentralCrossRef Aamdal, S., Fodstad, O., Nesland, J. M., & Pihl, A. (1985). Characteristics of human tumour xenografts transplanted under the renal capsule of immunocompetent mice. British Journal of Cancer, 51(3), 347–356.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Eirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J. T., et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 14(12), 1384–1389. doi:10.1038/nm.1791.PubMedCrossRef Eirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J. T., et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 14(12), 1384–1389. doi:10.​1038/​nm.​1791.PubMedCrossRef
152.
Zurück zum Zitat DeOme, K. B., Faulkin, L. J. J., & Bern, H. (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520. DeOme, K. B., Faulkin, L. J. J., & Bern, H. (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.
153.
Zurück zum Zitat Behbod, F., Kittrell, F. S., LaMarca, H., Edwards, D., Kerbawy, S., Heestand, J. C., et al. (2009). An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 11(5), R66. doi:10.1186/bcr2358.PubMedPubMedCentralCrossRef Behbod, F., Kittrell, F. S., LaMarca, H., Edwards, D., Kerbawy, S., Heestand, J. C., et al. (2009). An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 11(5), R66. doi:10.​1186/​bcr2358.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., et al. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. [Research support, non-U.S. Gov’t]. Cancer Cell, 29(3), 407–422. doi:10.1016/j.ccell.2016.02.002.PubMedCrossRef Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., et al. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. [Research support, non-U.S. Gov’t]. Cancer Cell, 29(3), 407–422. doi:10.​1016/​j.​ccell.​2016.​02.​002.PubMedCrossRef
155.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
156.
Zurück zum Zitat Palmieri, D., Smith, Q. R., Lockman, P. R., Bronder, J., Gril, B., Chambers, A. F., et al. (2006). Brain metastases of breast cancer. Breast Disease, 26, 139–147.PubMedCrossRef Palmieri, D., Smith, Q. R., Lockman, P. R., Bronder, J., Gril, B., Chambers, A. F., et al. (2006). Brain metastases of breast cancer. Breast Disease, 26, 139–147.PubMedCrossRef
159.
Zurück zum Zitat Murphy, P., Alexander, P., Senior, P. V., Fleming, J., Kirkham, N., & Taylor, I. (1988). Mechanisms of organ selective tumour growth by bloodborne cancer cells. British Journal of Cancer, 57(1), 19–31.PubMedPubMedCentralCrossRef Murphy, P., Alexander, P., Senior, P. V., Fleming, J., Kirkham, N., & Taylor, I. (1988). Mechanisms of organ selective tumour growth by bloodborne cancer cells. British Journal of Cancer, 57(1), 19–31.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed
161.
Zurück zum Zitat Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.CrossRef Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.CrossRef
162.
Zurück zum Zitat Faulkin Jr., L. J., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.PubMed Faulkin Jr., L. J., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.PubMed
163.
Zurück zum Zitat Deome, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.PubMed Deome, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.PubMed
164.
Zurück zum Zitat Bailey, M. J., Gazet, J. C., & Peckham, M. J. (1980). Human breast-cancer xenografts in immune-suppressed mice. British Journal of Cancer, 42(4), 524–529.PubMedPubMedCentralCrossRef Bailey, M. J., Gazet, J. C., & Peckham, M. J. (1980). Human breast-cancer xenografts in immune-suppressed mice. British Journal of Cancer, 42(4), 524–529.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Levin-Allerhand, J. A., Sokol, K., & Smith, J. D. (2003). Safe and effective method for chronic 17beta-estradiol administration to mice. [Comparative StudyResearch support, non-U.S. Gov’t]. (2016). Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 42(6), 33–35. Levin-Allerhand, J. A., Sokol, K., & Smith, J. D. (2003). Safe and effective method for chronic 17beta-estradiol administration to mice. [Comparative StudyResearch support, non-U.S. Gov’t]. (2016). Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 42(6), 33–35.
166.
Zurück zum Zitat Welsch, C. W., Swim, E. L., McManus, M. J., White, A. C., & McGrath, C. M. (1981). Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. [Research support, non-U.S. Gov’tResearch support, U.S. Gov’t, P.H.S.]. Cancer Letters, 14(3), 309–316.PubMedCrossRef Welsch, C. W., Swim, E. L., McManus, M. J., White, A. C., & McGrath, C. M. (1981). Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. [Research support, non-U.S. Gov’tResearch support, U.S. Gov’t, P.H.S.]. Cancer Letters, 14(3), 309–316.PubMedCrossRef
167.
Zurück zum Zitat Cottu, P., Marangoni, E., Assayag, F., de Cremoux, P., Vincent-Salomon, A., Guyader, C., et al. (2012). Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 133(2), 595–606. doi:10.1007/s10549-011-1815-5.PubMedCrossRef Cottu, P., Marangoni, E., Assayag, F., de Cremoux, P., Vincent-Salomon, A., Guyader, C., et al. (2012). Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 133(2), 595–606. doi:10.​1007/​s10549-011-1815-5.PubMedCrossRef
168.
Zurück zum Zitat Hatem, R., El Botty, R., Chateau-Joubert, S., Servely, J. L., Labiod, D., de Plater, L., et al. (2016). Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. doi:10.18632/oncotarget.10195.PubMed Hatem, R., El Botty, R., Chateau-Joubert, S., Servely, J. L., Labiod, D., de Plater, L., et al. (2016). Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. doi:10.​18632/​oncotarget.​10195.PubMed
170.
Zurück zum Zitat Gupta, P. B., Proia, D., Cingoz, O., Weremowicz, J., Naber, S. P., Weinberg, R. A., et al. (2007). Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Research, 67(5), 2062–2071. doi:10.1158/0008-5472.CAN-06-3895.PubMedCrossRef Gupta, P. B., Proia, D., Cingoz, O., Weremowicz, J., Naber, S. P., Weinberg, R. A., et al. (2007). Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Research, 67(5), 2062–2071. doi:10.​1158/​0008-5472.​CAN-06-3895.PubMedCrossRef
171.
Zurück zum Zitat Pequeux, C., Raymond-Letron, I., Blacher, S., Boudou, F., Adlanmerini, M., Fouque, M. J., et al. (2012). Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. [Research support, non-U.S. Gov’t]. Cancer Research, 72(12), 3010–3019. doi:10.1158/0008-5472.CAN-11-3768.PubMedCrossRef Pequeux, C., Raymond-Letron, I., Blacher, S., Boudou, F., Adlanmerini, M., Fouque, M. J., et al. (2012). Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. [Research support, non-U.S. Gov’t]. Cancer Research, 72(12), 3010–3019. doi:10.​1158/​0008-5472.​CAN-11-3768.PubMedCrossRef
172.
Zurück zum Zitat Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. [Research support, non-U.S. Gov’t]. Cell, 140(1), 62–73. doi:10.1016/j.cell.2009.12.007.PubMedCrossRef Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. [Research support, non-U.S. Gov’t]. Cell, 140(1), 62–73. doi:10.​1016/​j.​cell.​2009.​12.​007.PubMedCrossRef
173.
Zurück zum Zitat Charafe-Jauffret, E., Ginestier, C., Bertucci, F., Cabaud, O., Wicinski, J., Finetti, P., et al. (2013). ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. [Research support, non-U.S. Gov’t]. Cancer Research, 73(24), 7290–7300. doi:10.1158/0008-5472.CAN-12-4704.PubMedCrossRef Charafe-Jauffret, E., Ginestier, C., Bertucci, F., Cabaud, O., Wicinski, J., Finetti, P., et al. (2013). ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. [Research support, non-U.S. Gov’t]. Cancer Research, 73(24), 7290–7300. doi:10.​1158/​0008-5472.​CAN-12-4704.PubMedCrossRef
174.
Zurück zum Zitat Rong, S., Oskarsson, M., Faletto, D., Tsarfaty, I., Resau, J. H., Nakamura, T., et al. (1993). Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth & Differentiation, 4(7), 563–569. Rong, S., Oskarsson, M., Faletto, D., Tsarfaty, I., Resau, J. H., Nakamura, T., et al. (1993). Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth & Differentiation, 4(7), 563–569.
175.
Zurück zum Zitat Utama, F. E., LeBaron, M. J., Neilson, L. M., Sultan, A. S., Parlow, A. F., Wagner, K. U., et al. (2006). Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. The Journal of Endocrinology, 188(3), 589–601. doi:10.1677/joe.1.06560.PubMedCrossRef Utama, F. E., LeBaron, M. J., Neilson, L. M., Sultan, A. S., Parlow, A. F., Wagner, K. U., et al. (2006). Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. The Journal of Endocrinology, 188(3), 589–601. doi:10.​1677/​joe.​1.​06560.PubMedCrossRef
176.
Zurück zum Zitat Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., et al. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Molecular and Cellular Biology, 12(11), 5152–5158.PubMedPubMedCentralCrossRef Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., et al. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Molecular and Cellular Biology, 12(11), 5152–5158.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., et al. (2013). Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151–165. doi:10.1586/erm.13.4.PubMedPubMedCentralCrossRef Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., et al. (2013). Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151–165. doi:10.​1586/​erm.​13.​4.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.PubMedCrossRef Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.PubMedCrossRef
179.
Zurück zum Zitat Holland, P. A., Knox, W. F., Potten, C. S., Howell, A., Anderson, E., Baildam, A. D., et al. (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 89(14), 1059–1065.PubMedCrossRef Holland, P. A., Knox, W. F., Potten, C. S., Howell, A., Anderson, E., Baildam, A. D., et al. (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 89(14), 1059–1065.PubMedCrossRef
180.
Zurück zum Zitat Warnberg, F., White, D., Anderson, E., Knox, F., Clarke, R. B., Morris, J., et al. (2006). Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 8(2), R21. doi:10.1186/bcr1395.PubMedPubMedCentralCrossRef Warnberg, F., White, D., Anderson, E., Knox, F., Clarke, R. B., Morris, J., et al. (2006). Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 8(2), R21. doi:10.​1186/​bcr1395.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., et al. (1993). Xenograft model of progressive human proliferative breast disease. Journal of the National Cancer Institute, 85(21), 1725–1732.PubMedCrossRef Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., et al. (1993). Xenograft model of progressive human proliferative breast disease. Journal of the National Cancer Institute, 85(21), 1725–1732.PubMedCrossRef
182.
Zurück zum Zitat Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral
185.
Zurück zum Zitat Gupta, P. B., & Kuperwasser, C. (2004). Disease models of breast cancer. [Review]. Drug Discovery Today: Disease Models, 1(1), 9–16. Gupta, P. B., & Kuperwasser, C. (2004). Disease models of breast cancer. [Review]. Drug Discovery Today: Disease Models, 1(1), 9–16.
187.
Zurück zum Zitat Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini 3rd, F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? [Research support, N.I.H., extramural research support, non-U.S. Gov’tReview]. Stem Cells, 29(1), 11–19. doi:10.1002/stem.559.PubMedCrossRef Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini 3rd, F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? [Research support, N.I.H., extramural research support, non-U.S. Gov’tReview]. Stem Cells, 29(1), 11–19. doi:10.​1002/​stem.​559.PubMedCrossRef
188.
Zurück zum Zitat Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., et al. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 5(8), e12180. doi:10.1371/journal.pone.0012180.PubMedPubMedCentralCrossRef Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., et al. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 5(8), e12180. doi:10.​1371/​journal.​pone.​0012180.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. doi:10.1038/nature06188.PubMedCrossRef Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. doi:10.​1038/​nature06188.PubMedCrossRef
190.
Zurück zum Zitat Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 71(2), 614–624. doi:10.1158/0008-5472.CAN-10-0538.PubMedPubMedCentralCrossRef Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 71(2), 614–624. doi:10.​1158/​0008-5472.​CAN-10-0538.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Advances in Immunology, 90, 1–50. doi:10.1016/S0065-2776(06)90001-7.PubMedCrossRef Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Advances in Immunology, 90, 1–50. doi:10.​1016/​S0065-2776(06)90001-7.PubMedCrossRef
192.
Zurück zum Zitat Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cell, 124(2), 263–266. doi:10.1016/j.cell.2006.01.007.PubMedCrossRef Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cell, 124(2), 263–266. doi:10.​1016/​j.​cell.​2006.​01.​007.PubMedCrossRef
193.
Zurück zum Zitat DeNardo, D. G., Andreu, P., & Coussens, L. M. (2010). Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Cancer Metastasis Reviews, 29(2), 309–316. doi:10.1007/s10555-010-9223-6.PubMedPubMedCentralCrossRef DeNardo, D. G., Andreu, P., & Coussens, L. M. (2010). Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Cancer Metastasis Reviews, 29(2), 309–316. doi:10.​1007/​s10555-010-9223-6.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. [Research support, N.I.H., extramural]. Cancer Research, 67(6), 2649–2656. doi:10.1158/0008-5472.CAN-06-1823.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. [Research support, N.I.H., extramural]. Cancer Research, 67(6), 2649–2656. doi:10.​1158/​0008-5472.​CAN-06-1823.PubMedCrossRef
196.
Zurück zum Zitat Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. [Research support, non-U.S. Gov’t review]. Human Immunology, 70(5), 325–330, doi: 10.1016/j.humimm.2009.02.008. Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. [Research support, non-U.S. Gov’t review]. Human Immunology, 70(5), 325–330, doi: 10.​1016/​j.​humimm.​2009.​02.​008.
197.
Zurück zum Zitat Knutson, K. L., Disis, M. L., & Salazar, L. G. (2007). CD4 regulatory T cells in human cancer pathogenesis. [Research support, N.I.H., extramural review]. Cancer Immunology, Immunotherapy, 56(3), 271–285. doi:10.1007/s00262-006-0194-y.PubMedCrossRef Knutson, K. L., Disis, M. L., & Salazar, L. G. (2007). CD4 regulatory T cells in human cancer pathogenesis. [Research support, N.I.H., extramural review]. Cancer Immunology, Immunotherapy, 56(3), 271–285. doi:10.​1007/​s00262-006-0194-y.PubMedCrossRef
200.
Zurück zum Zitat Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. [Comment research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Cell, 18(5), 485–498. doi:10.1016/j.ccr.2010.10.002.PubMedPubMedCentralCrossRef Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. [Comment research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Cell, 18(5), 485–498. doi:10.​1016/​j.​ccr.​2010.​10.​002.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Mosier, D. E., Gulizia, R. J., Baird, S. M., & Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 335(6187), 256–259. doi:10.1038/335256a0.PubMedCrossRef Mosier, D. E., Gulizia, R. J., Baird, S. M., & Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 335(6187), 256–259. doi:10.​1038/​335256a0.PubMedCrossRef
202.
Zurück zum Zitat Wege, A. K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mannel, D. N., et al. (2011). Humanized tumor mice--a new model to study and manipulate the immune response in advanced cancer therapy. [Research support, non-U.S. Gov’t]. International Journal of Cancer, 129(9), 2194–2206. doi:10.1002/ijc.26159.PubMedCrossRef Wege, A. K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mannel, D. N., et al. (2011). Humanized tumor mice--a new model to study and manipulate the immune response in advanced cancer therapy. [Research support, non-U.S. Gov’t]. International Journal of Cancer, 129(9), 2194–2206. doi:10.​1002/​ijc.​26159.PubMedCrossRef
203.
Zurück zum Zitat Sanmamed, M. F., Chester, C., Melero, I., & Kohrt, H. (2016). Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. [Review]. Annals of Oncology, 27(7), 1190–1198. doi:10.1093/annonc/mdw041.PubMedCrossRef Sanmamed, M. F., Chester, C., Melero, I., & Kohrt, H. (2016). Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. [Review]. Annals of Oncology, 27(7), 1190–1198. doi:10.​1093/​annonc/​mdw041.PubMedCrossRef
204.
Zurück zum Zitat Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the twenty-first century: convergence of cancer research and tissue engineering. [Review]. Stem Cells, 33(6), 1696–1704. doi:10.1002/stem.1978.PubMedCrossRef Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the twenty-first century: convergence of cancer research and tissue engineering. [Review]. Stem Cells, 33(6), 1696–1704. doi:10.​1002/​stem.​1978.PubMedCrossRef
205.
Zurück zum Zitat Zhou, Q., Facciponte, J., Jin, M., Shen, Q., & Lin, Q. (2014). Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. [Review]. Cancer Letters, 344(1), 13–19. doi:10.1016/j.canlet.2013.10.015.PubMedCrossRef Zhou, Q., Facciponte, J., Jin, M., Shen, Q., & Lin, Q. (2014). Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. [Review]. Cancer Letters, 344(1), 13–19. doi:10.​1016/​j.​canlet.​2013.​10.​015.PubMedCrossRef
206.
Zurück zum Zitat Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Journal of Infectious Diseases, 208(Suppl 2), S125–S130. doi:10.1093/infdis/jit319.PubMedPubMedCentralCrossRef Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Journal of Infectious Diseases, 208(Suppl 2), S125–S130. doi:10.​1093/​infdis/​jit319.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Vargo-Gogola, T. (2010). Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt. [Editorial introductory]. Current Drug Targets, 11(9), 1041–1042.PubMedCrossRef Vargo-Gogola, T. (2010). Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt. [Editorial introductory]. Current Drug Targets, 11(9), 1041–1042.PubMedCrossRef
209.
Zurück zum Zitat DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Discovery, 1(1), 54–67. doi:10.1158/2159-8274.CD-10-0028.PubMedPubMedCentralCrossRef DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Discovery, 1(1), 54–67. doi:10.​1158/​2159-8274.​CD-10-0028.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Bedognetti, D., Maccalli, C., Bader, S. B., Marincola, F. M., & Seliger, B. (2016). Checkpoint inhibitors and their application in breast cancer. [Review]. Breast Care (Basel), 11(2), 108–115. doi:10.1159/000445335.CrossRef Bedognetti, D., Maccalli, C., Bader, S. B., Marincola, F. M., & Seliger, B. (2016). Checkpoint inhibitors and their application in breast cancer. [Review]. Breast Care (Basel), 11(2), 108–115. doi:10.​1159/​000445335.CrossRef
212.
Zurück zum Zitat Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S. V., Teichmann, L. L., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature Biotechnology, 32(4), 364–372. doi:10.1038/nbt.2858.PubMedPubMedCentralCrossRef Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S. V., Teichmann, L. L., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature Biotechnology, 32(4), 364–372. doi:10.​1038/​nbt.​2858.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. [Research support, non-U.S. Gov’t]. Cancer Discovery, 1(6), 508–523. doi:10.1158/2159-8290.CD-11-0109.PubMedCrossRef Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. [Research support, non-U.S. Gov’t]. Cancer Discovery, 1(6), 508–523. doi:10.​1158/​2159-8290.​CD-11-0109.PubMedCrossRef
214.
Zurück zum Zitat Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., et al. (2015). High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325, doi:10.1038/nm.3954. Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., et al. (2015). High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325, doi:10.​1038/​nm.​3954.
Metadaten
Titel
Patient-derived xenograft (PDX) models in basic and translational breast cancer research
verfasst von
Lacey E. Dobrolecki
Susie D. Airhart
Denis G. Alferez
Samuel Aparicio
Fariba Behbod
Mohamed Bentires-Alj
Cathrin Brisken
Carol J. Bult
Shirong Cai
Robert B. Clarke
Heidi Dowst
Matthew J. Ellis
Eva Gonzalez-Suarez
Richard D. Iggo
Peter Kabos
Shunqiang Li
Geoffrey J. Lindeman
Elisabetta Marangoni
Aaron McCoy
Funda Meric-Bernstam
Helen Piwnica-Worms
Marie-France Poupon
Jorge Reis-Filho
Carol A. Sartorius
Valentina Scabia
George Sflomos
Yizheng Tu
François Vaillant
Jane E. Visvader
Alana Welm
Max S. Wicha
Michael T. Lewis
Publikationsdatum
27.12.2016
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2016
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9653-x

Weitere Artikel der Ausgabe 4/2016

Cancer and Metastasis Reviews 4/2016 Zur Ausgabe

Announcement

Biography—Li Ma

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.