Skip to main content
main-content
Erschienen in: Surgical Endoscopy 3/2018

Open Access 24.08.2017

Patient-specific mental rehearsal with interactive visual aids: a path worth exploring?

verfasst von: Marina Yiasemidou, Raffaele Galli, Daniel Glassman, Matthew Tang, Rahoz Aziz, David Jayne, Danilo Miskovic

Erschienen in: Surgical Endoscopy | Ausgabe 3/2018

Abstract

Background

Surgeons of today are faced with unprecedented challenges; necessitating a novel approach to pre-operative preparation which takes into account the specific tests each case poses. In this study, we examine patient-specific mental rehearsal for pre-surgical practice and assess whether this method has an additional effect when compared to generic mental rehearsal.

Methods

Sixteen medical students were trained how to perform a simulated laparoscopic cholecystectomy (SLC). After baseline assessments, they were randomised to two equal groups and asked to complete three SLCs involving different anatomical variants. Prior to each procedure, Group A practiced mental rehearsal with the use of a pre-prepared checklist and Group B mental rehearsal with the checklist combined with virtual models matching the anatomical variations of the SLCs. The performance of the two groups was compared using simulator provided metrics and competency assessment tool (CAT) scoring by two blinded assessors.

Results

The participants performed equally well when presented with a “straight-forward” anatomy [Group A vs. Group B—time sec: 445.5 vs. 496 p = 0.64—NOM: 437 vs. 413 p = 0.88—PL cm: 1317 vs. 1059 p = 0.32—per: 0.5 vs. 0 p = 0.22—NCB: 0 vs. 0 p = 0.71—DVS: 0 vs. 0 p = 0.2]; however, Group B performed significantly better [Group A vs. B Total CAT score—Short Cystic Duct (SCD): 20.5 vs. 26.31 p = 0.02 η 2 = 0.32—Double cystic Artery (DA): 24.75 vs. 30.5 p = 0.03 η 2 = 0.28] and committed less errors (Damage to Vital Structures—DVS, SCD: 4 vs. 0 p = 0.03 η 2=0.34, DA: 0 vs. 1 p = 0.02 η 2 = 0.22). in the cases with more challenging anatomies.

Conclusion

These results suggest that patient-specific preparation with the combination of anatomical models and mental rehearsal may increase operative quality of complex procedures.
Driven by patient safety issues most western countries imposed working hours’ restrictions [1, 2] in order to reduce medical errors made by fatigued doctors working long hours [3]. Since their introduction, avoidable medical errors and adverse events have decreased [4, 5] and surgical residences’ quality of life improved [6, 7]. However, alongside working hours, training time and opportunities were condensed [3]. As a result, conventional training patterns, purely based on exposure to a rich and diverse clinical case mix has become unrealistic.
Combined with increasing technological advancements dominating contemporary surgery [8], training requirements have radically changed in the past decades [9]. Although “in-vitro” methods such as simulation were shown to successfully increase technical skills [8] methods that can increase the efficiency of available training time in a clinical environment have not been adequately explored. Techniques such as mental practice [10] or patient-specific surgical rehearsals, have been trialled for increasing efficiency and quality of surgery [1115] but to this date have not gained widespread recognition.
Cognitive reproduction of a motor task without explicit physical movement, otherwise known as mental rehearsal or imagery [1618], has been successfully used in various fields [1921], including surgery [2227], for the acquisition of motor skills. The similarity of neurocognitive pathways activated during mental and real practice of a motor task is increasingly being recognised by electroencephalography studies [2830]. The content of mental rehearsal sessions in surgery is variable. Most commonly, it takes the form of relaxation techniques followed by a step-by-step breakdown of the procedure, or a descriptive text, inclusive of visual and kinaesthetic cues [23, 24, 27, 31, 32] derived from semi-structured interviews with expert surgeons [23, 31]. This process is performed once [24, 27, 32] or repeated several times [25, 33, 34] in order to prepare for the actual surgical procedure.
Mental rehearsal does not usually involve operation-specific characteristics, which are important, as they often determine the technical difficulty of an operation. Some operation specifics (e.g. anatomical variations) can be derived from medical imagery pre-operatively and incorporated into the surgeon’s preparation, facilitating a more precise representation of intraoperative difficulties. Introduction of patient-specific elements into mental rehearsal can be readily achieved with the use of patient-specific anatomical models.
Surgical planning using patient-specific anatomical models has been sporadically applied in the past [11, 13, 15, 3561] and although it is more popular in some specialties [11, 12, 35, 36, 3941, 43, 46, 5052, 6265], it has not penetrated into routine practice. Some of the reasons for this are the cost of associated hardware and the time required in the simulation suite [11, 12, 15]. The fusion of mental rehearsal and anatomical models does not require the use of a simulator and can be practiced repeatedly in the surgeon’s own time using a personal computer.
The authors have previously assessed the feasibility of combining mental rehearsal and patient-specific interactive anatomical models [66], but have not explored this modality within technically demanding cases. The current study aims to evaluate whether the addition of interactive case/patient-specific element to mental rehearsal can provide an additional benefit to mental rehearsal alone.

Methods

Surgical procedure

For the purposes of this exploratory study, simulated laparoscopic cholecystectomy (LC) was the procedure of choice for the following reasons: (i) virtual reality LC simulators are readily available (LapMentor®, Simbionix, Israel) [67], (ii) simulated operations with anatomical variations are provided [68], (iii) LC is a commonly performed operation involving complex laparoscopic skills [69], and (iv) the anatomy of the cystic duct and artery vary significantly, demanding varying degrees of technical competency [70].

Participants

Sixteen medical students, (years two–five and intercalating), who have never seen a laparoscopic cholecystectomy or used the virtual reality simulator before, volunteered for the study after receiving email invitation using the mailing list of the university of Leeds. Sample size calculation was based on the primary outcome for the study, the Competency Assessment Tool—CAT, a validated scoring system for assessing surgical performance, specifically designed for laparoscopic cholecystectomy [71]. A reduction in CAT score from 3 to 2 was assumed to be clinically meaningful, requiring 8 patients to be recruited to either Group A using a mental rehearsal checklist to prepare prior to simulated surgery or Group B using the same checklist and an interactive 3D anatomical model; to determine a significant difference at 80% power (α=0.05, β=0.2, Standard Deviation of 0.7).
Subjects underwent small group teaching sessions on the clinical indications, anatomy, surgical technique, and complications after a laparoscopic cholecystectomy (LC). They were shown how to use the virtual reality simulator (VRS) and taught a series of defined tasks on the simulator as well as a complete laparoscopic cholecystectomy. Subsequently, they performed 10 repetitions of the “normal anatomy” laparoscopic cholecystectomy, each at least 45 min apart from the other.
Upon conclusion of the training phase, participants completed a questionnaire assessing their ability for mental imagery (MIQ-RS) [72] and performed a simulated laparoscopic cholecystectomy, which was scored using CAT. The MIQ-RS consists of 14 tasks; trainees are initially asked to physically perform an action (e.g. raising a knee as high as possible and then lowering the knee so they are standing again on two feet) and after they are asked to visualise or to feel themselves performing the same task without overt physical movement. Subsequently, they were asked to score how easy it was to visualise or feel the task. A Likert scale (1–7, 1: Very hard to see/feel, 7: Very easy to see/feel) was used for that purpose [72]. According to the results of the MIQ-RS and CAT, they were paired in dyads of similar ability and then randomised to two equal groups (Fig. 1) through the process of a draw consisting of eight “checklist only” tickets and eight “checklist and model” tickets. Had participants within a couple drawn the same type of ticket, the process was repeated until they were randomised into two different groups. In such a manner the number of participants in each group remained equal.

Preparation of mental rehearsal checklist

For the purposes of preparing a mental rehearsal checklist (Table 1) semi-structured interviews were conducted with five specialist surgeons who regularly perform laparoscopic cholecystectomy. The concepts of mental rehearsal, and visual and kinaesthetic cues were explained and they were asked to describe how they would perform a laparoscopic cholecystectomy.
Table 1
Mental rehearsal checklist
Step
Instruction
View model
1
Visualise the retracted liver and gallbladder
*
2
Decide which instruments to use and insert them into the “abdomen” under direct vision (visualise and feel)
 
3
Visualise Calot’s triangle
*
4
Retract the gallbladder (feel) in a manner that highlights Calot’s triangle (visualise the retracted gallbladder)
*
5
Decide from where and how you will commence dissection
*
6
Begin dissecting Calot’s triangle (visualise and feel)
 
7
Continue the dissection carefully exposing the cystic duct and artery while adjusting the place of the retracted gb to achieve optimal view—describe the movements of both hands (visualise and feel) and what are the end points of the dissection
*
8
Visualise the skeletonised artery and duct
*
9
Insert the clip applier under direct vision (visualise). Place firmly on the cystic duct (feel), visualise both jaws of the instrument (visualise) and then place the number of clips you wish, where you choose (visualise)
*
10
Repeat step 9 with artery—visualise the end result to ensure no complications occurred
*
11
Insert the electrocautery instrument you will use for dissecting the gall bladder off the liver bed under direct vision (visualise)
 
12
Retract the gallbladder as you see fit (visualise and feel) and commence the dissection of the gb off the liver bed from the point you choose (visualise)
*
13
Continue the dissection of the gallbladder from the liver bed adjusting the retraction position as you see fit (visualise and feel)—describe your movements
*
14
Ensure that there is no bleeding from the liver bed either right before the completion of the dissection or at the end of it (visualise)—describe how you would deal with any bleeding
 
The interviews were transcribed verbatim and analysed by two of the authors, conducting descriptive synthesis and extraction of visual (e.g. “I now see Calot’s triangle”) and kinaesthetic cues (e.g. “I retract the gallbladder towards the right shoulder with moderate strength”) embedded within various steps of the procedure. The most commonly occurring cues were introduced into the checklist. These were combined with the stages of the procedure most frequently described by the surgeons in order to produce a 14-step checklist (Table 1) which could be combined with visualisation of the interactive 3D models (Fig. 2). This was adjusted to the stages of the procedure which can be completed on the VRS.

3D models preparation

Three different anatomical variations were chosen for this study: “normal anatomy” (NA), “short cystic duct” (SCD) and “double cystic artery” (DA). For each anatomical variation, a 3D model was reconstructed manually from an anonymised computed tomography (CT) scan using an “in-house” 3D reconstruction software (Volume Viewer, University of Leeds). The model was exported onto open source visualisation software (MeshLab).
The NA gallbladder consisted of a normal sized cystic duct and a single cystic artery positioned posteriorly to the cystic duct. The SCD had a shorter duct and a single artery posterior to the duct. The DA gallbladder had a normal sized duct and two cystic arteries, one anterior and one posterior to the cystic duct (Fig. 2).

Intervention and comparators

During the mental rehearsal session, the subjects were seated in a quiet place and given time to relax. Participants randomised to group B were taught how to use the 3D model viewing software. All subjects were asked to read through the mental rehearsal checklist and prepare to verbalise how they would perform the procedure whilst “viewing” and “feeling” the operation (visual and kinaesthetic cues) based on their previous experience of performing the procedure on the simulator.
The participants randomised to group A (n = 8) were asked to perform a Normal Anatomy (NA) simulated LC, a Short Cystic Duct (SCD) and a Double cystic Artery (DA) simulated LC after completing a mental rehearsal session with the use of the checklist only. The students randomised to group B (n = 8) were asked to do the same, but for most steps on the checklist (indicated with an asterisk—Table 1) they were also asked to review the appropriate anatomical model. Group A was informed of the anatomical variation of the eminent procedure, but did not have access to the relevant anatomical model provided to group B. This process was repeated before every simulated procedure. All procedures were video-recorded for later assessment.

Measured outcomes

Performance (time, Number Of Movements—NOM and Path Length—PL) and safety metrics (Number of perforations—Per, number of Non-Cauterised Bleeding—NCB and number of Damages to Vital Structures—DVS) automatically provided by the VRS were compared between the two groups for each type of anatomy. Proficiency gain curves for time to complete the procedure (time), Number Of Movements [73] and Path Length (PL) of the instrumental tip were generated by curve fitting raw data using power law [f(x) = axk − a: first attempt result and k: log of learning rate divided by log of 2] [74].
The recordings of the procedure were judged by two blinded assessors [R.G, D.G] using the competency assessment tool designed specifically for laparoscopic cholecystectomy [71]. The initial category of this score refers to the insertion of ports and as this was not part of the VRS, this category was not used for scoring.

Statistical analysis

The unpaired t-test was used to compare continuous data and the Mann–Whitney U-test for discrete data. Eta squared is reported for the statistically significant outcomes (p < 0.05). IBM® SPSS® Statistics Vs. 24 and GraphPad Prism® 7.0b, GraphPad Software, Inc. were used for all statistical analysis and preparation of graphs. Agreement between assessors was evaluated using the Intraclass Correlation Coefficient (ICC).

Results

The baseline ability of the two groups was similar (Fig. 3). Proficiency gain curves demonstrated that medical students experienced a learning effect prior to embarking on the comparative part of the study (Fig. 4).

VRS performance and safety metrics

Normal anatomy

There was no statistical difference in performance [checklist vs. model—time (s): 445.5 vs. 496 p = 0.64—NOM: 437 vs. 413 p = 0.88 – PL [75]: 1317 vs. 1059 p = 0.32] or safety metrics [checklist vs. model—per: 0.5 vs. 0 p = 0.22—NCB: 0 vs. 0 p = 0.71—DVS: 0 vs. 0 p = 0.2] between the two groups (Fig. 5).

Short cystic artery

There was no statistical difference in all metrics but the number of damage to vital structures that was significantly greater in the Group A [checklist vs. model—time (s): 464.3 vs. 555 p = 0.2—NOM: 506 vs. 481 p = 0.86—PL [75]: 1363 vs. 1118 p = 0.17—per: 0.5 vs. 0 p = 0.13—NCB: 0 vs. 0 p = 0.2—DVS: 4 vs. 0 p = 0.03 η 2 = 0.34] (Fig. 5).

Double cystic artery

The only parameter that showed a significant difference was the number of damage to vital structures in Group A [checklist vs. model—time (s): 498.4 vs. 565.8 p = 0.43—NOM: 541.5 vs. 514.5 p = 0.4—PL [75]: 1385 vs. 1171 p = 0.07—per: 0.5 vs. 0 p = 0.28—NCB: 0 vs. 0 p > 1—DVS: 1 vs. 0 p = 0.02 η 2 = 0.22] (Fig. 5).

CAT score

The two assessors of the LC videos were in good agreement with each other [ICC: 0.81—95% CI (0.66–0.89)]. According to the CAT scores, Group B performed the SCD and DA LC significantly better than the Group A, but there was no statistically significant difference in the performance of the NA LC [checklist vs. model total CAT score—NA: 23.63 vs. 26.69 p = 0.2—SCD: 20.5 vs. 26.31 p = 0.02 η 2 = 0.32—DA: 24.75 vs. 30.5 p = 0.03 η 2 = 0.28] (Fig. 6).

Discussion

To our knowledge this is the first study testing patient-specific mental rehearsal with the use of 3D interactive visual aids. The results show that both groups performed equally well when given “straight-forward” anatomy that they had encountered before. The group who used patient-specific anatomical models as well as the mental rehearsal checklist performed significantly better (CAT scores) and committed less errors (DVS) in cases with more challenging anatomies (i.e. short cystic duct and double cystic artery). These results support further investigation into the application of patient-specific preparation with the combination of anatomical models and mental rehearsal, within a clinical environment.
The methodology used in this study is aligned to that described in the literature for mental rehearsal [10, 22, 27, 32]. Experts were consulted to create a mental rehearsal checklist and an extensive step-by-step breakdown and teaching and training were provided to the participants prior to the intervention. The performance metrics have been previously validated for demonstrating surgical competency [76]. However, PL and NOM are indicative of economy of movements and any difference in these values may not translate into differences in the safety aspect of the procedure [71]. Similarly, time to complete a procedure is frequently associated with competency [7679], but not necessarily with quality [71]. This is mirrored in the results of the study, showing completion of the SCD and DA cases in a similar amount of time, whilst Group A had significantly lower CAT score and higher number of damage to vital structures. This justifies the addition of three safety measures (number of perforations, non-cauterised bleeding and damage to vital structures) and the CAT score evaluation as outcome measures. The assessor using CAT score has the opportunity to comment on hazardous use of instruments or detrimental tissue handling, near misses and errors as well as the fluency of the performed operation [71].
This study has some limitations. First, the participants were medical students and not surgeons, which has implications for generalisability. Due to the time commitment needed for the study, it is likely that recruitment of surgical trainees would have resulted in a high drop-out rate, a frequent problem with educational studies [8082]. Although the authors recognise that medical students are not the target group of the suggested intervention, every possible effort was made to maintain uniform experience and baseline ability of participants (Fig. 3). Second, the study was not conducted in a clinical environment but in a simulation suite. Whilst the VRS used in this study has good validity [83, 84] and skills gained using such simulators are transferable to the operating room [79], there are intrinsic differences between a simulated and a real procedure [71]. This is reflected in the minor modifications needed for the CAT score and mental rehearsal checklist to extract the parts of the procedure not portrayed on the simulator (e.g. insertion of ports or patient positioning). Having established a possible benefit to mental rehearsal combined with patient-specific anatomical models in a simulated environment, the next step is to test the intervention within a clinical randomised controlled trial. The participants in the future trial should be surgical trainees.

Conclusion

The combination of mental rehearsal and patient-specific anatomical models reduces error occurrence and improves quality of surgery in complex procedures undertaken within a simulated environment.

Acknowledgements

The authors thank Heather Ricketts for transcribing some of the interviews with experts conducted during this project.

Funding

This project was kindly funded by Leeds Teaching Hospitals Charitable Foundation. Dr Yiasemidou was the recipient of the A.G Leventis Foundation Scholarship.

Compliance with ethical standards

Disclosures

Marina Yiasemidou, Raffaele Galli, Daniel Glassman, Matthew Tang, Rahoz Aziz, David Jayne, Danilo Miskovic have no conflicts of interest or financial ties to disclose.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Fitzgerald JE, Caesar BC (2012) The European working time directive: a practical review for surgical trainees. Int J Surg 10:399–403 CrossRefPubMed Fitzgerald JE, Caesar BC (2012) The European working time directive: a practical review for surgical trainees. Int J Surg 10:399–403 CrossRefPubMed
2.
Zurück zum Zitat Iglehart JK (2008) Revisiting duty-hour limits–IOM recommendations for patient safety and resident education. N Engl J Med 359:2633–2635 CrossRefPubMed Iglehart JK (2008) Revisiting duty-hour limits–IOM recommendations for patient safety and resident education. N Engl J Med 359:2633–2635 CrossRefPubMed
3.
Zurück zum Zitat Hopmans CJ, den Hoed PT, van der Laan L, van der Harst E, van der Elst M, Mannaerts GH, Dawson I, Timman R, Wijnhoven BP, IJzermans JN (2015) Impact of the European working time directive (EWTD) on the operative experience of surgery residents. Surgery 157:634–641 CrossRefPubMed Hopmans CJ, den Hoed PT, van der Laan L, van der Harst E, van der Elst M, Mannaerts GH, Dawson I, Timman R, Wijnhoven BP, IJzermans JN (2015) Impact of the European working time directive (EWTD) on the operative experience of surgery residents. Surgery 157:634–641 CrossRefPubMed
4.
Zurück zum Zitat Barger LK, Ayas NT, Cade BE, Cronin JW, Rosner B, Speizer FE, Czeisler CA (2006) Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLoS Med 3:e487 CrossRefPubMedPubMedCentral Barger LK, Ayas NT, Cade BE, Cronin JW, Rosner B, Speizer FE, Czeisler CA (2006) Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLoS Med 3:e487 CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Landrigan CP, Rothschild JM, Cronin JW, Kaushal R, Burdick E, Katz JT, Lilly CM, Stone PH, Lockley SW, Bates DW, Czeisler CA (2004) Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med 351:1838–1848 CrossRefPubMed Landrigan CP, Rothschild JM, Cronin JW, Kaushal R, Burdick E, Katz JT, Lilly CM, Stone PH, Lockley SW, Bates DW, Czeisler CA (2004) Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med 351:1838–1848 CrossRefPubMed
6.
Zurück zum Zitat Curet MJ (2008) Resident work hour restrictions: where are we now? J Am Coll Surg 207:767–776 CrossRefPubMed Curet MJ (2008) Resident work hour restrictions: where are we now? J Am Coll Surg 207:767–776 CrossRefPubMed
7.
Zurück zum Zitat Gopal R, Glasheen JJ, Miyoshi TJ, Prochazka AV (2005) Burnout and internal medicine resident work-hour restrictions. Arch Intern Med 165:2595–2600 CrossRefPubMed Gopal R, Glasheen JJ, Miyoshi TJ, Prochazka AV (2005) Burnout and internal medicine resident work-hour restrictions. Arch Intern Med 165:2595–2600 CrossRefPubMed
8.
Zurück zum Zitat Stefanidis D, Sevdalis N, Paige J, Zevin B, Aggarwal R, Grantcharov T, Jones DB, Association for Surgical Education Simulation C (2015) Simulation in surgery: what’s needed next? Ann Surg 261:846–853 CrossRefPubMed Stefanidis D, Sevdalis N, Paige J, Zevin B, Aggarwal R, Grantcharov T, Jones DB, Association for Surgical Education Simulation C (2015) Simulation in surgery: what’s needed next? Ann Surg 261:846–853 CrossRefPubMed
10.
Zurück zum Zitat Rao A, Tait I, Alijani A (2015) Systematic review and meta-analysis of the role of mental training in the acquisition of technical skills in surgery. Am J Surg 210:545–553 CrossRefPubMed Rao A, Tait I, Alijani A (2015) Systematic review and meta-analysis of the role of mental training in the acquisition of technical skills in surgery. Am J Surg 210:545–553 CrossRefPubMed
11.
Zurück zum Zitat Desender L, Rancic Z, Aggarwal R, Duchateau J, Glenck M, Lachat M, Vermassen F, Van Herzeele I, Everest (2013) Patient-specific rehearsal prior to EVAR: a pilot study. Eur J Vasc Endovasc Surg 45:639–647 CrossRefPubMed Desender L, Rancic Z, Aggarwal R, Duchateau J, Glenck M, Lachat M, Vermassen F, Van Herzeele I, Everest (2013) Patient-specific rehearsal prior to EVAR: a pilot study. Eur J Vasc Endovasc Surg 45:639–647 CrossRefPubMed
12.
Zurück zum Zitat Hislop SJ, Hedrick JH, Singh MJ, Rhodes JM, Gillespie DL, Johansson M, Illig KA (2009) Simulation case rehearsals for carotid artery stenting. Eur J Vasc Endovasc Surg 38:750–754 CrossRefPubMed Hislop SJ, Hedrick JH, Singh MJ, Rhodes JM, Gillespie DL, Johansson M, Illig KA (2009) Simulation case rehearsals for carotid artery stenting. Eur J Vasc Endovasc Surg 38:750–754 CrossRefPubMed
13.
Zurück zum Zitat Perry M, Banks P, Richards R, Friedman EP, Shaw P (1998) The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 36:275–284 CrossRefPubMed Perry M, Banks P, Richards R, Friedman EP, Shaw P (1998) The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 36:275–284 CrossRefPubMed
14.
Zurück zum Zitat Willaert W, Aggarwal R, Harvey K, Cochennec F, Nestel D, Darzi A, Vermassen F, Cheshire N, European Virtual Reality Endovascular Research T (2011) Efficient implementation of patient-specific simulated rehearsal for the carotid artery stenting procedure: part-task rehearsal. Eur J Vasc Endovasc Surg 42:158–166 CrossRefPubMed Willaert W, Aggarwal R, Harvey K, Cochennec F, Nestel D, Darzi A, Vermassen F, Cheshire N, European Virtual Reality Endovascular Research T (2011) Efficient implementation of patient-specific simulated rehearsal for the carotid artery stenting procedure: part-task rehearsal. Eur J Vasc Endovasc Surg 42:158–166 CrossRefPubMed
15.
Zurück zum Zitat Willaert WI, Aggarwal R, Van Herzeele I, Plessers M, Stroobant N, Nestel D, Cheshire N, Vermassen F (2012) Role of patient-specific virtual reality rehearsal in carotid artery stenting. Br J Surg 99:1304–1313 CrossRefPubMed Willaert WI, Aggarwal R, Van Herzeele I, Plessers M, Stroobant N, Nestel D, Cheshire N, Vermassen F (2012) Role of patient-specific virtual reality rehearsal in carotid artery stenting. Br J Surg 99:1304–1313 CrossRefPubMed
16.
Zurück zum Zitat Bernardi NF, De Buglio M, Trimarchi PD, Chielli A, Bricolo E (2013) Mental practice promotes motor anticipation: evidence from skilled music performance. Front Hum Neurosci 7:451 CrossRefPubMedPubMedCentral Bernardi NF, De Buglio M, Trimarchi PD, Chielli A, Bricolo E (2013) Mental practice promotes motor anticipation: evidence from skilled music performance. Front Hum Neurosci 7:451 CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Jackson TD, Kaplan GG, Arena G, Page JH, Rogers SO Jr (2007) Laparoscopic versus open resection for colorectal cancer: a metaanalysis of oncologic outcomes. J Am Coll Surg 204:439–446 CrossRefPubMed Jackson TD, Kaplan GG, Arena G, Page JH, Rogers SO Jr (2007) Laparoscopic versus open resection for colorectal cancer: a metaanalysis of oncologic outcomes. J Am Coll Surg 204:439–446 CrossRefPubMed
18.
19.
Zurück zum Zitat Deschaumes-Molinaro C, Dittmar A, Vernet-Maury E (1991) Relationship between mental imagery and sporting performance. Behav Brain Res 45:29–36 CrossRefPubMed Deschaumes-Molinaro C, Dittmar A, Vernet-Maury E (1991) Relationship between mental imagery and sporting performance. Behav Brain Res 45:29–36 CrossRefPubMed
20.
Zurück zum Zitat Lotze M, Scheler G, Tan HR, Braun C, Birbaumer N (2003) The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20:1817–1829 CrossRefPubMed Lotze M, Scheler G, Tan HR, Braun C, Birbaumer N (2003) The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20:1817–1829 CrossRefPubMed
21.
Zurück zum Zitat Mendoza D, Wichman H (1978) “Inner” darts: effects of mental practice on performance of dart throwing. Percept Mot Skills 47:1195–1199 CrossRefPubMed Mendoza D, Wichman H (1978) “Inner” darts: effects of mental practice on performance of dart throwing. Percept Mot Skills 47:1195–1199 CrossRefPubMed
22.
Zurück zum Zitat Arora S, Aggarwal R, Moran A, Sirimanna P, Crochet P, Darzi A, Kneebone R, Sevdalis N (2011) Mental practice: effective stress management training for novice surgeons. J Am Coll Surg 212:225–233 CrossRefPubMed Arora S, Aggarwal R, Moran A, Sirimanna P, Crochet P, Darzi A, Kneebone R, Sevdalis N (2011) Mental practice: effective stress management training for novice surgeons. J Am Coll Surg 212:225–233 CrossRefPubMed
23.
Zurück zum Zitat Arora S, Aggarwal R, Sirimanna P, Moran A, Grantcharov T, Kneebone R, Sevdalis N, Darzi A (2011) Mental practice enhances surgical technical skills: a randomized controlled study. Ann Surg 253:265–270 CrossRefPubMed Arora S, Aggarwal R, Sirimanna P, Moran A, Grantcharov T, Kneebone R, Sevdalis N, Darzi A (2011) Mental practice enhances surgical technical skills: a randomized controlled study. Ann Surg 253:265–270 CrossRefPubMed
24.
Zurück zum Zitat Eldred-Evans D, Grange P, Cheang A, Yamamoto H, Ayis S, Mulla M, Immenroth M, Sharma D, Reedy G (2013) Using the mind as a simulator: a randomized controlled trial of mental training. J Surg Educ 70:544–551 CrossRefPubMed Eldred-Evans D, Grange P, Cheang A, Yamamoto H, Ayis S, Mulla M, Immenroth M, Sharma D, Reedy G (2013) Using the mind as a simulator: a randomized controlled trial of mental training. J Surg Educ 70:544–551 CrossRefPubMed
25.
Zurück zum Zitat Immenroth M, Burger T, Brenner J, Nagelschmidt M, Eberspacher H, Troidl H (2007) Mental training in surgical education: a randomized controlled trial. Ann Surg 245:385–391 CrossRefPubMedPubMedCentral Immenroth M, Burger T, Brenner J, Nagelschmidt M, Eberspacher H, Troidl H (2007) Mental training in surgical education: a randomized controlled trial. Ann Surg 245:385–391 CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Louridas M, Bonrath EM, Sinclair DA, Dedy NJ, Grantcharov TP (2015) Randomized clinical trial to evaluate mental practice in enhancing advanced laparoscopic surgical performance. Br J Surg 102:37–44 CrossRefPubMed Louridas M, Bonrath EM, Sinclair DA, Dedy NJ, Grantcharov TP (2015) Randomized clinical trial to evaluate mental practice in enhancing advanced laparoscopic surgical performance. Br J Surg 102:37–44 CrossRefPubMed
27.
Zurück zum Zitat Sanders CW, Sadoski M, van Walsum K, Bramson R, Wiprud R, Fossum TW (2008) Learning basic surgical skills with mental imagery: using the simulation centre in the mind. Med Educ 42:607–612 CrossRefPubMed Sanders CW, Sadoski M, van Walsum K, Bramson R, Wiprud R, Fossum TW (2008) Learning basic surgical skills with mental imagery: using the simulation centre in the mind. Med Educ 42:607–612 CrossRefPubMed
28.
Zurück zum Zitat Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol 96:183–193 CrossRefPubMed Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol 96:183–193 CrossRefPubMed
29.
Zurück zum Zitat Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert CA (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399 CrossRefPubMed Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert CA (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399 CrossRefPubMed
30.
Zurück zum Zitat Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436 CrossRefPubMed Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436 CrossRefPubMed
31.
Zurück zum Zitat Arora SAR, Sevdalis N, Moran A, Sirimanna P, Kneebone R, Darzi A (2009) Development and validation of mental practice as a training strategy for laparoscopic surgery. Surg Endosc 24:179–187 CrossRefPubMed Arora SAR, Sevdalis N, Moran A, Sirimanna P, Kneebone R, Darzi A (2009) Development and validation of mental practice as a training strategy for laparoscopic surgery. Surg Endosc 24:179–187 CrossRefPubMed
32.
Zurück zum Zitat Sanders CW, Sadoski M, Bramson R, Wiprud R, Van Walsum K (2004) Comparing the effects of physical practice and mental imagery rehearsal on learning basic surgical skills by medical students. Am J Obstet Gynecol 191:1811–1814 CrossRefPubMed Sanders CW, Sadoski M, Bramson R, Wiprud R, Van Walsum K (2004) Comparing the effects of physical practice and mental imagery rehearsal on learning basic surgical skills by medical students. Am J Obstet Gynecol 191:1811–1814 CrossRefPubMed
33.
Zurück zum Zitat Bathalon S, Dorion D, Darveau S, Martin M (2005) Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. J Otolaryngol 34:328–332 CrossRefPubMed Bathalon S, Dorion D, Darveau S, Martin M (2005) Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. J Otolaryngol 34:328–332 CrossRefPubMed
34.
Zurück zum Zitat Jungmann F, Gockel I, Hecht H, Kuhr K, Rasanen J, Sihvo E, Lang H (2011) Impact of perceptual ability and mental imagery training on simulated laparoscopic knot-tying in surgical novices using a Nissen fundoplication model. Scand J Surg 100:78–85 CrossRefPubMed Jungmann F, Gockel I, Hecht H, Kuhr K, Rasanen J, Sihvo E, Lang H (2011) Impact of perceptual ability and mental imagery training on simulated laparoscopic knot-tying in surgical novices using a Nissen fundoplication model. Scand J Surg 100:78–85 CrossRefPubMed
35.
Zurück zum Zitat Derand P, Rannar LE, Hirsch JM (2012) Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery. Craniomaxillofac Trauma Reconstr 5:137–144 CrossRefPubMedPubMedCentral Derand P, Rannar LE, Hirsch JM (2012) Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery. Craniomaxillofac Trauma Reconstr 5:137–144 CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Dhanda J, Cooper C, Ellis D, Speculand B (2011) Technique of temporomandibular joint replacement using a patient-specific reconstruction system in the edentulous patient. Br J Oral Maxillofac Surg 49:618–622 CrossRefPubMed Dhanda J, Cooper C, Ellis D, Speculand B (2011) Technique of temporomandibular joint replacement using a patient-specific reconstruction system in the edentulous patient. Br J Oral Maxillofac Surg 49:618–622 CrossRefPubMed
37.
Zurück zum Zitat Essig H, Rana M, Kokemueller H, von See C, Ruecker M, Tavassol F, Gellrich NC (2011) Pre-operative planning for mandibular reconstruction - a full digital planning workflow resulting in a patient specific reconstruction. Head Neck Oncol 3:45 CrossRefPubMedPubMedCentral Essig H, Rana M, Kokemueller H, von See C, Ruecker M, Tavassol F, Gellrich NC (2011) Pre-operative planning for mandibular reconstruction - a full digital planning workflow resulting in a patient specific reconstruction. Head Neck Oncol 3:45 CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Fornaro J, Keel M, Harders M, Marincek B, Szekely G, Frauenfelder T (2010) An interactive surgical planning tool for acetabular fractures: initial results. J Orthop Surg Res 5:50 CrossRefPubMedPubMedCentral Fornaro J, Keel M, Harders M, Marincek B, Szekely G, Frauenfelder T (2010) An interactive surgical planning tool for acetabular fractures: initial results. J Orthop Surg Res 5:50 CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Franceschi JP, Sbihi A, Surgery Computer Assisted Orthopedic, Computer Assisted Orthopedic Surgery F (2014) 3D templating and patient-specific cutting guides (knee-plan) in total knee arthroplasty: postoperative CT-based assessment of implant positioning. Orthop Traumatol Surg Res 100:S281–286 CrossRefPubMed Franceschi JP, Sbihi A, Surgery Computer Assisted Orthopedic, Computer Assisted Orthopedic Surgery F (2014) 3D templating and patient-specific cutting guides (knee-plan) in total knee arthroplasty: postoperative CT-based assessment of implant positioning. Orthop Traumatol Surg Res 100:S281–286 CrossRefPubMed
40.
Zurück zum Zitat Furnstahl P, Vlachopoulos L, Schweizer A, Fucentese SF, Koch PP (2015) Complex osteotomies of tibial plateau malunions using computer-assisted planning and patient-specific surgical guides. J Orthop Trauma 29:e270–276 CrossRefPubMed Furnstahl P, Vlachopoulos L, Schweizer A, Fucentese SF, Koch PP (2015) Complex osteotomies of tibial plateau malunions using computer-assisted planning and patient-specific surgical guides. J Orthop Trauma 29:e270–276 CrossRefPubMed
41.
Zurück zum Zitat Gander T, Essig H, Metzler P, Lindhorst D, Dubois L, Rucker M, Schumann P (2015) Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg 43:126–130 CrossRefPubMed Gander T, Essig H, Metzler P, Lindhorst D, Dubois L, Rucker M, Schumann P (2015) Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg 43:126–130 CrossRefPubMed
42.
Zurück zum Zitat Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME (2007) Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg 65:728–734 CrossRefPubMed Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME (2007) Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg 65:728–734 CrossRefPubMed
43.
Zurück zum Zitat Haq J, Patel N, Weimer K, Matthews NS (2014) Single stage treatment of ankylosis of the temporomandibular joint using patient-specific total joint replacement and virtual surgical planning. Br J Oral Maxillofac Surg 52:350–355 CrossRefPubMed Haq J, Patel N, Weimer K, Matthews NS (2014) Single stage treatment of ankylosis of the temporomandibular joint using patient-specific total joint replacement and virtual surgical planning. Br J Oral Maxillofac Surg 52:350–355 CrossRefPubMed
44.
Zurück zum Zitat Hu Y, Li H, Qiao G, Liu H, Ji A, Ye F (2011) Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data. Injury 42:1121–1124 CrossRefPubMed Hu Y, Li H, Qiao G, Liu H, Ji A, Ye F (2011) Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data. Injury 42:1121–1124 CrossRefPubMed
45.
Zurück zum Zitat Isotani S, Shimoyama H, Yokota I, China T, Hisasue S, Ide H, Muto S, Yamaguchi R, Ukimura O, Horie S (2015) Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int J Urol 22:439–446 CrossRefPubMed Isotani S, Shimoyama H, Yokota I, China T, Hisasue S, Ide H, Muto S, Yamaguchi R, Ukimura O, Horie S (2015) Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int J Urol 22:439–446 CrossRefPubMed
46.
Zurück zum Zitat Issa K, Rifai A, McGrath MS, Callaghan JJ, Wright C, Malkani AL, Mont MA, McInerney VK (2013) Reliability of templating with patient-specific instrumentation in total knee arthroplasty. The Journal of Knee Surgery 26:429–433 CrossRefPubMed Issa K, Rifai A, McGrath MS, Callaghan JJ, Wright C, Malkani AL, Mont MA, McInerney VK (2013) Reliability of templating with patient-specific instrumentation in total knee arthroplasty. The Journal of Knee Surgery 26:429–433 CrossRefPubMed
47.
Zurück zum Zitat Kanzaki M, Maeda H, Wachi N, Kikkawa T, Komine H, Isaka T, Oyama K, Murasugi M, Onuki T (2013) Complete video-assisted thoracoscopic multi-subsegmentectomy based on patients’ specific virtual 3-D pulmonary models. Asian J Endosc Surg 6:110–115 CrossRefPubMed Kanzaki M, Maeda H, Wachi N, Kikkawa T, Komine H, Isaka T, Oyama K, Murasugi M, Onuki T (2013) Complete video-assisted thoracoscopic multi-subsegmentectomy based on patients’ specific virtual 3-D pulmonary models. Asian J Endosc Surg 6:110–115 CrossRefPubMed
48.
Zurück zum Zitat Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–135 CrossRefPubMed Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–135 CrossRefPubMed
49.
Zurück zum Zitat Kusaka M, Sugimoto M, Fukami N, Sasaki H, Takenaka M, Anraku T, Ito T, Kenmochi T, Shiroki R, Hoshinaga K (2015) Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transpl Proc 47:596–599 CrossRef Kusaka M, Sugimoto M, Fukami N, Sasaki H, Takenaka M, Anraku T, Ito T, Kenmochi T, Shiroki R, Hoshinaga K (2015) Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transpl Proc 47:596–599 CrossRef
50.
Zurück zum Zitat Leeuwen JA, Grogaard B, Nordsletten L, Rohrl SM (2015) Comparison of planned and achieved implant position in total knee arthroplasty with patient-specific positioning guides. Acta Orthop 86:201–207 CrossRefPubMedPubMedCentral Leeuwen JA, Grogaard B, Nordsletten L, Rohrl SM (2015) Comparison of planned and achieved implant position in total knee arthroplasty with patient-specific positioning guides. Acta Orthop 86:201–207 CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Leong JL, Batra PS, Citardi MJ (2005) Three-dimensional computed tomography angiography of the internal carotid artery for preoperative evaluation of sinonasal lesions and intraoperative surgical navigation. Laryngoscope 115:1618–1623 CrossRefPubMed Leong JL, Batra PS, Citardi MJ (2005) Three-dimensional computed tomography angiography of the internal carotid artery for preoperative evaluation of sinonasal lesions and intraoperative surgical navigation. Laryngoscope 115:1618–1623 CrossRefPubMed
52.
Zurück zum Zitat Lo LJ, Chen YR, Tseng CS, Lee MY (2004) Computer-aided reconstruction of traumatic fronto-orbital osseous defects: aesthetic considerations. Chang Gung Medical Journal 27:283–291 PubMed Lo LJ, Chen YR, Tseng CS, Lee MY (2004) Computer-aided reconstruction of traumatic fronto-orbital osseous defects: aesthetic considerations. Chang Gung Medical Journal 27:283–291 PubMed
53.
Zurück zum Zitat Qiu TM, Zhang Y, Wu JS, Tang WJ, Zhao Y, Pan ZG, Mao Y, Zhou LF (2010) Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir (Wien) 152:1847–1857 CrossRef Qiu TM, Zhang Y, Wu JS, Tang WJ, Zhao Y, Pan ZG, Mao Y, Zhou LF (2010) Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir (Wien) 152:1847–1857 CrossRef
54.
Zurück zum Zitat Radecka E, Brehmer M, Holmgren K, Palm G, Magnusson P, Magnusson A (2006) Pelvicaliceal biomodeling as an aid to achieving optimal access in percutaneous nephrolithotripsy. J Endourol 20:92–101 CrossRefPubMed Radecka E, Brehmer M, Holmgren K, Palm G, Magnusson P, Magnusson A (2006) Pelvicaliceal biomodeling as an aid to achieving optimal access in percutaneous nephrolithotripsy. J Endourol 20:92–101 CrossRefPubMed
55.
Zurück zum Zitat Schepers RH, Raghoebar GM, Vissink A, Stenekes MW, Kraeima J, Roodenburg JL, Reintsema H, Witjes MJ (2015) Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: a new modality for functional reconstruction of mandibular defects. J Craniomaxillofac Surg 43:649–657 CrossRefPubMed Schepers RH, Raghoebar GM, Vissink A, Stenekes MW, Kraeima J, Roodenburg JL, Reintsema H, Witjes MJ (2015) Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: a new modality for functional reconstruction of mandibular defects. J Craniomaxillofac Surg 43:649–657 CrossRefPubMed
56.
Zurück zum Zitat Schweizer A, Furnstahl P, Nagy L (2013) Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg 38:2339–2347 CrossRef Schweizer A, Furnstahl P, Nagy L (2013) Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg 38:2339–2347 CrossRef
57.
Zurück zum Zitat Scolozzi P (2012) Maxillofacial reconstruction using polyetheretherketone patient-specific implants by “mirroring” computational planning. Aesthetic Plast Surg 36:660–665 CrossRefPubMed Scolozzi P (2012) Maxillofacial reconstruction using polyetheretherketone patient-specific implants by “mirroring” computational planning. Aesthetic Plast Surg 36:660–665 CrossRefPubMed
58.
Zurück zum Zitat Shen F, Chen B, Guo Q, Qi Y, Shen Y (2013) Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg 8:169–179 CrossRefPubMed Shen F, Chen B, Guo Q, Qi Y, Shen Y (2013) Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg 8:169–179 CrossRefPubMed
59.
Zurück zum Zitat Tepper OM, Sorice S, Hershman GN, Saadeh P, Levine JP, Hirsch D (2011) Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J Oral Maxillofac Surg 69:733–741 CrossRefPubMed Tepper OM, Sorice S, Hershman GN, Saadeh P, Levine JP, Hirsch D (2011) Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J Oral Maxillofac Surg 69:733–741 CrossRefPubMed
60.
Zurück zum Zitat van Steenberghe D, Glauser R, Blomback U, Andersson M, Schutyser F, Pettersson A, Wendelhag I (2005) A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res 7(Suppl 1):S111–120 CrossRefPubMed van Steenberghe D, Glauser R, Blomback U, Andersson M, Schutyser F, Pettersson A, Wendelhag I (2005) A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res 7(Suppl 1):S111–120 CrossRefPubMed
61.
Zurück zum Zitat Xia JJ, Gateno J, Teichgraeber JF, Christensen AM, Lasky RE, Lemoine JJ, Liebschner MA (2007) Accuracy of the computer-aided surgical simulation (CASS) system in the treatment of patients with complex craniomaxillofacial deformity: a pilot study. J Oral Maxillofac Surg 65:248–254 CrossRefPubMed Xia JJ, Gateno J, Teichgraeber JF, Christensen AM, Lasky RE, Lemoine JJ, Liebschner MA (2007) Accuracy of the computer-aided surgical simulation (CASS) system in the treatment of patients with complex craniomaxillofacial deformity: a pilot study. J Oral Maxillofac Surg 65:248–254 CrossRefPubMed
62.
Zurück zum Zitat Adolphs N, Liu W, Keeve E, Hoffmeister B (2014) RapidSplint: virtual splint generation for orthognathic surgery - results of a pilot series. Comput Aided Surg 19:20–28 CrossRefPubMedPubMedCentral Adolphs N, Liu W, Keeve E, Hoffmeister B (2014) RapidSplint: virtual splint generation for orthognathic surgery - results of a pilot series. Comput Aided Surg 19:20–28 CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Holzle F, Modabber A (2014) Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 15:114 CrossRefPubMedPubMedCentral Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Holzle F, Modabber A (2014) Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 15:114 CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Dong Y, Dong Y, Hu G, Xu Q (2011) Three-dimensional reconstruction of extremity tumor regions by CT and MRI image data fusion for subject-specific preoperative assessment and planning. Comput Aided Surg 16:220–233 CrossRefPubMed Dong Y, Dong Y, Hu G, Xu Q (2011) Three-dimensional reconstruction of extremity tumor regions by CT and MRI image data fusion for subject-specific preoperative assessment and planning. Comput Aided Surg 16:220–233 CrossRefPubMed
65.
Zurück zum Zitat Hsu SS, Gateno J, Bell RB, Hirsch DL, Markiewicz MR, Teichgraeber JF, Zhou X, Xia JJ (2013) Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 71:128–142 CrossRefPubMed Hsu SS, Gateno J, Bell RB, Hirsch DL, Markiewicz MR, Teichgraeber JF, Zhou X, Xia JJ (2013) Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 71:128–142 CrossRefPubMed
66.
Zurück zum Zitat Yiasemidou M, Glassman D, Mushtaq F, Athanasiou C, Williams MM, Jayne D, Miskovic D (2017) Mental practice with interactive 3D visual aids enhances surgical performance. Surg Endosc Yiasemidou M, Glassman D, Mushtaq F, Athanasiou C, Williams MM, Jayne D, Miskovic D (2017) Mental practice with interactive 3D visual aids enhances surgical performance. Surg Endosc
67.
Zurück zum Zitat Reichenbach DJ, Tackett AD, Harris J, Camacho D, Graviss EA, Dewan B, Vavra A, Stiles A, Fisher WE, Brunicardi FC, Sweeney JF (2006) Laparoscopic colon resection early in the learning curve: what is the appropriate setting? Ann Surg 243:730–735 (discussion 735–737) CrossRefPubMedPubMedCentral Reichenbach DJ, Tackett AD, Harris J, Camacho D, Graviss EA, Dewan B, Vavra A, Stiles A, Fisher WE, Brunicardi FC, Sweeney JF (2006) Laparoscopic colon resection early in the learning curve: what is the appropriate setting? Ann Surg 243:730–735 (discussion 735–737) CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Giulea C, Enciu O, Birca T, Miron A (2016) Selective Intraoperative Cholangiography in Laparoscopic Cholecystectomy. Chirurgia (Bucur) 111:26–32 Giulea C, Enciu O, Birca T, Miron A (2016) Selective Intraoperative Cholangiography in Laparoscopic Cholecystectomy. Chirurgia (Bucur) 111:26–32
71.
Zurück zum Zitat Cole SJ, Mackenzie H, Ha J, Hanna GB, Miskovic D (2014) Randomized controlled trial on the effect of coaching in simulated laparoscopic training. Surg Endosc 28:979–986 CrossRefPubMed Cole SJ, Mackenzie H, Ha J, Hanna GB, Miskovic D (2014) Randomized controlled trial on the effect of coaching in simulated laparoscopic training. Surg Endosc 28:979–986 CrossRefPubMed
72.
Zurück zum Zitat Gregg MHC, Butler A (2010) The MIQ-RS: a Suitable Option for Examining Movement Imagery Ability. Evid Based Complement Alternat Med 7:249–257 CrossRefPubMed Gregg MHC, Butler A (2010) The MIQ-RS: a Suitable Option for Examining Movement Imagery Ability. Evid Based Complement Alternat Med 7:249–257 CrossRefPubMed
73.
Zurück zum Zitat Akagi T, Inomata M, Etoh T, Moriyama H, Yasuda K, Shiraishi N, Eshima N, Kitano S (2012) Multivariate evaluation of the technical difficulties in performing laparoscopic anterior resection for rectal cancer. Surg Laparosc Endosc Percutan Tech 22:52–57 CrossRefPubMed Akagi T, Inomata M, Etoh T, Moriyama H, Yasuda K, Shiraishi N, Eshima N, Kitano S (2012) Multivariate evaluation of the technical difficulties in performing laparoscopic anterior resection for rectal cancer. Surg Laparosc Endosc Percutan Tech 22:52–57 CrossRefPubMed
74.
Zurück zum Zitat Liao S (1988) The learning curve: Wright’s model vs. Crawford’s model. Issues In Accounting Education (Fall):302–315 Liao S (1988) The learning curve: Wright’s model vs. Crawford’s model. Issues In Accounting Education (Fall):302–315
75.
Zurück zum Zitat Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ (2015) Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2:25 CrossRefPubMedPubMedCentral Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ (2015) Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2:25 CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Aggarwal R, Crochet P, Dias A, Misra A, Ziprin P, Darzi A (2009) Development of a virtual reality training curriculum for laparoscopic cholecystectomy. Br J Surg 96:1086–1093 CrossRefPubMed Aggarwal R, Crochet P, Dias A, Misra A, Ziprin P, Darzi A (2009) Development of a virtual reality training curriculum for laparoscopic cholecystectomy. Br J Surg 96:1086–1093 CrossRefPubMed
77.
Zurück zum Zitat Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558 CrossRefPubMed Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558 CrossRefPubMed
78.
Zurück zum Zitat Loukas C, Nikiteas N, Kanakis M, Georgiou E (2011) The contribution of simulation training in enhancing key components of laparoscopic competence. Am Surg 77:708–715 PubMed Loukas C, Nikiteas N, Kanakis M, Georgiou E (2011) The contribution of simulation training in enhancing key components of laparoscopic competence. Am Surg 77:708–715 PubMed
79.
Zurück zum Zitat Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ (2008) A systematic review of skills transfer after surgical simulation training. Ann Surg 248:166–179 CrossRefPubMed Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ (2008) A systematic review of skills transfer after surgical simulation training. Ann Surg 248:166–179 CrossRefPubMed
80.
Zurück zum Zitat Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA 3rd, Ramel S, Smith CD, Arvidsson D (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193:797–804 CrossRefPubMed Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA 3rd, Ramel S, Smith CD, Arvidsson D (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193:797–804 CrossRefPubMed
81.
Zurück zum Zitat Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91:146–150 CrossRefPubMed Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91:146–150 CrossRefPubMed
82.
Zurück zum Zitat Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A (2004) Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc 18:485–494 CrossRefPubMed Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A (2004) Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc 18:485–494 CrossRefPubMed
83.
Zurück zum Zitat Ayodeji ID, Schijven M, Jakimowicz J, Greve JW (2007) Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum. Surg Endosc 21:1641–1649 CrossRefPubMed Ayodeji ID, Schijven M, Jakimowicz J, Greve JW (2007) Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum. Surg Endosc 21:1641–1649 CrossRefPubMed
84.
Zurück zum Zitat Ayodeji ID, Schijven MP, Jakimowicz JJ (2006) Determination of face validity for the Simbionix LAP mentor virtual reality training module. Stud Health Technol Inform 119:28–30 PubMed Ayodeji ID, Schijven MP, Jakimowicz JJ (2006) Determination of face validity for the Simbionix LAP mentor virtual reality training module. Stud Health Technol Inform 119:28–30 PubMed
Metadaten
Titel
Patient-specific mental rehearsal with interactive visual aids: a path worth exploring?
verfasst von
Marina Yiasemidou
Raffaele Galli
Daniel Glassman
Matthew Tang
Rahoz Aziz
David Jayne
Danilo Miskovic
Publikationsdatum
24.08.2017
Verlag
Springer US
Erschienen in
Surgical Endoscopy / Ausgabe 3/2018
Print ISSN: 0930-2794
Elektronische ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-017-5788-2

Weitere Artikel der Ausgabe 3/2018

Surgical Endoscopy 3/2018 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Chirurgie und bleiben Sie gut informiert – ganz bequem per eMail.