Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2016

22.07.2016 | Original Article

Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts

verfasst von: Abhay B. Ramachandra, Andrew M. Kahn, Alison L. Marsden

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Braunwald, E., Antman, E. M., Beasley, J. W., Califf, R. M., Cheitlin, M. D., Hochman, J. S., et al. (2002). ACC/AHA Guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). Circulation, 106(14), 1893–1900.CrossRefPubMed Braunwald, E., Antman, E. M., Beasley, J. W., Califf, R. M., Cheitlin, M. D., Hochman, J. S., et al. (2002). ACC/AHA Guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). Circulation, 106(14), 1893–1900.CrossRefPubMed
2.
Zurück zum Zitat Motwani, J. G., & Topol, E. J. (1998). Aortocoronary saphenous vein graft disease pathogenesis, predisposition, and prevention. Circulation, 97(9), 916–931.CrossRefPubMed Motwani, J. G., & Topol, E. J. (1998). Aortocoronary saphenous vein graft disease pathogenesis, predisposition, and prevention. Circulation, 97(9), 916–931.CrossRefPubMed
3.
Zurück zum Zitat Goldman, S., Zadina, K., Moritz, T., Ovitt, T., Sethi, G., Copeland, J. G., et al. (2004). Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. Journal of the American College of Cardiology, 44(11), 2149–2156.CrossRefPubMed Goldman, S., Zadina, K., Moritz, T., Ovitt, T., Sethi, G., Copeland, J. G., et al. (2004). Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. Journal of the American College of Cardiology, 44(11), 2149–2156.CrossRefPubMed
4.
Zurück zum Zitat Halabi, A. R., Alexander, J. H., Shaw, L. K., Lorenz, T. J., Liao, L., Kong, D. F., et al. (2005). Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. The American Journal of Cardiology, 96(9), 1254–1259.CrossRefPubMed Halabi, A. R., Alexander, J. H., Shaw, L. K., Lorenz, T. J., Liao, L., Kong, D. F., et al. (2005). Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. The American Journal of Cardiology, 96(9), 1254–1259.CrossRefPubMed
5.
Zurück zum Zitat Lopes, R. D., Mehta, R. H., Hafley, G. E., Williams, J. B., Mack, M. J., Peterson, E. D., et al. (2012). Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation, 125(6), 749–756.CrossRefPubMedPubMedCentral Lopes, R. D., Mehta, R. H., Hafley, G. E., Williams, J. B., Mack, M. J., Peterson, E. D., et al. (2012). Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation, 125(6), 749–756.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Weintraub, W. S., Jones, E. L., Morris, D. C., King, S. B., Guyton, R. A., & Craver, J. M. (1997). Outcome of reoperative coronary bypass surgery versus coronary angioplasty after previous bypass surgery. Circulation, 95(4), 868–877.CrossRefPubMed Weintraub, W. S., Jones, E. L., Morris, D. C., King, S. B., Guyton, R. A., & Craver, J. M. (1997). Outcome of reoperative coronary bypass surgery versus coronary angioplasty after previous bypass surgery. Circulation, 95(4), 868–877.CrossRefPubMed
7.
Zurück zum Zitat Dobrin, P. B. (1995). Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension. Hypertension, 26(1), 38–43.CrossRefPubMed Dobrin, P. B. (1995). Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension. Hypertension, 26(1), 38–43.CrossRefPubMed
8.
Zurück zum Zitat Glagov, S., Zarins, C., Giddens, D., & Ku, D. N. (1988). Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine, 112(10), 1018–1031. Glagov, S., Zarins, C., Giddens, D., & Ku, D. N. (1988). Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine, 112(10), 1018–1031.
9.
Zurück zum Zitat Figueroa, C. A., Baek, S., Taylor, C. A., & Humphrey, J. D. (2009). A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 198(45), 3583–3602.CrossRefPubMedPubMedCentral Figueroa, C. A., Baek, S., Taylor, C. A., & Humphrey, J. D. (2009). A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 198(45), 3583–3602.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Valentín, A., Cardamone, L., Baek, S., & Humphrey, J. (2009). Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. Journal of the Royal Society Interface, 6(32), 293–306.CrossRef Valentín, A., Cardamone, L., Baek, S., & Humphrey, J. (2009). Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. Journal of the Royal Society Interface, 6(32), 293–306.CrossRef
11.
Zurück zum Zitat Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1–39. e14.CrossRefPubMed Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1–39. e14.CrossRefPubMed
12.
Zurück zum Zitat Quiñones, M. A., Otto, C. M., Stoddard, M., Waggoner, A., & Zoghbi, W. A. (2002). Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Journal of the American Society of Echocardiography, 15(2), 167–184.CrossRefPubMed Quiñones, M. A., Otto, C. M., Stoddard, M., Waggoner, A., & Zoghbi, W. A. (2002). Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Journal of the American Society of Echocardiography, 15(2), 167–184.CrossRefPubMed
13.
Zurück zum Zitat Stelfox, H. T., Ahmed, S. B., Ribeiro, R. A., Gettings, E. M., Pomerantsev, E., & Schmidt, U. (2006). Hemodynamic monitoring in obese patients: the impact of body mass index on cardiac output and stroke volume*. Critical Care Medicine, 34(4), 1243–1246.CrossRefPubMed Stelfox, H. T., Ahmed, S. B., Ribeiro, R. A., Gettings, E. M., Pomerantsev, E., & Schmidt, U. (2006). Hemodynamic monitoring in obese patients: the impact of body mass index on cardiac output and stroke volume*. Critical Care Medicine, 34(4), 1243–1246.CrossRefPubMed
14.
Zurück zum Zitat Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. Journal of the American College of Cardiology, 61(22), 2233–2241.CrossRefPubMed Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. Journal of the American College of Cardiology, 61(22), 2233–2241.CrossRefPubMed
15.
Zurück zum Zitat Sahni, O., Müller, J., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2006). Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering, 195(41), 5634–5655.CrossRef Sahni, O., Müller, J., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2006). Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering, 195(41), 5634–5655.CrossRef
16.
Zurück zum Zitat Coogan, J. S., Humphrey, J. D., & Figueroa, C. A. (2013). Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and modeling in mechanobiology, 1-15 Coogan, J. S., Humphrey, J. D., & Figueroa, C. A. (2013). Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and modeling in mechanobiology, 1-15
17.
Zurück zum Zitat Roccabianca, S., Figueroa, C., Tellides, G., & Humphrey, J. (2014). Quantification of regional differences in aortic stiffness in the aging human. Journal of the Mechanical Behavior of Biomedical Materials, 29, 618–634.CrossRefPubMed Roccabianca, S., Figueroa, C., Tellides, G., & Humphrey, J. (2014). Quantification of regional differences in aortic stiffness in the aging human. Journal of the Mechanical Behavior of Biomedical Materials, 29, 618–634.CrossRefPubMed
18.
Zurück zum Zitat Han, D.-W., Park, Y. H., Kim, J. K., Jung, T. G., Lee, K.-Y., Hyon, S.-H., et al. (2005). Long-term preservation of human saphenous vein by green tea polyphenol under physiological conditions. Tissue Engineering, 11(7-8), 1054–1064.CrossRefPubMed Han, D.-W., Park, Y. H., Kim, J. K., Jung, T. G., Lee, K.-Y., Hyon, S.-H., et al. (2005). Long-term preservation of human saphenous vein by green tea polyphenol under physiological conditions. Tissue Engineering, 11(7-8), 1054–1064.CrossRefPubMed
19.
Zurück zum Zitat Podesser, B., Neumann, F., Neumann, M., Schreiner, W., Wollenek, G., & Mallinger, R. (1998). Outer radius-wall thickness ratio, a postmortem quantitative histology in human coronary arteries. Cells, Tissues, Organs, 163(2), 63–68.CrossRef Podesser, B., Neumann, F., Neumann, M., Schreiner, W., Wollenek, G., & Mallinger, R. (1998). Outer radius-wall thickness ratio, a postmortem quantitative histology in human coronary arteries. Cells, Tissues, Organs, 163(2), 63–68.CrossRef
20.
Zurück zum Zitat Monos, E., & Csengödy, J. (1980). Does hemodynamic adaptation take place in the vein grafted into an artery? Pfluegers Archiv, 384(2), 177–182.CrossRefPubMed Monos, E., & Csengödy, J. (1980). Does hemodynamic adaptation take place in the vein grafted into an artery? Pfluegers Archiv, 384(2), 177–182.CrossRefPubMed
21.
Zurück zum Zitat Bazilevs, Y., Hsu, M.-C., Benson, D., Sankaran, S., & Marsden, A. (2009). Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1), 77–89.CrossRef Bazilevs, Y., Hsu, M.-C., Benson, D., Sankaran, S., & Marsden, A. (2009). Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1), 77–89.CrossRef
22.
Zurück zum Zitat Moghadam, M. E., Vignon-Clementel, I. E., Figliola, R., Marsden, A. L., M. O. C. H. A. Investigators, et al. (2013). A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. Journal of Computational Physics, 244, 63–79.CrossRef Moghadam, M. E., Vignon-Clementel, I. E., Figliola, R., Marsden, A. L., M. O. C. H. A. Investigators, et al. (2013). A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. Journal of Computational Physics, 244, 63–79.CrossRef
23.
Zurück zum Zitat Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209.CrossRefPubMed Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209.CrossRefPubMed
24.
Zurück zum Zitat Sankaran, S., Moghadam, M. E., Kahn, A. M., Tseng, E. E., Guccione, J. M., & Marsden, A. L. (2012). Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering, 40(10), 2228–2242.CrossRefPubMedPubMedCentral Sankaran, S., Moghadam, M. E., Kahn, A. M., Tseng, E. E., Guccione, J. M., & Marsden, A. L. (2012). Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering, 40(10), 2228–2242.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Corsini, C., Baker, C., Kung, E., Schievano, S., Arbia, G., Baretta, A., et al. (2014). An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1572–1589.CrossRefPubMed Corsini, C., Baker, C., Kung, E., Schievano, S., Arbia, G., Baretta, A., et al. (2014). An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1572–1589.CrossRefPubMed
26.
Zurück zum Zitat Bogren, H. G., Klipstein, R. H., Firmin, D. N., Mohiaddin, R. H., Underwood, S. R., Rees, R. S. O., et al. (1989). Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. American Heart Journal, 117(6), 1214–1222.CrossRefPubMed Bogren, H. G., Klipstein, R. H., Firmin, D. N., Mohiaddin, R. H., Underwood, S. R., Rees, R. S. O., et al. (1989). Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. American Heart Journal, 117(6), 1214–1222.CrossRefPubMed
27.
Zurück zum Zitat Changizi, M. A., & Cherniak, C. (2000). Modeling the large-scale geometry of human coronary arteries. Canadian Journal of Physiology and Pharmacology, 78(8), 603–611.CrossRefPubMed Changizi, M. A., & Cherniak, C. (2000). Modeling the large-scale geometry of human coronary arteries. Canadian Journal of Physiology and Pharmacology, 78(8), 603–611.CrossRefPubMed
28.
Zurück zum Zitat Zamir, M., Sinclair, P., & Wonnacott, T. H. (1992). Relation between diameter and flow in major branches of the arch of the aorta. Journal of Biomechanics, 25(11), 1303–1310.CrossRefPubMed Zamir, M., Sinclair, P., & Wonnacott, T. H. (1992). Relation between diameter and flow in major branches of the arch of the aorta. Journal of Biomechanics, 25(11), 1303–1310.CrossRefPubMed
29.
Zurück zum Zitat Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195(41), 5685–5706.CrossRef Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195(41), 5685–5706.CrossRef
30.
Zurück zum Zitat Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2013). A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5), 1141–1152.CrossRef Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2013). A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5), 1141–1152.CrossRef
31.
Zurück zum Zitat Kung, E. O., Les, A. S., Figueroa, C. A., Medina, F., Arcaute, K., Wicker, R. B., et al. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947–1960.CrossRefPubMedPubMedCentral Kung, E. O., Les, A. S., Figueroa, C. A., Medina, F., Arcaute, K., Wicker, R. B., et al. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947–1960.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Jones, E., Oliphant, T., & Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}. Jones, E., Oliphant, T., & Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}.
33.
Zurück zum Zitat Sipahi, I., Akay, M. H., Dagdelen, S., Blitz, A., & Alhan, C. (2014). Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA internal medicine, 174(2), 223–230.CrossRefPubMed Sipahi, I., Akay, M. H., Dagdelen, S., Blitz, A., & Alhan, C. (2014). Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA internal medicine, 174(2), 223–230.CrossRefPubMed
34.
Zurück zum Zitat Weintraub, W. S., Grau-Sepulveda, M. V., Weiss, J. M., O'Brien, S. M., Peterson, E. D., Kolm, P., et al. (2012). Comparative effectiveness of revascularization strategies. New England Journal of Medicine, 366(16), 1467–1476.CrossRefPubMedPubMedCentral Weintraub, W. S., Grau-Sepulveda, M. V., Weiss, J. M., O'Brien, S. M., Peterson, E. D., Kolm, P., et al. (2012). Comparative effectiveness of revascularization strategies. New England Journal of Medicine, 366(16), 1467–1476.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2013). Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 244, 22–40.CrossRefPubMed Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2013). Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 244, 22–40.CrossRefPubMed
36.
Zurück zum Zitat Shimizu, T., Ito, S., Kikuchi, Y., Misaka, M., Hirayama, T., Ishimaru, S., et al. (2004). Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: a comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery, 25(4), 578–584.CrossRefPubMed Shimizu, T., Ito, S., Kikuchi, Y., Misaka, M., Hirayama, T., Ishimaru, S., et al. (2004). Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: a comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery, 25(4), 578–584.CrossRefPubMed
37.
Zurück zum Zitat Cox, J. L., Chiasson, D. A., & Gotlieb, A. I. (1991). Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Progress in Cardiovascular Diseases, 34(1), 45–68.CrossRefPubMed Cox, J. L., Chiasson, D. A., & Gotlieb, A. I. (1991). Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Progress in Cardiovascular Diseases, 34(1), 45–68.CrossRefPubMed
38.
Zurück zum Zitat Dobrin, P., Littooy, F., & Endean, E. (1989). Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery, 105(3), 393–400.PubMed Dobrin, P., Littooy, F., & Endean, E. (1989). Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery, 105(3), 393–400.PubMed
39.
Zurück zum Zitat Haga, J. H., Li, Y.-S. J., & Chien, S. (2007). Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics, 40(5), 947–960.CrossRefPubMed Haga, J. H., Li, Y.-S. J., & Chien, S. (2007). Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics, 40(5), 947–960.CrossRefPubMed
40.
Zurück zum Zitat Ramachandra, A. B., Sankaran, S., Humphrey, J. D., & Marsden, A. L. (2015). Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. Journal of Biomechanical Engineering, 137(3), 031009.CrossRef Ramachandra, A. B., Sankaran, S., Humphrey, J. D., & Marsden, A. L. (2015). Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. Journal of Biomechanical Engineering, 137(3), 031009.CrossRef
41.
Zurück zum Zitat Zeng, D., Ding, Z., Friedman, M. H., & Ethier, C. R. (2003). Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31(4), 420–429.CrossRefPubMed Zeng, D., Ding, Z., Friedman, M. H., & Ethier, C. R. (2003). Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31(4), 420–429.CrossRefPubMed
43.
Zurück zum Zitat Merkow, J., Tu, Z., Kriegman, D., & Marsden, A. (2015). Structural edge detection for cardiovascular modeling. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 (pp. 735-742): Springer. Merkow, J., Tu, Z., Kriegman, D., & Marsden, A. (2015). Structural edge detection for cardiovascular modeling. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 (pp. 735-742): Springer.
44.
Zurück zum Zitat Douglas, P. S., Pontone, G., Hlatky, M. A., Patel, M. R., Norgaard, B. L., Byrne, R. A., et al. (2015). Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. European heart journal, ehv444. Douglas, P. S., Pontone, G., Hlatky, M. A., Patel, M. R., Norgaard, B. L., Byrne, R. A., et al. (2015). Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. European heart journal, ehv444.
45.
Zurück zum Zitat Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., & Feinstein, J. A. (2015). Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. The Journal of Thoracic and Cardiovascular Surgery, 149(1), 247–255.CrossRefPubMed Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., & Feinstein, J. A. (2015). Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. The Journal of Thoracic and Cardiovascular Surgery, 149(1), 247–255.CrossRefPubMed
46.
Zurück zum Zitat Esmaily-Moghadam, M., Hsia, T.-Y., Marsden, A. L., & Investigators, M. o. C. H. A. (2015). The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 699–705.CrossRefPubMed Esmaily-Moghadam, M., Hsia, T.-Y., Marsden, A. L., & Investigators, M. o. C. H. A. (2015). The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 699–705.CrossRefPubMed
47.
Zurück zum Zitat LaDisa, J. F., Olson, L. E., Guler, I., Hettrick, D. A., Audi, S. H., Kersten, J. R., et al. (2004). Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology, 97(1), 424–430.CrossRefPubMed LaDisa, J. F., Olson, L. E., Guler, I., Hettrick, D. A., Audi, S. H., Kersten, J. R., et al. (2004). Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology, 97(1), 424–430.CrossRefPubMed
48.
Zurück zum Zitat Di Achille, P., & Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.PubMedPubMedCentral Di Achille, P., & Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.PubMedPubMedCentral
Metadaten
Titel
Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts
verfasst von
Abhay B. Ramachandra
Andrew M. Kahn
Alison L. Marsden
Publikationsdatum
22.07.2016
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2016
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9706-0

Weitere Artikel der Ausgabe 4/2016

Journal of Cardiovascular Translational Research 4/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.