Skip to main content
Erschienen in: Rheumatology International 2/2017

Open Access 16.11.2016 | Public Health

Patients who underwent total hip or knee arthroplasty are more physically active than the general Dutch population

verfasst von: J. M. T. A. Meessen, W. F. Peter, R. Wolterbeek, S. C. Cannegieter, C. Tilbury, M. R. Bénard, H. M. J. van der Linden, R. Onstenk, R. Tordoir, S. B. Vehmeijer, S. H. M. Verdegaal, H. M. Vermeulen, R. G. H. H. Nelissen, T. P. M. Vliet Vlieland

Erschienen in: Rheumatology International | Ausgabe 2/2017

Abstract

Total hip arthroplasty (THA) and total knee arthroplasty (TKA) bring relief of pain and functional disability to patients with end-stage osteoarthritis, and however, the literature on their impact on patients’ level of physical activity (PA) is scarce. Cross-sectional study in patients who underwent THA/TKA surgery in the preceding 6–22 months and a random sample of persons aged >40 years from the Dutch general population, participating in a national survey. PA in minutes per week (min/week) and adherence to the Dutch recommendation for PA (NNGB yes/no) were measured by the short questionnaire to assess health-enhancing PA. Multivariable linear (total min/week) and logistic regression analyses (meeting recommendations PA), adjusting for confounders, were performed for THA and TKA separately. In total, 258 THA [62.3% female, aged 69.4 (9.1)] and 221 TKA [65.7% female, aged 69.5 (8.9)] patients and 4373 persons from the Dutch general population [51.4% female, aged 58.9 (11.6)] were included. The presence of THA was associated after adjusting for age, sex, BMI education and musculoskeletal comorbidities, with more total min/week spent on PA (THA 13.8% increase, 95% CI 1.6–27.6%), whilst both TJA groups were associated with adhering to NNGB (THA: OR 1.79, 95% CI 1.26–2.56; TKA: OR 1.73, 95% CI 1.20–2.51). As this study used questionnaires to compare the PA of THA/TKA patients to the general population, some recall and selection bias might have been induced. After surgery, overall, TJA patients are more likely to adhere NNGB than a representative sample of persons >40 years from the Dutch general population.

Introduction

Worldwide, the numbers of patients undergoing total hip or total knee arthroplasty (THA or TKA) for hip or knee osteoarthritis (OA) are rapidly increasing. Overall, the outcomes are favourable, with a large majority of patients having less pain and improved physical functioning after surgery [14].
Although the benefits of THA and TKA are well documented for pain and function, relatively little is known on their impact on one specific aspect of physical functioning, i.e. physical activity (PA). Just like for any other individual, achieving and maintaining a sufficient level of PA is important for patients with hip and knee OA with respect to their potential general health benefits. Moreover, in patients who undergo THA or TKA, PA may have an additional beneficial effect on the quality of the bone, which in turn may prevent complications such as early loosening [58]. In addition, PA may have a positive effect on muscle strength and range of motion of the affected leg [9].
With respect to the literature on PA after THA or TKA, de Groot et al. demonstrated in 84 THA and TKA patients that 6 months post-operatively PA levels as measured with an activity monitor did not significantly differ from the preoperative activity levels [10]. Harding et al. [11] found similar results when measuring PA by means of an accelerometer in 63 American THA and TKA patients before surgery and 6 months post-operatively. Kahn and Schwartzkopf [12] found no difference in PA as measured with an accelerometer between those on the waiting list for TKA and those who had TKA 2 years earlier.
By using the patient-reported University of California at Los Angeles (UCLA) activity questionnaire, Baumann et al. [13] found that both THA and TKA patients were regularly active on moderate to high levels after on average 6–12 months after surgery. This finding is supported by Dahm et al. [14], who reported that 5.7 years after surgery TKA patients had an average physical activity score of 7.1 out of 10, with 10 being highly active. In contrast to these findings, Kahn and Schwartzkopf [12] observed, using an accelerometer, that adherence to health-enhancing PA guidelines was only 5% in persons with TKA. In all of these studies, a comparison with the general population was lacking.
Two Dutch studies compared patient-reported physical activity in THA [15] and TKA [16] patients at 1–5 years post-operatively to that of age and gender-matched controls. It was found that in THA the proportion of persons reaching the Dutch Public Health Physical Activity guideline (the “Nederlandse Norm Gezond Bewegen”, NNGB) was similar to that of matched controls [51.2% (THA) vs 48.8% (controls)] [15], whereas in TKA patients the proportion of patients adhering to the guideline (54.5%) was significantly lower than that of the matched control population (63.7%) [16]. However, these studies did not take BMI into account, whilst BMI is one of the determinants of physical activity [17].
Given the lack of knowledge on post-operative PA levels after total joint arthroplasty (TJA) compared to the general population, the aim of the present study was to compare the minutes of PA and proportion meeting the public health guidelines of THA and TKA patients to those of the general Dutch population. Moreover, factors other than TJA, possibly contributing to levels of physical activity, were also evaluated.

Patients and methods

Design and recruitment of subjects

This cross-sectional, multicentre study concerned a comparison of PA levels of THA and TKA patients approximately one year after surgery with those of the general Dutch population. The data from the population of patients with THA and TKA were obtained from a study primarily aiming to make an inventory of the use of physical therapy and the presence of comorbidity [18], whereas the data from the general population were obtained from the Dutch National Bureau of Statistics (in Dutch: Centraal Bureau voor de Statistiek, CBS).
Since the survey had to be filled in only once by patients, it was judged to fall outside the remit of the law for Medical Research Involving Human Subjects Act; MO [in Dutch; Wet medisch wetenschappelijk onderzoek met mensen (WMO)]. An exemption for medical ethical review was therefore given by the Medical Ethical Committee of the Leiden University Medical Center. The health monitoring conducted by the CBS commissioned by the Dutch Government also falls outside the remit of the WMO. The study was conducted in accordance with the Handbook for Good Clinical Research Practice of the World Health Organization [19] and the Declaration of Helsinki principles [20].

Patients with THA or TKA

The patient data were obtained from a cross-sectional study performed in 2012, including patients who underwent THA or TKA for hip or knee OA in 2011 in four different hospitals in the Leiden region (Leiden University Medical Center in Leiden, Rijnland Hospital in Leiderdorp, Groene Hart Hospital in Gouda and Reinier de Graaf Hospital in Delft, the Netherlands). Patients receiving THA or TKA for reasons other than end-stage OA (such as fracture or rheumatoid arthritis) were excluded from the study, as well as patients undergoing revision surgery.
Between July 2012 and October 2012, all patients operated in 2011 were approached by mail by their orthopaedic surgeon, resulting in a range of post-surgery time of 7–22 months. The orthopaedic surgeon sent all eligible persons an invitation letter, information leaflet, informed consent form, survey and pre-stamped return envelope. Patients who returned the envelope with a completed survey and signed informed consent were included in the study.

Data general population

Data from the Dutch general population were provided by the CBS and were derived from a nationwide survey on general health (Gezondheids-enquête) [21]. This questionnaire is annually administered to a representative sample of ±8.000 Dutch inhabitants and is the prime health monitor tool of the Dutch government [22].
The selection of participants is drawn from municipality registers. Persons living in institutionalized homes (e.g. nursing homes) are excluded. For the present study on physical activity, only data were selected from 2011, i.e. the same year as the data from patients with THA or TKA, and from respondents who were over 40 years of age, as none of the persons with arthroplasty was aged below 40.

Assessments

Included in both surveys were the following variables or questionnaires.

Socio-demographic and basic health characteristics

Demographic variables included: age, gender and marital status (split into either married or not married). The height and weight of the patient were asked in order to calculate the body mass index (BMI). Smoking status (non-smoker, ex-smoker and smoker) and educational level (low (elementary school, lower secondary education), medium (secondary school or college) or high (higher secondary education or university)) were recorded.

Physical activity

PA was assessed using the validated Dutch version of the short questionnaire to assess health (SQUASH) [23, 24]. The SQUASH records the total amount of minutes per week (min/week) spent on PA in an average week in the past 12 months regarding eight different domains of active life: commuting, work activities, walking, cycling, gardening, odd jobs, household and sports. With the aid of the compendium of Ainsworth [25], PA can subsequently be categorized into light, moderate or vigorous intensity. Using this information, it is possible to define whether an individual adhered to the Dutch Public Health recommendation (NNGB) for PA (30 min of moderate intensity PA on at least 5 days per week) [26].

Quality of life (QoL)

QoL of the persons with a THA/TKA was assessed with the Short Form 36 (SF36) questionnaire, whilst the QoL of the general Dutch population was assessed with the Short Form 12 (SF12) [27, 28]. The SF36 outcomes of the THA/TKA patients were transformed to SF12 outcomes. From the SF12, two summary scales were derived: the physical component scale (PCS) and the mental component scale (MCS). The higher the score on these scales, the better the physical or mental functioning.

Comorbidity

The presence of comorbidity was assessed by means of a self-reported questionnaire of the CBS which comprised 19 different comorbidities [29]. For every comorbidity, the participants of the survey were asked to respond with either yes or no to the question “Have you received any treatment for [condition] in the past year”. The included diseases were then clustered into three groups:
Musculoskeletal comorbidities
Severe back pain (including slipped disc), severe neck or shoulder pain, severe elbow wrist or hand pain, inflammatory arthritis or other joint conditions.
Non-musculoskeletal comorbidities
Asthma or COPD (chronic obstructive pulmonary disease), (severe) cardiac disorder or coronary disease, arteriosclerosis (abdomen or legs), hypertension, (consequences of) stroke, severe bowel disorder, diabetes mellitus, migraine, psoriasis, chronic eczema, cancer and urine incontinence.
Sensory comorbidities
Hearing impairments (group and face-to-face conversation), vision impairments (short and long distance) and dizziness in combination with falling.

Statistical analyses

The demographic and health characteristics of patients undergoing THA or TKA were each compared with those of the general Dutch population by means of two sample t tests or Chi-square tests, where appropriate.
Mann–Whitney tests were conducted to compare the min/week spent on PA for each of four different age groups (aged under 65, 65–69, 70–74 and 75+).
The min/week of PA was log-transformed to reach a normal distribution. Multivariable linear regression models were used to assess whether having had a joint replacement was associated with min/week spent on PA. Each analysis was done separately for THA versus the general Dutch population and TKA versus the general Dutch population. The antilog of the effect sizes (beta’s) is reported for both the analyses with the 95% confidence interval (CI).
Multivariable logistic regression was used to assess the association between the presence of a joint replacement and adherence to the Dutch public health physical activity guideline. These results are presented as odds ratio (OR) with the 95% CI. The analyses were done separately for THA versus the general Dutch population and TKA and the general Dutch population.
All models (multivariable linear and multivariable logistic regression analyses) were constructed using a stepwise method. Potential confounders for the level of physical activity, i.e. sex, BMI, age and education level, were included in the models.
The determinants of minutes per week spent on activities categorized according to the three different levels of intensity of physical activity were determined for the arthroplasty groups and the Dutch population separately, by means of linear regression models including the variable of interest and correcting for age and sex. These analyses were performed including the variables age, sex, BMI, education, non-musculoskeletal comorbidities, musculoskeletal comorbidities, sensory comorbidities, MCS, PCS and time since surgery.
The level of statistical significance was set at P < 0.05, and analyses were performed using the SPSS statistical package (version 20.0, SPSS, Chicago, IL).

Results

Study population

Of the 545 THA and 465 TKA patients of the 4 hospitals who were invited to participate, 258 THA patients (response rate 47.3%) and 221 TKA patients (response rate 47.5%) completed the questionnaires.
The selection of data from the general Dutch population from the year 2011 yielded 4373 surveys completed by people aged 40 years or older. Of those, 568 persons (13%) replied positively to the question “Have you received any treatment for osteo- or rheumatic arthritis in the past year?”.
The arthroplasty groups comprised statistically significantly more females, and the patients had a higher mean age and higher BMI than the general Dutch population. The PCS and MCS were statistically significantly lower in both the THA and the TKA groups than in the general population. There was no difference in the presence of sensory comorbidities between the arthroplasty groups and the general population. However, both musculoskeletal and non-musculoskeletal comorbidity were more present in the arthroplasty patients as compared to the general population (see also Table 1).
Table 1
Characteristics of patients with total joint arthroplasty and a sample from the general Dutch population
 
General Dutch population
Total hip arthroplasty
Total knee arthroplasty
 
P value α
 
P value α
Total
#
4373
  
258
  
221
  
Female
# (%)
2248
(51.4%)
 
159
(62.3%)
 
0.01
144
(65.7%)
 
<0.01
Age (years)
Mean (SD)
59
(11.6)
 
69
(9.1)
 
<0.01
70
(8.9)
 
<0.01
BMI
Mean (SD)
26
(5.0)
 
27
(4.1)
 
<0.01
29
(5.0)
 
<0.01
Education level
  
<0.01
 
<0.01
 Low education
# (%)
653
(15.6%)
 
75
(37.3%)
  
72
(41.1%)
  
 Medium education
# (%)
2391
(57.0%)
 
86
(42.8%)
  
81
(46.3%)
  
 High education
# (%)
1150
(27.4%)
 
40
(19.9%)
  
23
(12.6%)
  
SF12
 PCS
mean (SD)
53.9
(9.4)
 
47.6
(11.2)
 
<0.01
46.6
(10.8)
 
<0.01
 MCS
mean (SD)
44.1
(5.0)
 
39.8
(5.2)
 
<0.01
40.6
(5.1)
 
<0.01
Comorbidities
 ≥1 Non-M.Sa
# (%)
2465
(57.4%)
(N = 4292)
142
(72.8%)
(N = 195)
<0.01
138
(84.1%)
(N = 164)
<0.01
 ≥1 M.S.b
# (%)
1224
(27.9%)
 
93
(39.7%)
(N = 238)
<0.01
84
(40.7%)
(N = 206)
<0.01
 ≥1 Sensory
# (%)
400
(9.3%)
(N = 4319)
21
(8.4%)
(N = 249)
0.736
21
(9.9%)
(N = 212)
0.717
Education levels: low (elementary school, lower secondary education); medium (secondary school or college); and high (higher secondary education or university)
BMI body mass index, SF12 Short Form 12, PCS physical component subscale of the SF12, MCS mental component subscale of the SF12
α P value is given for a two sample t test or Chi-square between the hip or knee replacement group and the general Dutch population
aNon-musculoskeletal comorbidities
bMusculoskeletal comorbidities
Table 2 shows the crude number of minutes spent per week on PA, stratified for age and gender. It can be seen that the male arthroplasty patients spend more minutes per week physically active in the higher age groups as compared to the general Dutch population. The proportion of persons adhering to the NNGB guideline is in the arthroplasty groups higher than in the general Dutch population (THA 76%, TKA 73% and general Dutch population 68%) (Fig. 1).
Table 2
Total minutes per week spent on physical activity per gender, age group for total hip arthroplasty, total knee arthroplasty or general Dutch population
 
General Dutch population
Total hip arthroplasty
Total knee arthroplasty
Mean
SD
N
Mean
SD
N
P valueα
Mean
SD
N
P valueβ
Men
 Aged <65
2846
1543
2521
2722
1252
32
0.692
2924
1468
21
0.959
 Aged 65–69
1976
1474
414
2315
1336
23
0.052
2079
1316
20
0.34
 Aged 70–74
1784
1330
313
2130
843
20
0.003
1968
1667
12
0.912
 Aged ≥75
1461
1209
372
1443
1065
21
0.840
2193
1477
22
0.018
Women
 Aged <65
2845
1530
2761
2745
1148
38
0.857
2883
1695
46
0.956
 Aged 65–69
2075
1412
401
2480
1908
34
0.364
2048
1539
25
0.764
 Aged 70–74
1967
1273
286
1867
1071
33
0.888
1944
2122
28
0.239
 Aged ≥75
1449
1173
525
1703
1453
53
0.350
1284
912
45
0.577
 
Count
%
N
Count
%
N
P value δ
Count
%
N
P value ε
Adherence to NNGB
2954
67.6
4373
195
75.6
258
0.007
161
72.9
221
0.105
NNGB Nederlandse Norm Gezond Bewegen, Dutch public guideline for physical activity
α P value for Mann–Whitely test between the hip arthroplasty group and the general Dutch population
β P value for Mann–Whitely test between the knee arthroplasty group and the general Dutch population
δ P value for Chi-square test between hip arthroplasty group and the general Dutch population
ε P value for Chi-square test between knee arthroplasty group and the general Dutch population

Association between TJA and minutes per week spent on total physical activity

Univariately, both THA and TKA were significantly associated with more minutes per week physical activity when compared to the general population. As there were major differences between the groups, it was needed to correct for potential confounders. When correcting for age, gender, BMI, education and musculoskeletal comorbidities a statistically significant association was for THA, not TKA. With the adjustments, persons with a THA spend 13.8% more minutes per week on physical activity compared to the general population (see Table 3).
Table 3
Regression analyses of min/week and adherence to NNGB
 
Total hip arthroplasty
Total knee arthroplasty
B
95% CI
P value
B
95% CI
P value
Total min/week PA
 Univariatea
1.229
1.099
1.352
<0.001
1.324
1.186
1.483
<0.001
 Multivariate 1b
1.14
1.023
1.274
0.018
1.122
0.998
1.262
0.055
 Multivariate 2c
1.138
1.016
1.276
0.024
1.112
0.986
1.256
0.084
Adherence to NNGB
 Univariated
1.487
1.111
1.989
0.008
1.289
0.952
1.745
0.101
 Multivariate 1e
1.75
1.243
2.465
0.001
1.75
1.219
2.512
0.002
 Multivariate 2f
1.789
1.253
2.556
0.001
1.731
1.195
2.507
0.004
aUnivariate analysis of total min/week PA ~ arthroplasty
bMultivariate analysis of total min/week PA ~ arthroplasty + age + sex + BMI + education
cMultivariate analysis of total min/week PA ~ arthroplasty + age + sex + BMI + education + musculoskeletal comorbidities
dUnivariate analysis of adherence to NNGB ~ arthroplasty
eMultivariate analysis of adherence to NNGB ~ arthroplasty + age + sex + BMI + education
fMultivariate analysis of adherence to NNGB ~ arthroplasty + age + sex + BMI + education + musculoskeletal comorbidities

Association between TJA and meeting public health recommendation

The multivariable logistic regression models showed that, adjusted for age, gender, BMI, education and muscular comorbidities, both THA and TKA patients had a significantly higher likelihood of meeting public health recommendations for healthy PA as compared to the general population [THA: OR 1.79 (95% CI 1.25–2.55); TKA: OR 1.73 (95% CI 1.20–2.51)]. See also Table 3.

Determinants of physical activity

Regarding the determinants of physical activity in the general population, age, sex, PCS and education were found to be statistically significantly associated with total minutes per week spent on PA and per category of intensity (see Table 4). In the general population, BMI was associated with the number of min/week of moderate and vigorous intensity PA, but not with light intensity PA. Within both the arthroplasty groups, it was found that age was a significant determinant of total min/week of PA and the min/week of light intensity PA. Within the THA group, age was also a determinant for the min/week of moderately intensive PA. Sex was associated with the min/week of moderate and vigorous intensity PA in both arthroplasty groups and also with the min/week of light intensity PA in the THA group.
Table 4
Variables statistically significantly associated with min/week physical activity after correcting for age and sex
General Dutch population
THA
TKA
 
Beta
P
 
Beta
P
 
Beta
P
Total physical activity
 Age
0.973
<0.001
Age
0.966
<0.001
Age
0.966
<0.001
 Sexa
0.953
0.037
      
 BMI
0.995
0.022
BMI
0.960
0.005
   
 PCS
1.016
<0.001
      
 Low educationb
0.774
<0.001
      
 Non-M.S. comorbiditiesc
1.076
0.002
      
 M.S. comorbiditiesd
1.052
0.046
      
 Sensory comorbiditiese
1.202
<0.001
Sensory comorbiditiese
1.517
0.028
   
Light physical activity
 Age
0.966
<0.001
Age
0.604
<0.001
Age
0.973
<0.001
 Sexa
0.748
<0.001
Sexa
0.604
<0.001
   
      
BMI
0.759
0.044
 PCS
1.007
<0.001
      
 Low educationb
0.809
<0.001
      
 Medium education
0.834
<0.001
      
Moderate physical activity
 Age
0.991
<0.001
Age
0.984
0.031
   
 Sexa
1.084
0.02
Sexa
1.596
0.001
Sexa
1.538
0.009
 BMI
0.912
0.022
   
BMI
0.964
0.027
 PCS
1.016
<0.001
      
 MCS
0.989
0.001
      
 Low educationb
1.180
0.006
      
 Medium education
1.384
<0.001
      
Vigorous physical activity
 Age
1.026
<0.001
      
 Sexa
1.189
<0.001
Sexa
1.489
0.005
Sexa
1.432
0.022
 BMI
0.986
0.003
      
 PCS
1.014
<0.001
   
PCS
1.021
0.027
      
MCS
0.957
0.008
 Medium educationb
1.151
0.002
      
aFemales were reference
bHigh education as reference
cAffected with non-musculoskeletal comorbidities persons as reference
dAffected with musculoskeletal comorbidities persons as reference
eAffected with sensory comorbidities persons as reference
In the general population, comorbidities were only found to be a determinant of total minutes per week of PA, but not of the min/week in the three categories of PA intensity. In THA patients only the presence of sensory comorbidities was associated with the total min/week of PA, whereas in TKA the presence of comorbidities was not associated with PA.
Although the association of a number of potential determinants with PA in the TKA and TJA groups did not reach statistical significance, overall the directions of the associations were similar to those within the general population (results not shown).

Discussion

This study demonstrated that the presence of a THA was associated with more min/week spent on PA as well as better adherence to public health recommendations for PA (NNGB) when compared to the general population. TKA was found to only be associated with adhering to the NNGB when compared to the general Dutch population.
Overall, it seems the Dutch population spends more minutes per week on physical activity, but since the patient group differs from the general population the comparison between these groups should be adjusted. When adjusting for age, sex, BMI and education it is found that persons with THA do spend more minutes per week on physical activity and that persons with a THA and TKA are more likely to adhere to the Dutch guideline on physical activity, NNGB. That TKA is associated with the NNGB but not to the minutes per week activity can be explained by the level of intensity of the physical activity performed.
In the general population, more associations between potential determinants of physical activity and the actual numbers of PA reached statistical significance than in the arthroplasty groups. The lack of significance is probably due to the relatively small sample sizes in the arthroplasty groups, limiting the statistical power.
Our groups spent more min/week on PA than reported by two other Dutch studies (for THA in this study 2183 min/week PA, THA in Wagenmakers et al. 1601 min/week, for TKA in this study 2153 min/week PA, TKA in Kersten et al. 1347 min/week PA) [15, 16]. In parallel, regarding the proportion of patients adhering to the Dutch recommendation for physical activity, the outcomes were more favourable in the present study (THA in this study 75.6% and THA in Wagenmakers et al. 51.2%; TKA in this study 72.8% and TKA in Kersten et al. 55%).
Both these latter two studies were done at 1–5 years post-surgery, and our study included patients within the first 22 months after surgery. As reported earlier by our group (Peter et al.), 43.5% of the THA patients and 50.5% of the TKA patients had post-operative physiotherapy for more than 3 months [30]. This implies that a vast amount of our patients might still have intense training with aid of physiotherapists, motivating patients to adhere to the PA. As for the other two studies (Kersten, Wagenmakers), no data on prolonged post-operative physiotherapy are present, and thus, these patients might resume easier into their old, less active activity level.
A recent systematic review on physical activity after THA or TKA measured with accelerometers showed that the post-operative PA levels were lower in the arthroplasty groups as compared to healthy control participants [31]. The differences in outcome could be because our sample of the general population might not be totally healthy and be less active than selected healthy persons. Also, as this study used a questionnaire whilst the systematic review concerned objective measures, participants might have caused some recall bias.
The general population in our study had an adherence rate to the Dutch PA of 67.5% which is comparable to reports from CBS published (Dutch adult population, 66% adhered to the Dutch public health physical activity guideline in 2012) [32]. The minutes per week spent on PA in our study was also consistent with the numbers reported by CBS (2589 min per week in 2012 and 2525 min per week in our study for overall physical activity for the Dutch population) [33].
Factors we identified as influencing the level of PA of persons with hip or knee arthroplasty (BMI, increased age, physical component score) are in line with the findings in a systematic review by Stubbs et al. [34] regarding PA in patients with hip or knee OA. The inverse association of BMI on the level of PA shows that it is an important factor, as well as age and gender, to include in any case–control study [17].
Low-impact activities like walking or cycling seem to protect against function loss and experienced pain from OA [35, 36], in contrast heavy load activities might be a risk factor for the development of osteoarthritis, but also early implant failure although debate exists on the latter [37, 38]. Since contradictory evidence exists on this topic, research into this field is necessary.
Current post-operative rehabilitation after a hip or knee arthroplasty is focussed at independent ambulation and regaining a normal walking pattern, which was deteriorated in the years before surgery due to the slowly progressing osteoarthritis. Secondary to this it aims at getting physically active patient. As mentioned before, about half of our patients reported to receive physiotherapy for more than 3 months after surgery [30]. This might imply that these patients are more motivated to be active than the general population.
Another reason for the higher levels of PA in the arthroplasty groups might be the fact that PA is a risk factor for TJA [39]. As shown by de Groot et al. [10], the post-operative levels of PA did not significantly differ from preoperative levels, suggesting that PA levels of TJA were probably higher than those of the general population before surgery as well.
Finally, the patients filling in the questionnaire knew that the subject of the study was PA, whilst the Dutch general population had to fill in an elaborate list of questions including all aspects of life, with only a subset on PA. Thus, the patients in our study might have overestimated their PA.
The limitations of this study are potential overestimation of outcome measures and recall bias, due to using the SQUASH questionnaire, more objective measures like accelerometers should be used in future studies. Furthermore, the preoperative levels of PA should be taken into account as an important confounder for outcome as well. Thus, more valid comparisons with the general population are possible. Also, patients in our study who refused to fill in the questionnaires were not asked about their reasons as to why they declined to participate, and therefore, we have no information about any possible self-selection bias. In addition, the comorbidities of participants were all self-reported and we were unable to confirm the presence of comorbidities both in the general Dutch population and the arthroplasty groups.
The findings of this study give insights into the movement patterns of arthroplasty patients compared to the general Dutch population. Findings show that although a part of the arthroplasty patients adhere to the Dutch public health guideline, there is still a considerable group who should increase their PA levels.

Summary conclusion

Overall OA patients with a hip prosthesis have a higher level of activity compared to the general Dutch population when adjusted for age, sex, education and BMI.

Acknowledgements

The authors would like to thank all the participants of the original physiotherapy study and the Gezondheids-Enquete. A special thanks to the onsite CBS data assistants (Martin Broxterman, Michael Vermaessen, Alfred Baven, Ivo Gorissen and Jan-Willem Bruggink) for their support and assistance.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest by any of the authors.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Meftah M, Ranawat AS, Ranawat CS (2012) Ten-year follow-up of a rotating-platform, posterior-stabilized total knee arthroplasty. J Bone Joint Surg Am 94(5):426–432CrossRefPubMed Meftah M, Ranawat AS, Ranawat CS (2012) Ten-year follow-up of a rotating-platform, posterior-stabilized total knee arthroplasty. J Bone Joint Surg Am 94(5):426–432CrossRefPubMed
2.
Zurück zum Zitat Meding JB et al (2012) Pain relief and functional improvement remain 20 years after knee arthroplasty. Clin Orthop Relat Res 470(1):144–149CrossRefPubMed Meding JB et al (2012) Pain relief and functional improvement remain 20 years after knee arthroplasty. Clin Orthop Relat Res 470(1):144–149CrossRefPubMed
3.
Zurück zum Zitat Kurtz S et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg Am 89(4):780–785 Kurtz S et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg Am 89(4):780–785
4.
Zurück zum Zitat Wolf BR et al (2012) Adverse outcomes in hip arthroplasty: long-term trends. J Bone Jt Surg Am 94(14):e103CrossRef Wolf BR et al (2012) Adverse outcomes in hip arthroplasty: long-term trends. J Bone Jt Surg Am 94(14):e103CrossRef
5.
Zurück zum Zitat Kuster MS (2002) Exercise recommendations after total joint replacement: a review of the current literature and proposal of scientifically based guidelines. Sports Med 32(7):433–445CrossRefPubMed Kuster MS (2002) Exercise recommendations after total joint replacement: a review of the current literature and proposal of scientifically based guidelines. Sports Med 32(7):433–445CrossRefPubMed
6.
Zurück zum Zitat Trudelle-Jackson E, Smith SS (2004) Effects of a late-phase exercise program after total hip arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil 85(7):1056–1062CrossRefPubMed Trudelle-Jackson E, Smith SS (2004) Effects of a late-phase exercise program after total hip arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil 85(7):1056–1062CrossRefPubMed
7.
Zurück zum Zitat Cushnaghan J et al (2009) Long-term outcome following total knee arthroplasty: a controlled longitudinal study. Ann Rheum Dis 68(5):642–647CrossRefPubMed Cushnaghan J et al (2009) Long-term outcome following total knee arthroplasty: a controlled longitudinal study. Ann Rheum Dis 68(5):642–647CrossRefPubMed
8.
Zurück zum Zitat Sharma L et al (2003) Physical functioning over three years in knee osteoarthritis: role of psychosocial, local mechanical, and neuromuscular factors. Arthritis Rheum 48(12):3359–3570CrossRefPubMed Sharma L et al (2003) Physical functioning over three years in knee osteoarthritis: role of psychosocial, local mechanical, and neuromuscular factors. Arthritis Rheum 48(12):3359–3570CrossRefPubMed
10.
Zurück zum Zitat de Groot IB et al (2008) Small increase of actual physical activity 6 months after total hip or knee arthroplasty. Clin Orthop Relat Res 466(9):2201–2208CrossRefPubMedPubMedCentral de Groot IB et al (2008) Small increase of actual physical activity 6 months after total hip or knee arthroplasty. Clin Orthop Relat Res 466(9):2201–2208CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Harding P et al (2014) Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res 472(5):1502–1511CrossRefPubMed Harding P et al (2014) Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res 472(5):1502–1511CrossRefPubMed
12.
Zurück zum Zitat Kahn TL, Schwarzkopf R (2015) Does total knee arthroplasty affect physical activity levels? Data from the osteoarthritis initiative. J Arthroplasty 30(9):1521–1525CrossRefPubMed Kahn TL, Schwarzkopf R (2015) Does total knee arthroplasty affect physical activity levels? Data from the osteoarthritis initiative. J Arthroplasty 30(9):1521–1525CrossRefPubMed
13.
Zurück zum Zitat Bauman S et al (2007) Physical activity after total joint replacement: a cross-sectional survey. Clin J Sport Med 17(2):104–108CrossRefPubMed Bauman S et al (2007) Physical activity after total joint replacement: a cross-sectional survey. Clin J Sport Med 17(2):104–108CrossRefPubMed
14.
Zurück zum Zitat Dahm DL et al (2008) Patient-reported activity level after total knee arthroplasty. J Arthroplasty 23(3):401–407CrossRefPubMed Dahm DL et al (2008) Patient-reported activity level after total knee arthroplasty. J Arthroplasty 23(3):401–407CrossRefPubMed
15.
Zurück zum Zitat Wagenmakers R et al (2008) Habitual physical activity behavior of patients after primary total hip arthroplasty. Phys Ther 88(9):1039–1048CrossRefPubMed Wagenmakers R et al (2008) Habitual physical activity behavior of patients after primary total hip arthroplasty. Phys Ther 88(9):1039–1048CrossRefPubMed
16.
Zurück zum Zitat Kersten RF et al (2012) Habitual physical activity after total knee replacement. Phys Ther 92(9):1109–1116CrossRefPubMed Kersten RF et al (2012) Habitual physical activity after total knee replacement. Phys Ther 92(9):1109–1116CrossRefPubMed
17.
Zurück zum Zitat Okeyo OD, Ayado OL, Mbagaya GM (2009) Physical activity and dietary fat as determinants of body mass index in a cross-sectional corelational design. East Afr J Public Health 6(1):32–36PubMed Okeyo OD, Ayado OL, Mbagaya GM (2009) Physical activity and dietary fat as determinants of body mass index in a cross-sectional corelational design. East Afr J Public Health 6(1):32–36PubMed
18.
Zurück zum Zitat Peter WF et al (2015) The association between comorbidities and pain, physical function and quality of life following hip and knee arthroplasty. Rheumatol Int 35(7):1233–1241CrossRefPubMedPubMedCentral Peter WF et al (2015) The association between comorbidities and pain, physical function and quality of life following hip and knee arthroplasty. Rheumatol Int 35(7):1233–1241CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat WHO, Library W (ed) (2005) Handbook for good clinical research practise (GCP): guidance for implementation. Geneva WHO, Library W (ed) (2005) Handbook for good clinical research practise (GCP): guidance for implementation. Geneva
20.
Zurück zum Zitat W.M.A. (2013) Declaration of Helsinki—ethical principles for medical research involving human subjects. JAMA 310(20):3 W.M.A. (2013) Declaration of Helsinki—ethical principles for medical research involving human subjects. JAMA 310(20):3
23.
Zurück zum Zitat Wagenmakers R et al (2008) Reliability and validity of the short questionnaire to assess health-enhancing physical activity (SQUASH) in patients after total hip arthroplasty. BMC Musculoskelet Disord 9:141CrossRefPubMedPubMedCentral Wagenmakers R et al (2008) Reliability and validity of the short questionnaire to assess health-enhancing physical activity (SQUASH) in patients after total hip arthroplasty. BMC Musculoskelet Disord 9:141CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wendel-Vos GC et al (2003) Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol 56(12):1163–1169CrossRefPubMed Wendel-Vos GC et al (2003) Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol 56(12):1163–1169CrossRefPubMed
25.
Zurück zum Zitat Ainsworth BE et al (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581CrossRefPubMed Ainsworth BE et al (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581CrossRefPubMed
27.
Zurück zum Zitat Aaronson NK et al (1998) Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease populations. J Clin Epidemiol 51(11):1055–1068CrossRefPubMed Aaronson NK et al (1998) Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease populations. J Clin Epidemiol 51(11):1055–1068CrossRefPubMed
28.
Zurück zum Zitat Gandek B et al (1998) Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International quality of life assessment. J Clin Epidemiol 51(11):1171–1178CrossRefPubMed Gandek B et al (1998) Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International quality of life assessment. J Clin Epidemiol 51(11):1171–1178CrossRefPubMed
30.
Zurück zum Zitat Peter WF, Tilbury C, Verdegaal SHM, Onstenk R, Vehmeijer SB, Vermeulen EM, van der Linden-van der Zwaag HMJ, Nelissen RGHH, Vliet Vlieland TPM (2016) The provision of preoperative and postoperative physical therapy in elderly people with hip and knee osteoarthritis undergoing primary joint replacement surgery. Curr Orthop Pract 27(2):10CrossRef Peter WF, Tilbury C, Verdegaal SHM, Onstenk R, Vehmeijer SB, Vermeulen EM, van der Linden-van der Zwaag HMJ, Nelissen RGHH, Vliet Vlieland TPM (2016) The provision of preoperative and postoperative physical therapy in elderly people with hip and knee osteoarthritis undergoing primary joint replacement surgery. Curr Orthop Pract 27(2):10CrossRef
31.
Zurück zum Zitat Arnold JB, Walters JL, Ferrar KE (2016) Does physical activity increase after total hip or knee arthroplasty for osteoarthritis? A systematic review. J Orthop Sports Phys Ther 46(6):431–442CrossRefPubMed Arnold JB, Walters JL, Ferrar KE (2016) Does physical activity increase after total hip or knee arthroplasty for osteoarthritis? A systematic review. J Orthop Sports Phys Ther 46(6):431–442CrossRefPubMed
34.
Zurück zum Zitat Stubbs B, Hurley M, Smith T (2015) What are the factors that influence physical activity participation in adults with knee and hip osteoarthritis? A systematic review of physical activity correlates. Clin Rehabil 29(1):80–94CrossRefPubMed Stubbs B, Hurley M, Smith T (2015) What are the factors that influence physical activity participation in adults with knee and hip osteoarthritis? A systematic review of physical activity correlates. Clin Rehabil 29(1):80–94CrossRefPubMed
35.
Zurück zum Zitat Fransen M, McConnell S, Bell M (2002) Therapeutic exercise for people with osteoarthritis of the hip or knee. A systematic review. J Rheumatol 29(8):1737–1745PubMed Fransen M, McConnell S, Bell M (2002) Therapeutic exercise for people with osteoarthritis of the hip or knee. A systematic review. J Rheumatol 29(8):1737–1745PubMed
36.
Zurück zum Zitat van Baar ME et al (1999) Effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a systematic review of randomized clinical trials. Arthritis Rheum 42(7):1361–1369CrossRefPubMed van Baar ME et al (1999) Effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a systematic review of randomized clinical trials. Arthritis Rheum 42(7):1361–1369CrossRefPubMed
38.
Zurück zum Zitat Golant A et al (2010) Athletic participation after hip and knee arthroplasty. Bull NYU Hosp Jt Dis 68(2):76–83PubMed Golant A et al (2010) Athletic participation after hip and knee arthroplasty. Bull NYU Hosp Jt Dis 68(2):76–83PubMed
39.
Zurück zum Zitat Wang Y et al (2011) Is physical activity a risk factor for primary knee or hip replacement due to osteoarthritis? A prospective cohort study. J Rheumatol 38(2):350–357CrossRefPubMed Wang Y et al (2011) Is physical activity a risk factor for primary knee or hip replacement due to osteoarthritis? A prospective cohort study. J Rheumatol 38(2):350–357CrossRefPubMed
Metadaten
Titel
Patients who underwent total hip or knee arthroplasty are more physically active than the general Dutch population
verfasst von
J. M. T. A. Meessen
W. F. Peter
R. Wolterbeek
S. C. Cannegieter
C. Tilbury
M. R. Bénard
H. M. J. van der Linden
R. Onstenk
R. Tordoir
S. B. Vehmeijer
S. H. M. Verdegaal
H. M. Vermeulen
R. G. H. H. Nelissen
T. P. M. Vliet Vlieland
Publikationsdatum
16.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheumatology International / Ausgabe 2/2017
Print ISSN: 0172-8172
Elektronische ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-016-3598-9

Weitere Artikel der Ausgabe 2/2017

Rheumatology International 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.