Skip to main content
Erschienen in: European Journal of Trauma and Emergency Surgery 2/2021

Open Access 22.05.2019 | Original Article

Pelvic angiography is effective for emergency pediatric patients with pelvic fractures: a propensity-score-matching study with a nationwide trauma registry in Japan

verfasst von: Yusuke Katayama, Tetsuhisa Kitamura, Tomoya Hirose, Takeyuki Kiguchi, Tasuku Matsuyama, Hiroki Takahashi, Kosuke Kiyohara, Junya Sado, Shingo Adachi, Tomohiro Noda, Junichi Izawa, Yuko Nakagawa, Takeshi Shimazu

Erschienen in: European Journal of Trauma and Emergency Surgery | Ausgabe 2/2021

Abstract

Purpose

The aim of this study was to evaluate the association between the implementation of pelvic angiography (PA) and outcome in emergency pediatric patients with pelvic fracture.

Methods

We extracted data on pelvic fracture patients aged ≤ 19 years between 2004 and 2015 from a nationwide trauma registry in Japan. The main outcome was hospital mortality. We assessed the relationship between implementation of PA and hospital mortality using one-to-one propensity-score-matching analysis to reduce potential confounding effects in comparing the PA group with the non-PA group.

Results

In total, 1351 patients were eligible for our analysis, with 221 patients (16.4%) included in the PA group and 1130 patients (83.6%) included in the non-PA group. For all patients, the proportion of hospital mortality was higher in the PA group than in the non-PA group [13.6% (30/221) vs 7.1% (80/1130), crude odds ratio (OR) 2.062 (95% confidence interval (CI), 1.318–3.224); p = 0.002]. In the propensity-score-matched patients, the proportion of hospital mortality was lower in the PA group than in the non-PA group [10.5% (22/200) vs 18.2% (38/200), p = 0.027]. This finding was confirmed in both the multivariable logistic regression model [adjusted OR 0.392 (95% CI, 0.171–0.896); p = 0.026] and the conditional logistic regression model [conditional OR 0.484 (95% CI, 0.261–0.896); p = 0.021].

Conclusion

The implementation of PA was significantly associated with lower hospital mortality among emergency pediatric patients with pelvic fractures compared with the non-implementation of PA.

Introduction

Pelvic fracture is one of the severe traumas associated with high mortality due to fatal bleeding. There are several treatment strategies such as external fixation, retroperitoneal pelvic packing (RPP), and transcatheter arterial embolization (TAE) plus pelvic angiography (PA). According to the Eastern Association for the Surgery of Trauma (EAST) guidelines, emergency PA is recommended for adult patients with pelvic fractures who show hemodynamic instability, signs of ongoing bleeding after non-pelvic sources of blood loss, or arterial intravenous contrast extravasation in the pelvis by enhanced computed tomography (CT) [1]. Indeed, Falzarano and colleagues reported that 16.5% (87/528) of pelvic fracture patients had hemodynamic instability, and 11.9% (63/528) of them received emergency angiography and embolization [2].
However, pelvic fractures are rarer among children than among adults; the incidence is between 2.4% and 7.5% [35]. It is difficult to select appropriate sheathes and catheters for pediatric patients with pelvic fractures, because the body size of children is smaller than that of adults. Therefore, angiography or arterial embolization for emergency pediatric patients with pelvic fractures is rarely performed. Although there were some case series and case reports on angiography and catheter embolization in these patients [610], the effectiveness of PA in them has not been extensively investigated.
The Japanese Trauma Data Bank (JTDB) is a nationwide hospital-based trauma registry in Japan [11]. Using this database, we evaluated the association between the implementation of PA and outcome among emergency pediatric patients with pelvic fractures, based on a propensity-score (PS)-matching method.

Methods

Study design, population, and setting

This study was a retrospective observational study using the JTDB database. The study period spanned 12 years from January 2004 to December 2015. We included emergency pediatric patients aged ≤ 19 years who had pelvic fractures, were then transported to JTDB-participating hospitals, and were registered in the database. We extracted pediatric patients with pelvic fractures based on the following Abbreviated Injury Scale (AIS) codes: 852,600.2, 852,602.2, 852,604.3, 852,606.4, 852,608.4, 852,610.5, 852,800.3, and 853,000.3. In addition, we excluded those who were in cardiopulmonary arrest on hospital arrival, underwent inter-hospital transport, and had missing information on factors such as vital signs on hospital arrival, sex, outcome, or Injury Severity Score (ISS). This study defined patients in cardiopulmonary arrest as those whose systolic blood pressure was 0 mmHg and/or heart rate was 0 bpm on hospital arrival. This study was approved by the ethics committee of Osaka University Graduate School of Medicine. Personal identifiers were removed beforehand from the JTDB database, and thus, the patients’ right to informed consent was waived. This manuscript was written based on the STROBE statement to assess the reporting of cohort and cross-sectional studies [12].

Japanese trauma data bank

The JTDB was established by the Japanese Association for the Surgery and Trauma (Trauma Surgery Committee) and the Japanese Association for Acute Medicine (Committee for Clinical Care Evaluation) [13, 14] and is similar to trauma databases in North America, Europe, and Oceania [15]. By 2016, 256 major emergency medical institutions around Japan had been registered in the JTDB database [14]. These hospitals have an ability equal to Level I trauma centers in the United States. Data were collected via the Internet from participating institutions. In most cases, the physicians and technicians who attended an AIS coding course had registered the data [15].
The JTDB captures data on trauma patients that includes age, sex, mechanism of injury, AIS code (version 1998), ISS, vital signs on hospital arrival, date and some time series from hospital arrival to discharge, and medical treatments such as interventional radiology and CT scanning and complications in accordance with regular forms for coding items [16]. The ISS was calculated from the top three scores of the AIS for nine sites classified by the AIS code.
From the JTDB database, we extracted age, sex, time of day and day of the week of hospital admission, calendar year, shock on hospital arrival, mechanism of injury, ISS, existence of injury with AIS score of three or more for each site, and implementation of PA. This study defined daytime as 09:00 am to 17:59 pm and nighttime as 18:00 pm to 08:59 am and also defined shock as a systolic blood pressure below 80 mmHg on hospital arrival [17].

Endpoint

The main endpoint was hospital mortality.

Statistical analysis

Pre- and in-hospital information and outcome were evaluated between the PA group and the non-PA group. To reduce potential confounding effects in the comparisons between the two groups, we estimated a PS by fitting a logistic regression model that was adjusted for the following nine variables before the decision to conduct PA was made: age (continuous variable), sex (male or female), time of day (daytime, nighttime, unknown), day of the week (weekday or weekend), shock on hospital arrival (presence or absence), ISS (continuous variable), existence of injury with AIS score of three or more for each site (yes or no), mechanism of injury (car occupant, motorcycle, bicycle, pedestrian, fall from high place, other, and unknown), and calendar year (2004–2006, 2007–2009, 2010–2012, and 2013–2015). We performed a receiver operating characteristic curve analysis with an area under the curve of PS for predicting the implementation of PA among the patients with pelvic fractures. One-to-one pair matching between the PA group and the non-PA group was performed by nearest-neighbor matching without replacement, using calipers of width equal to 0.2 of the standard deviation mean differences (SMD) before and after matching. When the SMD was less than 0.25 [18], we considered this to indicate a negligible imbalance between the two groups.
We investigated the association between the implementation of PA and hospital mortality among pediatric patients with pelvic fractures using univariable, multivariable, and conditional logistic regression analyses. On the basis of these analyses, we calculated their odds ratios (ORs) with 95% confidential intervals (CIs). In the multivariable logistic regression model, we adjusted for the above nine variables used in the PS calculation. In addition, we performed a subgroup analysis by shock status on hospital arrival (presence or absence). All tests were two-tailed, and p values of < 0.05 were considered statistically significant. All statistical analyses were performed with the use of SPSS version 23.0 J (IBM Corp., Armonk, NY) and R version 3.1.0 (The R Foundation for Statistical Computing).

Results

Figure 1 shows the patient flow in this study. During the study period, 226,698 emergency patients were registered in the JTDB database, and 24,485 patients suffered pelvic fractures. Of them, 22,793 patients were ≥ 20 years, and 1692 patients were ≤ 19 years. After excluding 341 patients for the reasons shown in Fig. 1, 1351 patients were eligible for our analysis, with 221 patients (16.4%) included in the PA group and 1130 patients (83.6%) included in the non-PA group.
The clinical characteristics of the eligible patients in the PA group and the non-PA group before and after PS matching are shown in Table 1. Among all patients before PS matching, those in the PA group were more likely to be older, have shock on hospital arrival and a high ISS score, and to have received injuries to the abdomen and lower extremities including the pelvis with an AIS score of three or more compared with those in the non-PA group. As for the mechanism of injury, the proportion of patients with a fall from a high place was higher, but that of car occupant, bicycle, and pedestrian were lower in the PA group than in the non-PA group. After PS matching, 200 patients from each group were selected, and the area under the receiver operating characteristic curve of the PS was 0.823. The covariate balance between the two groups of matched patients improved greatly.
Table 1
Patient characteristics among all cohorts and propensity-score-matched cohort
 
All patients
Propensity-score-matched patients
Pelvic angiography (+)
Pelvic angiography (−)
SMD
Pelvic angiography (+)
Pelvic angiography (−)
SMD
(N = 221)
(N = 1130)
(N = 200)
(N = 200)
Age, median (IQR)
17 (15–19)
16 (13–18)
0.260
17 (15–19)
17 (15–18)
0.000
Male, n (%)
124 (56.1)
684 (60.5)
0.090
112 (56.0)
124 (62.0)
0.120
Time of the day, n (%)
 Daytime (9:00 am—5:59 pm)
84 (32.1)
458 (40.5)
0.050
77 (38.5)
81 (40.5)
0.040
 Nighttime (6:00 pm—8:59 am)
127 (60.6)
614 (54.3)
0.060
114 (57.0)
113 (56.5)
0.010
 Unknown
10 (5.0)
58 (5.1)
0.030
9 (4.5)
6 (3.0)
0.080
Weekend, n (%)
48 (21.7)
334 (29.6)
0.180
46 (23.0)
45 (22.5)
0.010
Shock on hospital arrival, n (%)
46 (18.1)
74 (6.5)
0.420
36 (18.0)
34 (17.0)
0.030
ISS, median (IQR)
30 (21–41)
18 (10–29)
0.830
29 (20–38)
28 (17–42)
0.040
Number of patients with AIS ≥ 3 by body region, n (%)
 Head
61 (27.6)
320 (28.3)
0.020
51 (25.5)
54 (27.0)
0.030
 Face
4 (1.8)
12 (1.1)
0.060
4 (2.0)
5 (2.5)
0.030
 Thorax
115 (52.0)
496 (43.9)
0.160
98 (49.0)
96 (48.0)
0.020
 Abdomen
66 (29.9)
115 (10.2)
0.510
52 (26.0)
51 (25.5)
0.010
 Spine
19 (8.6)
73 (6.5)
0.080
16 (8.0)
18 (9.0)
0.040
 Upper extremity
18 (8.1)
78 (6.9)
0.050
15 (7.5)
20 (10.0)
0.090
 Lower extremity including pelvis
186 (84.2)
500 (44.2)
0.920
166 (83.0)
164 (82.0)
0.030
 Unspecified
1 (0.1)
1 (0.1)
0.070
1 (0.5)
1 (0.5)
0.000
Mechanism of injury, n (%)
 Car occupants
15 (6.8)
131 (11.6)
0.170
15 (7.5)
15 (7.5)
0.000
 Motorcycle
61 (27.6)
275 (24.3)
0.070
55 (27.5)
58 (29.0)
0.030
 Bicycle
26 (11.8)
179 (15.8)
0.120
26 (13.0)
32 (16.0)
0.090
 Pedestrian
22 (10.0)
186 (16.5)
0.190
20 (10.0)
14 (7.0)
0.110
 Fall from high place
79 (35.7)
283 (25.0)
0.230
66 (33.0)
69 (34.5)
0.030
 Other
16 (7.2)
62 (5.5)
0.070
16 (8.0)
12 (6.0)
0.080
 Unknown
3 (1.4)
19 (1.7)
0.030
3 (1.5)
1 (0.5)
0.100
Calendar year, n (%)
 2004–2006
22 (10.0)
87 (7.7)
0.080
19 (9.5)
21 (10.5)
0.030
 2007–2009
52 (23.5)
241 (21.3)
0.050
47 (23.5)
48 (24.0)
0.010
 2010–2012
57 (25.8)
400 (35.4)
0.210
54 (27.0)
54 (27.0)
0.000
 2013–2015
90 (40.7)
402 (35.6)
0.110
80 (40.0)
77 (38.5)
0.030
The area under the receiver operating characteristic curve of the logistic regression model to calculate a propensity score was 0.823
IQR interquartile range, ISS injury severity score, AIS abbreviated injury scale, SMD standard mean difference
Table 2 shows the relationship between the implementation of PA and hospital mortality among the pediatric emergency patients with pelvic fractures. Among all patients before PS matching, the proportion of hospital mortality was higher in the patients in the PA group than in those in the non-PA group [13.6% (30/221) vs 7.1% (80/1130), crude OR 2.062 (95% CI 1.318–3.224); p = 0.002]. However, the PA group tended to have a low OR for hospital mortality in the multivariable logistic regression model [adjusted OR 0.684 (95% CI 0.346–1.354); p = 0.276]. In the PS matched patients, hospital mortality was lower in the PA group than in the non-PA group [10.5% (22/200) vs 18.2% (38/200), crude OR 0.527 (95% CI 0.299–0.929); p = 0.027], and there were statistically significant differences between the PA group and the non-PA group in both the multivariable logistic regression model [adjusted OR 0.392 (95% CI 0.171–0.896); p = 0.026] and the conditional logistic regression model [conditional OR 0.484 (95% CI 0.261–0.896); p = 0.021].
Table 2
Outcomes of pediatric pelvic fracture patients with or without pelvic angiography
 
Total
With pelvic angiography
Without pelvic angiography
Crude OR
(95% CI)
Adjusted OR
(95% CI)
Conditional OR
(95% CI)
All patients*
(N = 1351)
(N = 221)
 
(N = 1130)
       
Death at hospital discharge
110
(8.1%)
30
(13.6%)
80
(7.1%)
2.062
(1.318–3.224)
0.684
(0.346–1.354)
Propensity-score-matched patients*
(N = 400)
(N = 200)
 
(N = 200)
       
Death at hospital discharge
60
(14.4%)
22
(10.5%)
38
(18.2%)
0.527
(0.299–0.929)
0.392
(0.171–0.896)
0.484
(0.261–0.896)
ORs were calculated for pediatric pelvic fracture patients with vs without pelvic angiography
OR odds ratio, CI confidence interval
*Adjusted for age, sex, time of the day, day of the week, ISS, AIS score by each body region, shock at hospital arrival, mechanism of injury, and of calendar year group
Hospital mortality between the two groups of the pediatric patients with pelvic fractures by shock status on hospital arrival is shown in Table 3. Among the patients without shock on hospital arrival, hospital mortality was higher in the PA group than in the non-PA group [9.2% (16/174) vs 4.7% (49/1049), crude OR 2.067 (95% CI 1.147–3.724)]. However, among the patients with shock on hospital arrival, t hospital mortality was lower in the PA group than in the non-PA group [30.4% (14/46) vs 39.2% (29/74), OR 0.679 (95% CI 0.310–1.485)], and the p for interaction was 0.026.
Table 3
Subgroup analysis of death at hospital discharge among pediatric pelvic fractures patients with or without pelvic angiography
 
Pelvic angiography (+)
Pelvic angiography (−)
Crude OR
(95% CI)
P Value for interaction
% (n/N)
 
% (n/N)
 
Shock on hospital arrival*
      
0.026
Shock (−)
9.2
(16/174)
4.7
(49/1049)
2.067
(1.147–3.724)
 
Shock (+)
30.4
(14/46)
39.2
(29/74)
0.679
(0.310–1.485)
 
OR odds ratio, CI confidence interval
*Systolic blood pressure ≤ 80 mmHg

Discussion

From the data of a nationwide trauma registry in Japan, this study showed that the implementation of PA was significantly associated with lower hospital mortality among emergency pediatric patients aged ≤ 19 years with pelvic fractures compared with non-implementation of PA. This result from a matched cohort after PS matching was almost similar to that from the entire patient cohort before PS matching, which reinforced the robustness of our results. This study showing the effectiveness of the angiographic assessment of pediatric patients with pelvic fractures provides important clues for discussing treatment strategies in these patients.
This study revealed that the implementation of PA was associated with a low proportion of hospital mortality among emergency pediatric patients with pelvic fractures. As the ability of CT scanning has continued to advance, its role has become important in the initial assessment of emergency trauma patients. Especially, extravasation confirmed by enhanced CT scanning is effective for detecting arterial bleeding, and PA is recommended for pelvic fracture patients with extravasation confirmed by enhanced CT scanning in the EAST guidelines [1]. However, some studies reported that emergency patients with abdominal traumas and/or pelvic fractures could be conservatively managed if their conditions were stable, even if there was extravasation on enhanced CT scanning [1921]. Conversely, in another report, even if no extravasation was apparent on enhanced CT scanning, TAE for arterial bleeding confirmed by angiography was conducted and subsequently led to an improvement of patient outcome [21]. Thus, making a decision about treatment strategies such as embolization and surgery based solely on enhanced CT scanning might not be appropriate emergency care. Although we did not obtain information on extravasation on enhanced CT scanning, the present study suggested that the evaluation of arterial bleeding with the use of angiography in pediatric patients with pelvic fractures was effective regardless of the findings on enhanced CT scanning.
As with adult patients with pelvic fractures, some studies reported that external fixation and both RPP and TAE were also effective for pediatric patients [8, 9, 22, 23]. Angiography allows the detection and simultaneous treatment of arterial bleeding, and its implementation would be more effective for children. Recently, CT-guided surgery was reported for tile type C pelvic injury [24]. As the blood flow in children is less than that in adults, bloodless treatments such as CT-guided surgery and embolization might be effective for pediatric patients with pelvic fracture. Although it is difficult to select an appropriate sheath and/or catheter size for pediatric patients when angiography is performed, according to case studies of TAE performed in children with hepatic injury, splenic injury or pelvic fracture, TAE could be performed without complications such as vessel laceration or thrombosis [2527]. Thus, if operators can select an appropriate catheter size for pediatric patients, angiography could be performed safely without complications.
In the subgroup analysis, hospital mortality among the pediatric pelvic fracture patients with shock on hospital arrival was lower in the PA group than in the non-PA group. In adult patients with pelvic fractures, some studies pointed out that various factors such as hemodynamic instability need to be considered before performing emergency angiography [2832]. Therefore, among patients with shock on hospital arrival, the identification of arterial bleeding by proactive PA would lead to the simultaneous implementation of TAE and, subsequently, a better outcome. However, hospital mortality among those without shock on hospital arrival was higher in the PA group than in the non-PA group. Although the reasons for the implementation of PA were unclear in this study, the PA group might have had severe conditions for which arterial bleeding was suspected, and/or the non-PA group might have had minor pelvic fractures that did not require PA.

Limitations

This study has several limitations. First, it assessed the relationship between PA and hospital mortality among pediatric patients with pelvic fractures but did not assess the reasons for the implementation of PA such as extravasation on enhanced CT scanning. Second, as there was also no information recorded on external fixation or RPP or on the type of pelvic fractures based on the AO/OTA classification [33] in the JTDB database, the influence of these factors on patient outcome was unknown. Third, it was unclear whether the cause of death was due to bleeding or other reasons such as traumatic brain injury and infection. Fourth, although nine variables were used to calculate the PS, there may be other factors that affect the implementation of PA. For example, factors such as hospital treatment protocols and decision-making by surgeons may affect the implementation of PA, but these data were not available in the JTDB database. However, the area under the receiver operating characteristic curve of PS was 0.823 in this model, which would sufficiently explain the implementation of PA. Finally, because this study was a retrospective observational study, there might be unknown confounding factors that influence the relationship between PA and hospital mortality.

Conclusion

In this patient population, the implementation of PA was significantly associated with lower hospital mortality among emergency pediatric patients with pelvic fractures compared with the non-implementation of PA.

Acknowledgements

The authors thank the emergency medical service personnel, nurses and emergency physicians who participated in the JTDB. This article was supported by the Clinical Investigator’s Research Project in Osaka University Graduate School of Medicine.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing of interests.
This study was approved by the ethics committees of the Osaka Graduate School of Medicine (No. 16260), and the requirement to obtain patients’ consent to participate was waived, because the data were anonymous.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Neuer Inhalt

Print-Titel

Literatur
1.
Zurück zum Zitat Cullinane DC, Schiller HJ, Zielinski MD, et al. Eastern association for the surgery of trauma practice management guidelines for hemorrhage in pelvic fracture-update and systematic review. J Trauma. 2011;71:1850–68.PubMed Cullinane DC, Schiller HJ, Zielinski MD, et al. Eastern association for the surgery of trauma practice management guidelines for hemorrhage in pelvic fracture-update and systematic review. J Trauma. 2011;71:1850–68.PubMed
2.
Zurück zum Zitat Falzarano G, Medici A, Carta S, et al. The orthopedic damage control in pelvic ring fractures: when and why-a multicenter experience of 10 years’ treatment. J Acute Dis. 2014;3:201–6.CrossRef Falzarano G, Medici A, Carta S, et al. The orthopedic damage control in pelvic ring fractures: when and why-a multicenter experience of 10 years’ treatment. J Acute Dis. 2014;3:201–6.CrossRef
3.
Zurück zum Zitat Schlickewei W, Keck T. Pelvic and acetabular fractures in childhood. Injury. 2005;36(Suppl 1):A57–63.CrossRef Schlickewei W, Keck T. Pelvic and acetabular fractures in childhood. Injury. 2005;36(Suppl 1):A57–63.CrossRef
4.
Zurück zum Zitat Ismail N, Bellemare JF, Mollitt DL, et al. Death from pelvic fracture: children are different. J Pediatr Surg. 1996;31:82–5.CrossRef Ismail N, Bellemare JF, Mollitt DL, et al. Death from pelvic fracture: children are different. J Pediatr Surg. 1996;31:82–5.CrossRef
5.
Zurück zum Zitat Demetriades D, Karaiskakis M, Velmahos GC, et al. Pelvic fractures in pediatric and adult trauma patients: are they different injuries? J Trauma. 2003;54:1146–51 discussion 1151.CrossRef Demetriades D, Karaiskakis M, Velmahos GC, et al. Pelvic fractures in pediatric and adult trauma patients: are they different injuries? J Trauma. 2003;54:1146–51 discussion 1151.CrossRef
6.
Zurück zum Zitat Kiankhooy A, Sartorelli KH, Vane DW, et al. Angiographic embolization is safe and effective therapy for blunt abdominal solid organ injury in children. J Trauma. 2010;68:526–31.PubMed Kiankhooy A, Sartorelli KH, Vane DW, et al. Angiographic embolization is safe and effective therapy for blunt abdominal solid organ injury in children. J Trauma. 2010;68:526–31.PubMed
7.
Zurück zum Zitat Ohtsuka Y, Iwasaki K, Okazumi S, et al. Management of blunt hepatic injury in children: usefulness of emergency transcatheter arterial embolization. Pediatr Surg Int. 2003;19:29–34.CrossRef Ohtsuka Y, Iwasaki K, Okazumi S, et al. Management of blunt hepatic injury in children: usefulness of emergency transcatheter arterial embolization. Pediatr Surg Int. 2003;19:29–34.CrossRef
8.
Zurück zum Zitat Puapong D, Brown CV, Katz M, et al. Angiography and the pediatric trauma patient: a 10-year review. J Pediat Surg. 2006;41:1859–63.CrossRef Puapong D, Brown CV, Katz M, et al. Angiography and the pediatric trauma patient: a 10-year review. J Pediat Surg. 2006;41:1859–63.CrossRef
9.
Zurück zum Zitat Vo NJ, Althoen M, Hippe DS, et al. Pediatric abdominal and pelvic trauma: safety and efficacy of arterial embolization. J Vasc Interv Radiol. 2014;25:215–20.CrossRef Vo NJ, Althoen M, Hippe DS, et al. Pediatric abdominal and pelvic trauma: safety and efficacy of arterial embolization. J Vasc Interv Radiol. 2014;25:215–20.CrossRef
10.
Zurück zum Zitat Gonzalez KW, Dalton BG, Kerisey MC, et al. Pelvic angiography for trauma in children: a rare but useful adjunct. Eur J Pediatr Surg. 2017;27:196–9.CrossRef Gonzalez KW, Dalton BG, Kerisey MC, et al. Pelvic angiography for trauma in children: a rare but useful adjunct. Eur J Pediatr Surg. 2017;27:196–9.CrossRef
12.
Zurück zum Zitat Von Elm E, Altman DG, Egger M, et al. STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344–9.CrossRef Von Elm E, Altman DG, Egger M, et al. STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344–9.CrossRef
13.
Zurück zum Zitat Yumoto T, Mitsuhashi T, Yamakawa Y, et al. Impact of cushing’s sign in the prehospital setting on predicting the need for immediate neurosurgical intervention in trauma patients: a nationwide retrospective observational study. Scand J Trauma Resusc Emerg Med. 2016;24:147.CrossRef Yumoto T, Mitsuhashi T, Yamakawa Y, et al. Impact of cushing’s sign in the prehospital setting on predicting the need for immediate neurosurgical intervention in trauma patients: a nationwide retrospective observational study. Scand J Trauma Resusc Emerg Med. 2016;24:147.CrossRef
15.
Zurück zum Zitat Shoko T, Shiraishi A, Kaji M, et al. Effect of pre-existing medical conditions on in-hospital mortality: analysis of 20,257 trauma patients in Japan. J Am Coll Surg. 2010;211:338–46.CrossRef Shoko T, Shiraishi A, Kaji M, et al. Effect of pre-existing medical conditions on in-hospital mortality: analysis of 20,257 trauma patients in Japan. J Am Coll Surg. 2010;211:338–46.CrossRef
16.
Zurück zum Zitat Nakada TA, Nakao S, Mizushima Y, et al. Association between male sex and increased mortality after falls. Acad Emerg Med. 2015;222:708–13.CrossRef Nakada TA, Nakao S, Mizushima Y, et al. Association between male sex and increased mortality after falls. Acad Emerg Med. 2015;222:708–13.CrossRef
17.
Zurück zum Zitat Neidel T, Salvador N, Heller RA. Impact of systolic blood pressure limits on the diagnostic value of triage algorithms. Scand J Trauma Resusc Emerg Med. 2017;25:118.CrossRef Neidel T, Salvador N, Heller RA. Impact of systolic blood pressure limits on the diagnostic value of triage algorithms. Scand J Trauma Resusc Emerg Med. 2017;25:118.CrossRef
18.
Zurück zum Zitat Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21.CrossRef Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21.CrossRef
19.
Zurück zum Zitat Bansal S, Karrer FM, Hansen K, et al. Contrast blush in pediatric blunt splenic trauma does not warrant the routine use of angiography and embolization. Am J Surg. 2015;210:345–50.CrossRef Bansal S, Karrer FM, Hansen K, et al. Contrast blush in pediatric blunt splenic trauma does not warrant the routine use of angiography and embolization. Am J Surg. 2015;210:345–50.CrossRef
20.
Zurück zum Zitat Juern JS, Milia D, Codner P, et al. Clinical significance of computed tomography contrast extravasation in blunt trauma patients with a pelvic fracture. J Trauma Acute Care Surg. 2017;81:138–40.CrossRef Juern JS, Milia D, Codner P, et al. Clinical significance of computed tomography contrast extravasation in blunt trauma patients with a pelvic fracture. J Trauma Acute Care Surg. 2017;81:138–40.CrossRef
21.
Zurück zum Zitat Verbeek DO, Zijlstra IA, van der Leij C, et al. Management of pelvic ring fracture patients with a pelvic “blush” on early computed tomography. J Trauma Acute Care Surg. 2014;76:374–9.CrossRef Verbeek DO, Zijlstra IA, van der Leij C, et al. Management of pelvic ring fracture patients with a pelvic “blush” on early computed tomography. J Trauma Acute Care Surg. 2014;76:374–9.CrossRef
22.
Zurück zum Zitat Burlew CC, Moore EE, Smith WR, et al. Preperitoneal pelvic packing/external fixation with secondary angioembolization: optimal care for life-threatening hemorrhage from unstable pelvic fractures. J Am Coll Surg. 2011;212:628–35 (discussion 635–7).CrossRef Burlew CC, Moore EE, Smith WR, et al. Preperitoneal pelvic packing/external fixation with secondary angioembolization: optimal care for life-threatening hemorrhage from unstable pelvic fractures. J Am Coll Surg. 2011;212:628–35 (discussion 635–7).CrossRef
23.
Zurück zum Zitat Chao NS, Liu CS, Chung KL, et al. Retroperitoneal pelvic packing for haemodynamically unstable pelvic fractures in children and adolescents: a level-one trauma-centre experience. J Pediatr Surg. 2012;47:2244–50.CrossRef Chao NS, Liu CS, Chung KL, et al. Retroperitoneal pelvic packing for haemodynamically unstable pelvic fractures in children and adolescents: a level-one trauma-centre experience. J Pediatr Surg. 2012;47:2244–50.CrossRef
24.
Zurück zum Zitat Falzarano G, Rollo G, Bisaccia M, et al. Percutaneous screws CT guided to fix sacroiliac joint in tile C pelvic injury. Outcomes at 5 years of follow-up. SICOT J. 2018;4:52.CrossRef Falzarano G, Rollo G, Bisaccia M, et al. Percutaneous screws CT guided to fix sacroiliac joint in tile C pelvic injury. Outcomes at 5 years of follow-up. SICOT J. 2018;4:52.CrossRef
25.
Zurück zum Zitat Qasim ZA, Masood R, Mateen MA. Successful use of angiographic embolization to control hemorrhage from blunt pelvic trauma in a pediatric patient. J Pak Med Assoc. 2004;54:32–3.PubMed Qasim ZA, Masood R, Mateen MA. Successful use of angiographic embolization to control hemorrhage from blunt pelvic trauma in a pediatric patient. J Pak Med Assoc. 2004;54:32–3.PubMed
26.
Zurück zum Zitat Gonzalez KW, Dalton BG, Kerisey MC, et al. Pelvic angiography for trauma in children: a rare but useful adjunct. Eur J Pediatr Surg. 2017;27:196–299.CrossRef Gonzalez KW, Dalton BG, Kerisey MC, et al. Pelvic angiography for trauma in children: a rare but useful adjunct. Eur J Pediatr Surg. 2017;27:196–299.CrossRef
27.
Zurück zum Zitat Ong CC, Toh L, Lo RH, et al. Primary hepatic artery embolization in pediatric blunt hepatic trauma. J Pediatr Surg. 2012;47:2316–20.CrossRef Ong CC, Toh L, Lo RH, et al. Primary hepatic artery embolization in pediatric blunt hepatic trauma. J Pediatr Surg. 2012;47:2316–20.CrossRef
28.
Zurück zum Zitat Eastridge BJ, Starr A, Minei JP, et al. The importance of fracture pattern in guiding therapeutic decision-making in patients with hemorrhagic shock and pelvic ring disruptions. J Trauma. 2002;53:446–50 (discussion 450–1).CrossRef Eastridge BJ, Starr A, Minei JP, et al. The importance of fracture pattern in guiding therapeutic decision-making in patients with hemorrhagic shock and pelvic ring disruptions. J Trauma. 2002;53:446–50 (discussion 450–1).CrossRef
29.
Zurück zum Zitat Lopez PP. Unstable pelvic fractures: the use of angiography in controlling arterial hemorrhage. J Trauma. 2007;62:S30–1.PubMed Lopez PP. Unstable pelvic fractures: the use of angiography in controlling arterial hemorrhage. J Trauma. 2007;62:S30–1.PubMed
30.
Zurück zum Zitat Salim A, Teixeira PG, DuBose J, et al. Predictors of positive angiography in pelvic fractures: a prospective study. J Am Coll Surg. 2008;207:656–62.CrossRef Salim A, Teixeira PG, DuBose J, et al. Predictors of positive angiography in pelvic fractures: a prospective study. J Am Coll Surg. 2008;207:656–62.CrossRef
31.
Zurück zum Zitat El-Haj M, Bloom A, Mosheiff T, et al. Outcome of angiographic embolization for unstable pelvic injuries: factors predicting success. Injury. 2013;44:1750–5.CrossRef El-Haj M, Bloom A, Mosheiff T, et al. Outcome of angiographic embolization for unstable pelvic injuries: factors predicting success. Injury. 2013;44:1750–5.CrossRef
32.
Zurück zum Zitat Lai YC, Wu CH, Chen HW, et al. Predictors of active arterial hemorrhage on angiography in pelvic fracture patients. Jpn J Radiol. 2018;36:223–30.CrossRef Lai YC, Wu CH, Chen HW, et al. Predictors of active arterial hemorrhage on angiography in pelvic fracture patients. Jpn J Radiol. 2018;36:223–30.CrossRef
33.
Zurück zum Zitat March JL, Slongo TF, Agel J, et al. Fracture and dislocation classification compendium—2007: orthopaedic Trauma association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 Suppl):S1–133. March JL, Slongo TF, Agel J, et al. Fracture and dislocation classification compendium—2007: orthopaedic Trauma association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 Suppl):S1–133.
Metadaten
Titel
Pelvic angiography is effective for emergency pediatric patients with pelvic fractures: a propensity-score-matching study with a nationwide trauma registry in Japan
verfasst von
Yusuke Katayama
Tetsuhisa Kitamura
Tomoya Hirose
Takeyuki Kiguchi
Tasuku Matsuyama
Hiroki Takahashi
Kosuke Kiyohara
Junya Sado
Shingo Adachi
Tomohiro Noda
Junichi Izawa
Yuko Nakagawa
Takeshi Shimazu
Publikationsdatum
22.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Trauma and Emergency Surgery / Ausgabe 2/2021
Print ISSN: 1863-9933
Elektronische ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-019-01154-w

Weitere Artikel der Ausgabe 2/2021

European Journal of Trauma and Emergency Surgery 2/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.