Skip to main content
Erschienen in: Digestive Diseases and Sciences 12/2017

13.10.2017 | Original Article

Peptide Tyrosine Tyrosine 3-36 Reduces Meal Size and Activates the Enteric Neurons in Male Sprague–Dawley Rats

verfasst von: Kayla D. Newman, Thaer R. Mhalhal, Martha C. Washington, John C. Heath, Ayman I. Sayegh

Erschienen in: Digestive Diseases and Sciences | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

Peptide tyrosine tyrosine 3-36 (peptide YY 3-36 or PYY 3-36) reduces food intake by unknown site(s).

Aim

To test the hypothesis that the gastrointestinal tract contains sites of action regulating meal size (MS) and intermeal interval (IMI) length by PYY 3-36.

Methods

Peptide YY 3-36 (0, 1, 5, 10 and 20 nmol/kg) was injected in the aorta, the artery that supplies the gastrointestinal tract, prior to the onset of the dark cycle in free feeding male Sprague–Dawley rats and food intake was measured. Then, PYY 3-36 (25 nmol/kg) was injected intraperitoneally in these rats and Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) was quantified in the small intestinal enteric neurons, both myenteric and submucosal, and the dorsal vagal complex (DVC) of the hindbrain.

Results

PYY 3-36 reduced first MS, decreased IMI length, shortened duration of first meal and increased Fos-LI in enteric and DVC neurons. However, PYY 3-36 failed to change the size of the second meal, satiety ratio, latency to first meal, number of meals and 24 h intake relative to saline control.

Conclusion

The gastrointestinal tract may contain sites of action regulating MS reduction by PYY 3-36.
Literatur
1.
Zurück zum Zitat Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–418.CrossRefPubMed Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–418.CrossRefPubMed
2.
Zurück zum Zitat Nilsson O, Bilchik AJ, Goldenring JR, et al. Distribution and immunocytochemical colocalization of peptide YY and enteroglucagon in endocrine cells of the rabbit colon. Endocrinology. 1991;129:139–148.CrossRefPubMed Nilsson O, Bilchik AJ, Goldenring JR, et al. Distribution and immunocytochemical colocalization of peptide YY and enteroglucagon in endocrine cells of the rabbit colon. Endocrinology. 1991;129:139–148.CrossRefPubMed
3.
Zurück zum Zitat Ali-Rachedi A, Varndell IM, Adrian TE, et al. Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry. 1984;80:487–491.CrossRefPubMed Ali-Rachedi A, Varndell IM, Adrian TE, et al. Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry. 1984;80:487–491.CrossRefPubMed
4.
Zurück zum Zitat Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept. 1994;51:151–159.CrossRefPubMed Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept. 1994;51:151–159.CrossRefPubMed
5.
Zurück zum Zitat Chen CH, Rogers RC. Central inhibitory action of peptide YY on gastric motility in rats. Am J Physiol. 1995;269:R787–R792.PubMed Chen CH, Rogers RC. Central inhibitory action of peptide YY on gastric motility in rats. Am J Physiol. 1995;269:R787–R792.PubMed
6.
Zurück zum Zitat Pironi L, Stanghellini V, Miglioli M, et al. Fat-induced ileal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology. 1993;105:733–739.CrossRefPubMed Pironi L, Stanghellini V, Miglioli M, et al. Fat-induced ileal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology. 1993;105:733–739.CrossRefPubMed
7.
Zurück zum Zitat Armstrong DN, Krenz HK, Modlin IM, Ballantyne GH. Bile salt inhibition of motility in the isolated perfused rabbit terminal ileum. Gut. 1993;34:483–488.CrossRefPubMedPubMedCentral Armstrong DN, Krenz HK, Modlin IM, Ballantyne GH. Bile salt inhibition of motility in the isolated perfused rabbit terminal ileum. Gut. 1993;34:483–488.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Guo YS, Singh P, Gomez G, Greeley GH Jr, Thompson JC. Effect of peptide YY on cephalic, gastric, and intestinal phases of gastric acid secretion and on the release of gastrointestinal hormones. Gastroenterology. 1987;92:1202–1208.CrossRefPubMed Guo YS, Singh P, Gomez G, Greeley GH Jr, Thompson JC. Effect of peptide YY on cephalic, gastric, and intestinal phases of gastric acid secretion and on the release of gastrointestinal hormones. Gastroenterology. 1987;92:1202–1208.CrossRefPubMed
9.
Zurück zum Zitat Tatemoto K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Nat Acad Sci USA. 1982;79:2514–2518.CrossRefPubMedPubMedCentral Tatemoto K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Nat Acad Sci USA. 1982;79:2514–2518.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY 3-36 physiologically inhibits food intake. Nature. 2002;418:650–654.CrossRefPubMed Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY 3-36 physiologically inhibits food intake. Nature. 2002;418:650–654.CrossRefPubMed
11.
Zurück zum Zitat Ferrier L, Segain JP, Bonnet C, et al. Functional mapping of NPY/PYY receptors in rat and human gastro-intestinal tract. Peptides. 2002;23:1765–1771.CrossRefPubMed Ferrier L, Segain JP, Bonnet C, et al. Functional mapping of NPY/PYY receptors in rat and human gastro-intestinal tract. Peptides. 2002;23:1765–1771.CrossRefPubMed
12.
Zurück zum Zitat Gregor P, Millham ML, Feng Y, et al. Cloning and characterization of a novel receptor to pancreatic polypeptide, a member of the neuropeptide Y receptor family. FEBS Lett. 1996;381:58–62.CrossRefPubMed Gregor P, Millham ML, Feng Y, et al. Cloning and characterization of a novel receptor to pancreatic polypeptide, a member of the neuropeptide Y receptor family. FEBS Lett. 1996;381:58–62.CrossRefPubMed
13.
14.
Zurück zum Zitat Hyland NP, Cox HM. The regulation of veratridine-stimulated electrogenic ion transport in mouse colon by neuropeptide Y (NPY), Y1 and Y2 receptors. Br J pharmacol. 2005;146:712–722.CrossRefPubMedPubMedCentral Hyland NP, Cox HM. The regulation of veratridine-stimulated electrogenic ion transport in mouse colon by neuropeptide Y (NPY), Y1 and Y2 receptors. Br J pharmacol. 2005;146:712–722.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Blevins JE, Chelikani PK, Haver AC, Reidelberger RD. PYY(3-36) induces Fos in the arcuate nucleus and in both catecholaminergic and non-catecholaminergic neurons in the nucleus tractus solitarius of rats. Peptides. 2008;29:112–119.CrossRefPubMed Blevins JE, Chelikani PK, Haver AC, Reidelberger RD. PYY(3-36) induces Fos in the arcuate nucleus and in both catecholaminergic and non-catecholaminergic neurons in the nucleus tractus solitarius of rats. Peptides. 2008;29:112–119.CrossRefPubMed
16.
Zurück zum Zitat McLean KJ, Jarrott B, Lawrence AJ. Neuropeptide Y gene expression and receptor autoradiography in hypertensive and normotensive rat brain. Mol Brain Res. 1996;35:249–259.CrossRefPubMed McLean KJ, Jarrott B, Lawrence AJ. Neuropeptide Y gene expression and receptor autoradiography in hypertensive and normotensive rat brain. Mol Brain Res. 1996;35:249–259.CrossRefPubMed
17.
Zurück zum Zitat Washington MC, Mhalhal TR, Sayegh AI. The BB2 receptor antagonist BW2258U89 attenuates the feeding responses evoked by exogenous gastrin releasing peptide-29. Horm Behav. 2016;85:1–4.CrossRefPubMedPubMedCentral Washington MC, Mhalhal TR, Sayegh AI. The BB2 receptor antagonist BW2258U89 attenuates the feeding responses evoked by exogenous gastrin releasing peptide-29. Horm Behav. 2016;85:1–4.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Washington MC, Mhalhal TR, Johnson-Rouse T, et al. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res. 2016;206:517–524.CrossRefPubMed Washington MC, Mhalhal TR, Johnson-Rouse T, et al. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res. 2016;206:517–524.CrossRefPubMed
19.
Zurück zum Zitat Washington MC, Aglan AH, Sayegh AI. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide. Peptides. 2014;55:41–46.CrossRefPubMed Washington MC, Aglan AH, Sayegh AI. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide. Peptides. 2014;55:41–46.CrossRefPubMed
20.
Zurück zum Zitat Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite. 2017;109:172–181.CrossRefPubMed Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite. 2017;109:172–181.CrossRefPubMed
21.
Zurück zum Zitat Williams KE, Washington MC, Johnson-Rouse T, et al. Exogenous glucagon-like peptide-1 acts in sites supplied by the cranial mesenteric artery to reduce meal size and prolong the intermeal interval in rats. Appetite. 2016;96:254–259.CrossRefPubMed Williams KE, Washington MC, Johnson-Rouse T, et al. Exogenous glucagon-like peptide-1 acts in sites supplied by the cranial mesenteric artery to reduce meal size and prolong the intermeal interval in rats. Appetite. 2016;96:254–259.CrossRefPubMed
22.
Zurück zum Zitat Washington MC, Williams K, Sayegh AI. The feeding responses evoked by endogenous cholecystokinin are regulated by different gastrointestinal sites. Horm Behav. 2016;78:79–85.CrossRefPubMed Washington MC, Williams K, Sayegh AI. The feeding responses evoked by endogenous cholecystokinin are regulated by different gastrointestinal sites. Horm Behav. 2016;78:79–85.CrossRefPubMed
23.
Zurück zum Zitat Washington MC, Mhalhal TR, Sayegh AI. Cholecystokinin-33, but not cholecystokinin-8 shows gastrointestinal site specificity in regulating feeding behaviors in male rats. Horm Behav. 2016;85:36–42.CrossRefPubMedPubMedCentral Washington MC, Mhalhal TR, Sayegh AI. Cholecystokinin-33, but not cholecystokinin-8 shows gastrointestinal site specificity in regulating feeding behaviors in male rats. Horm Behav. 2016;85:36–42.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Sayegh AI, Washington MC, Johnson RE, et al. Celiac and the cranial mesenteric arteries supply gastrointestinal sites that regulate meal size and intermeal interval length via cholecystokinin-58 in male rats. Horm Behav. 2015;67:48–53.CrossRefPubMed Sayegh AI, Washington MC, Johnson RE, et al. Celiac and the cranial mesenteric arteries supply gastrointestinal sites that regulate meal size and intermeal interval length via cholecystokinin-58 in male rats. Horm Behav. 2015;67:48–53.CrossRefPubMed
25.
Zurück zum Zitat Washington MC, Sayegh AI. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex. Peptides. 2011;32:1600–1605.CrossRefPubMed Washington MC, Sayegh AI. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex. Peptides. 2011;32:1600–1605.CrossRefPubMed
26.
Zurück zum Zitat Washington MC, Raboin SJ, Thompson W, Larsen CJ, Sayegh AI. Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor. Brain Res. 2010;1344:124–133.CrossRefPubMed Washington MC, Raboin SJ, Thompson W, Larsen CJ, Sayegh AI. Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor. Brain Res. 2010;1344:124–133.CrossRefPubMed
27.
Zurück zum Zitat Raboin SJ, Reeve JR Jr, Cooper MS, Green GM, Sayegh AI. Activation of submucosal but not myenteric plexus of the gastrointestinal tract accompanies reduction of food intake by camostat. Regul Pept. 2008;150:73–80.CrossRefPubMed Raboin SJ, Reeve JR Jr, Cooper MS, Green GM, Sayegh AI. Activation of submucosal but not myenteric plexus of the gastrointestinal tract accompanies reduction of food intake by camostat. Regul Pept. 2008;150:73–80.CrossRefPubMed
28.
Zurück zum Zitat Reidelberger RD, Haver AC, Chelikani PK, Buescher JL. Effects of different intermittent peptide YY (3-36) dosing strategies on food intake, body weight, and adiposity in diet-induced obese rats. Am J Physiol Regul, Integr Comp Physiol. 2008;295:R449–R458.CrossRef Reidelberger RD, Haver AC, Chelikani PK, Buescher JL. Effects of different intermittent peptide YY (3-36) dosing strategies on food intake, body weight, and adiposity in diet-induced obese rats. Am J Physiol Regul, Integr Comp Physiol. 2008;295:R449–R458.CrossRef
29.
Zurück zum Zitat Sloth B, Davidsen L, Holst JJ, Flint A, Astrup A. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab. 2007;293:E604–E609.CrossRefPubMed Sloth B, Davidsen L, Holst JJ, Flint A, Astrup A. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab. 2007;293:E604–E609.CrossRefPubMed
30.
Zurück zum Zitat Chelikani PK, Haver AC, Reidelberger RD. Intermittent intraperitoneal infusion of peptide YY(3-36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R39–R46.CrossRefPubMed Chelikani PK, Haver AC, Reidelberger RD. Intermittent intraperitoneal infusion of peptide YY(3-36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R39–R46.CrossRefPubMed
31.
Zurück zum Zitat Abbott CR, Small CJ, Sajedi A, et al. The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. Int J Obes. 2006;30:288–292.CrossRef Abbott CR, Small CJ, Sajedi A, et al. The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. Int J Obes. 2006;30:288–292.CrossRef
32.
Zurück zum Zitat Challis BG, Pinnock SB, Coll AP, et al. Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun. 2003;311:915–919.CrossRefPubMed Challis BG, Pinnock SB, Coll AP, et al. Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun. 2003;311:915–919.CrossRefPubMed
33.
Zurück zum Zitat Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005;1043:139–144.CrossRefPubMed Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005;1043:139–144.CrossRefPubMed
34.
Zurück zum Zitat Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–2375.CrossRefPubMed Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–2375.CrossRefPubMed
35.
Zurück zum Zitat Bonaz B, Taylor I, Tache Y. Peripheral peptide YY induces c-fos-like immunoreactivity in the rat brain. Neurosci Lett. 1993;163:77–80.CrossRefPubMed Bonaz B, Taylor I, Tache Y. Peripheral peptide YY induces c-fos-like immunoreactivity in the rat brain. Neurosci Lett. 1993;163:77–80.CrossRefPubMed
36.
Zurück zum Zitat Stadlbauer U, Arnold M, Weber E, Langhans W. Possible mechanisms of circulating PYY-induced satiation in male rats. Endocrinology. 2013;154:193–204.CrossRefPubMed Stadlbauer U, Arnold M, Weber E, Langhans W. Possible mechanisms of circulating PYY-induced satiation in male rats. Endocrinology. 2013;154:193–204.CrossRefPubMed
37.
Zurück zum Zitat Scott V, Kimura N, Stark JA, Luckman SM. Intravenous peptide YY3-36 and Y2 receptor antagonism in the rat: effects on feeding behaviour. J Neuroendocrinol. 2005;17:452–457.CrossRefPubMed Scott V, Kimura N, Stark JA, Luckman SM. Intravenous peptide YY3-36 and Y2 receptor antagonism in the rat: effects on feeding behaviour. J Neuroendocrinol. 2005;17:452–457.CrossRefPubMed
38.
Zurück zum Zitat Stadlbauer U, Weber E, Langhans W, Meyer U. The Y2 receptor agonist PYY(3-36) increases the behavioural response to novelty and acute dopaminergic drug challenge in mice. Int J Neuropsychopharmacol. 2014;17:407–419.CrossRefPubMed Stadlbauer U, Weber E, Langhans W, Meyer U. The Y2 receptor agonist PYY(3-36) increases the behavioural response to novelty and acute dopaminergic drug challenge in mice. Int J Neuropsychopharmacol. 2014;17:407–419.CrossRefPubMed
39.
Zurück zum Zitat Deng X, Wood PG, Sved AF, Whitcomb DC. The area postrema lesions alter the inhibitory effects of peripherally infused pancreatic polypeptide on pancreatic secretion. Brain Res. 2001;902:18–29.CrossRefPubMed Deng X, Wood PG, Sved AF, Whitcomb DC. The area postrema lesions alter the inhibitory effects of peripherally infused pancreatic polypeptide on pancreatic secretion. Brain Res. 2001;902:18–29.CrossRefPubMed
40.
Zurück zum Zitat El-Salhy M, Wilander E, Juntti-Berggren L, Grimelius L. The distribution and ontogeny of polypeptide YY (PYY)- and pancreatic polypeptide (PP)-immunoreactive cells in the gastrointestinal tract of rat. Histochemistry. 1983;78:53–60.CrossRefPubMed El-Salhy M, Wilander E, Juntti-Berggren L, Grimelius L. The distribution and ontogeny of polypeptide YY (PYY)- and pancreatic polypeptide (PP)-immunoreactive cells in the gastrointestinal tract of rat. Histochemistry. 1983;78:53–60.CrossRefPubMed
41.
Zurück zum Zitat Voisin T, Rouyer-Fessard C, Laburthe M. Distribution of common peptide YY-neuropeptide Y receptor along rat intestinal villus-crypt axis. Am J Physiol. 1990;258:G753–G759.PubMed Voisin T, Rouyer-Fessard C, Laburthe M. Distribution of common peptide YY-neuropeptide Y receptor along rat intestinal villus-crypt axis. Am J Physiol. 1990;258:G753–G759.PubMed
42.
Zurück zum Zitat Goumain M, Voisin T, Lorinet AM, Laburthe M. Identification and distribution of mRNA encoding the Y1, Y2, Y4, and Y5 receptors for peptides of the PP-fold family in the rat intestine and colon. Biochem Biophys Res Commun. 1998;247:52–56.CrossRefPubMed Goumain M, Voisin T, Lorinet AM, Laburthe M. Identification and distribution of mRNA encoding the Y1, Y2, Y4, and Y5 receptors for peptides of the PP-fold family in the rat intestine and colon. Biochem Biophys Res Commun. 1998;247:52–56.CrossRefPubMed
43.
Zurück zum Zitat Wultsch T, Painsipp E, Thoeringer CK, et al. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors. Neuroscience. 2005;136:1097–1107.CrossRefPubMedPubMedCentral Wultsch T, Painsipp E, Thoeringer CK, et al. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors. Neuroscience. 2005;136:1097–1107.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Hao S, Sternini C, Raybould HE. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands American journal of physiology. Regul Integr Comp Physiol. 2008;294:R33–R38.CrossRef Hao S, Sternini C, Raybould HE. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands American journal of physiology. Regul Integr Comp Physiol. 2008;294:R33–R38.CrossRef
45.
Zurück zum Zitat Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7:471–478.CrossRefPubMed Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7:471–478.CrossRefPubMed
46.
Zurück zum Zitat Burdyga G, de Lartigue G, Raybould HE, et al. Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J Neurosci Off J Soc Neurosci. 2008;28:11583–11592.CrossRef Burdyga G, de Lartigue G, Raybould HE, et al. Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J Neurosci Off J Soc Neurosci. 2008;28:11583–11592.CrossRef
47.
Zurück zum Zitat Sayegh AI, Ritter RC. Cholecystokinin activates specific enteric neurons in the rat small intestine. Peptides. 2003;24:237–244.CrossRefPubMed Sayegh AI, Ritter RC. Cholecystokinin activates specific enteric neurons in the rat small intestine. Peptides. 2003;24:237–244.CrossRefPubMed
Metadaten
Titel
Peptide Tyrosine Tyrosine 3-36 Reduces Meal Size and Activates the Enteric Neurons in Male Sprague–Dawley Rats
verfasst von
Kayla D. Newman
Thaer R. Mhalhal
Martha C. Washington
John C. Heath
Ayman I. Sayegh
Publikationsdatum
13.10.2017
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 12/2017
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4788-3

Weitere Artikel der Ausgabe 12/2017

Digestive Diseases and Sciences 12/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.