Skip to main content
Erschienen in: Cardiology and Therapy 1-2/2014

Open Access 01.12.2014 | Case Report

Percutaneous Coronary Intervention in Spontaneous Coronary Artery Dissection: Role of Intravascular Ultrasound

verfasst von: Ankur Kalra, Avin Aggarwal, Rachel Kneeland, Jay H. Traverse

Erschienen in: Cardiology and Therapy | Ausgabe 1-2/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Spontaneous coronary artery dissection (SCAD) is a rare, life-threatening condition that usually manifests as an acute myocardial infarction. Diagnosing SCAD with conventional coronary angiogram can be challenging, particularly if the true lumen is severely narrowed. Our case highlights the challenges in performing successful percutaneous coronary intervention (PCI) in patients with SCAD. Intravascular ultrasound can prove to be a pivotal tool in the diagnosis and successful management of such cases by establishing the anatomic site of dissection, and confirming stent placement in the true lumen following PCI.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s40119-014-0029-4) contains supplementary material, which is available to authorized users.

Introduction

Spontaneous coronary artery dissection (SCAD) is a life-threatening disorder that usually affects young women. A high index of suspicion is necessary for diagnosing SCAD, as the classic longitudinal radiolucent intimal flap may not be seen in every patient on angiography. Additional tomographic imaging techniques like intravascular ultrasound (IVUS), therefore, play a crucial role in establishing the right diagnosis. In addition, IVUS is also important in ensuring appropriate positioning of wires and catheters in the true lumen during intervention, and satisfactory stent deployment. Here, we present a case that highlights the challenges in performing successful percutaneous coronary intervention (PCI) in patients with SCAD. Informed consent was obtained from the patient for publication of this case report and associated images.

Case

A 35-year-old female, 10-days post-partum, presented to an outside facility with acute onset, severe, substernal chest pain with radiation to back and left upper arm. She went into cardiorespiratory arrest upon arrival to the emergency room where she was successfully resuscitated from ventricular fibrillation with return of spontaneous circulation following prompt defibrillation. A 12-lead electrocardiogram revealed tombstone ST elevation in anterior leads (Fig. 1). She was transferred to our institution through the Level 1 Acute Myocardial Infarction (AMI) Program [1]. Coronary angiography revealed a dissection flap in the proximal left anterior descending (LAD) coronary artery, extending to the mid-LAD (Fig. 2), consistent with SCAD. PCI was performed with placement of three drug-eluting stents (Fig. 3). Initial 2-dimensional echocardiogram revealed a left ventricular ejection fraction (LVEF) of 25%. Systemic hypotension was treated with vasopressors and mechanical circulatory support with intra-aortic balloon counterpulsation. Creatine kinase-MB fraction peaked at 631 IU/mL. Cardiac magnetic resonance imaging at day 10 showed a transmural infarction involving inferoseptal, apical anterior, and lateral walls with significant microvascular obstruction. LVEF was calculated at 41%.
The patient was referred to the Cardiovascular Cell Therapy Research Network LateTIME trial (Clinicaltrials.gov # NCT00684060) [2], which required repeat coronary angiography that revealed the presence of thrombus throughout the LAD (Fig. 4) requiring aspiration thrombectomy and administration of a glycoprotein IIb–IIIa antagonist. IVUS showed that the previously deployed stents were in the false lumen with spontaneous re-canalization of the true lumen (Fig. 5). Sequential balloon angioplasty was done with expansion of stents into the true lumen followed by PCI of distal LAD (Fig. 6). At 2-year follow-up, the patient has done well, including a subsequent pregnancy delivered by cesarean section. Her most recent LVEF was 40–45%.

Discussion

SCAD is a rare, life-threatening condition that usually manifests as an AMI. The prevalence of SCAD has been reported at 0.1–1.0% [3]. Although prior literature states that it predominantly affects women with no cardiovascular risk factors, a recently published prospective series from Spain has suggested that patients with isolated-SCAD often also have concomitant cardiovascular risk factors [4]. SCAD associated with coronary artery disease, however, is more common in men [4]. A retrospective review reports that 26% of SCAD is associated with pregnancy, of which 83.8% cases occur in the postpartum period between the third trimester and 4-month postpartum [5].
Diagnosing SCAD with conventional coronary angiogram can be challenging, particularly if the true lumen is severely narrowed. The classic description is that of contrast media visualized in two lumens separated by a radiolucent intimal flap, with persistence of contrast in the false lumen. Alternatively, hematoma filling the false lumen may simulate an intracoronary thrombus. Also, inability to visualize complete coronary wall makes differentiation of true versus false lumen difficult, thereby limiting the diagnostic accuracy of coronary angiography [6]. IVUS, however, is able to identify the three-layered intima-medial flap overlying the darker, thrombosed false lumen with complete visualization of the external elastic lamina [7].
Because of lack of randomized trial data, the treatment of SCAD in the setting of ST segment elevation myocardial infarction has not been standardized. Much of the literature supporting current practice of PCI is derived from cases that were managed as acute coronary syndromes due to plaque rupture or erosion. Retrospective data have favored early invasive approach with PCI in SCAD cases that involve major epicardial coronary vessels with representative changes on a surface electrocardiogram [5, 8]. However, the recent prospective study from Spain has demonstrated that many patients who were managed “conservatively” at presentation demonstrated spontaneous healing and re-canalization at follow-up [4]. In this study, selective revascularization of the affected vessel with PCI was only performed in patients with on-going ischemia, as also demonstrated in our case. The initial treatment strategy in stable, symptom-free patients was “watchful waiting” that resulted in excellent long-term prognosis, as demonstrated in SCAD cases presenting as AMI with single-vessel dissection, preserved blood flow [9], and hemodynamic stability [10].
Our case also highlights the challenges in performing successful PCI in patients with SCAD. IVUS can prove to be a pivotal tool in the diagnosis and successful management of such cases [11] by establishing the anatomic site of dissection and confirming stent placement in the true lumen following PCI. Apposition of stents to the false luminal wall can result in complete collapse of the true lumen leading to catastrophic outcomes [12]. Our patient had spontaneous re-canalization of the true lumen with stents in the false lumen that was successfully managed with sequential balloon angioplasty. In retrospect, application of IVUS imaging for ascertainment of proper positioning of guidewire in the true lumen during PCI at index presentation may have prevented stent placement in the false lumen [13].

Conclusion

PCI is indicated in patients with SCAD with ongoing or recurrent ischemia. Satisfactory stent deposition can be challenging in SCAD and additional tomographic techniques are required to delineate the double-lumen morphology and proper positioning of guidewire in the true lumen. IVUS can play a significant role in ensuring procedural success. With appropriate revascularization, patients have excellent long-term prognosis with this rare, life-threatening disease [4].

Acknowledgments

No funding or sponsorship was received for this study or publication of this article. All named authors meet the ICMJE criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Conflict of interest

Ankur Kalra, Avin Aggarwal, Rachel Kneeland, and Jay H. Traverse declare no conflict of interest.

Compliance with ethics guidelines

Informed consent was obtained from the patient for publication of this case report and associated images.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Henry TD, Sharkey SW, Burke MN, et al. A regional system to provide timely access to percutaneous coronary intervention for ST-elevation myocardial infarction. Circulation. 2007;116(7):721–8.PubMedCrossRef Henry TD, Sharkey SW, Burke MN, et al. A regional system to provide timely access to percutaneous coronary intervention for ST-elevation myocardial infarction. Circulation. 2007;116(7):721–8.PubMedCrossRef
2.
Zurück zum Zitat Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9.PubMedCentralPubMedCrossRef Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Motreff P, Souteyrand G, Dauphin C, Eschalier R, Cassagnes J, Lusson JR. Management of spontaneous coronary artery dissection: review of the literature and discussion based on a series of 12 young women with acute coronary syndrome. Cardiology. 2010;115:10–8.PubMedCrossRef Motreff P, Souteyrand G, Dauphin C, Eschalier R, Cassagnes J, Lusson JR. Management of spontaneous coronary artery dissection: review of the literature and discussion based on a series of 12 young women with acute coronary syndrome. Cardiology. 2010;115:10–8.PubMedCrossRef
4.
Zurück zum Zitat Alfonso F, Paulo M, Lennie V, et al. Spontaneous coronary artery dissection: long-term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. JACC Cardiovasc Interv. 2012;5(10):1062–70.PubMedCrossRef Alfonso F, Paulo M, Lennie V, et al. Spontaneous coronary artery dissection: long-term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. JACC Cardiovasc Interv. 2012;5(10):1062–70.PubMedCrossRef
5.
Zurück zum Zitat Shamloo BK, Chintala RS, Nasur A, et al. Spontaneous coronary artery dissection: aggressive vs. conservative therapy. J Invasive Cardiol. 2010;22(5):222–8.PubMed Shamloo BK, Chintala RS, Nasur A, et al. Spontaneous coronary artery dissection: aggressive vs. conservative therapy. J Invasive Cardiol. 2010;22(5):222–8.PubMed
6.
Zurück zum Zitat Alfonso F, Paulo M, Gonzalo N, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59(12):1073–9.PubMedCrossRef Alfonso F, Paulo M, Gonzalo N, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59(12):1073–9.PubMedCrossRef
7.
Zurück zum Zitat Paulo M, Sandoval J, Lennie V, et al. Combined use of OCT and IVUS in spontaneous coronary artery dissection. JACC Cardiovasc Imaging. 2013;6(7):830–2.PubMedCrossRef Paulo M, Sandoval J, Lennie V, et al. Combined use of OCT and IVUS in spontaneous coronary artery dissection. JACC Cardiovasc Imaging. 2013;6(7):830–2.PubMedCrossRef
8.
Zurück zum Zitat Adlam D, Cuculi F, Lim C, Banning A. Management of spontaneous coronary artery dissection in the primary percutaneous coronary intervention era. J Invasive Cardiol. 2010;22(11):549–53.PubMed Adlam D, Cuculi F, Lim C, Banning A. Management of spontaneous coronary artery dissection in the primary percutaneous coronary intervention era. J Invasive Cardiol. 2010;22(11):549–53.PubMed
9.
Zurück zum Zitat Maeder M, Ammann P, Angehrn W, Rickli H. Idiopathic spontaneous coronary artery dissection: incidence, diagnosis and treatment. Int J Cardiol. 2005;101(3):363–9.PubMedCrossRef Maeder M, Ammann P, Angehrn W, Rickli H. Idiopathic spontaneous coronary artery dissection: incidence, diagnosis and treatment. Int J Cardiol. 2005;101(3):363–9.PubMedCrossRef
10.
Zurück zum Zitat Celik M, Yuksel UC, Yalcinkaya E, Gokoglan Y, Iyisoy A. Conservative treatment of iatrogenic left main coronary artery dissection: report of two cases. Cardiovasc Diagn Ther. 2013;3(4):244–6.PubMedCentralPubMed Celik M, Yuksel UC, Yalcinkaya E, Gokoglan Y, Iyisoy A. Conservative treatment of iatrogenic left main coronary artery dissection: report of two cases. Cardiovasc Diagn Ther. 2013;3(4):244–6.PubMedCentralPubMed
11.
Zurück zum Zitat Daoulah A, Al Qahtani A, Mazen Malak M, Al Ghamdi S. Role of IVUS in assessing spontaneous coronary dissection: a case report. J Tehran Heart Cent. 2012;7(2):78–81.PubMedCentralPubMed Daoulah A, Al Qahtani A, Mazen Malak M, Al Ghamdi S. Role of IVUS in assessing spontaneous coronary dissection: a case report. J Tehran Heart Cent. 2012;7(2):78–81.PubMedCentralPubMed
12.
Zurück zum Zitat Suarez-Mier MP, Merino JL. False lumen stent placement during iatrogenic coronary dissection. Cardiovasc Pathol. 2013;22(2):176–7.PubMedCrossRef Suarez-Mier MP, Merino JL. False lumen stent placement during iatrogenic coronary dissection. Cardiovasc Pathol. 2013;22(2):176–7.PubMedCrossRef
13.
Zurück zum Zitat Ohlmann P, Weigold G, Kim SW, et al. Images in cardiovascular medicine. Spontaneous coronary dissection: computed tomography appearance and insights from intravascular ultrasound examination. Circulation. 2006;113(10):e403–5. Ohlmann P, Weigold G, Kim SW, et al. Images in cardiovascular medicine. Spontaneous coronary dissection: computed tomography appearance and insights from intravascular ultrasound examination. Circulation. 2006;113(10):e403–5.
Metadaten
Titel
Percutaneous Coronary Intervention in Spontaneous Coronary Artery Dissection: Role of Intravascular Ultrasound
verfasst von
Ankur Kalra
Avin Aggarwal
Rachel Kneeland
Jay H. Traverse
Publikationsdatum
01.12.2014
Verlag
Springer Healthcare
Erschienen in
Cardiology and Therapy / Ausgabe 1-2/2014
Print ISSN: 2193-8261
Elektronische ISSN: 2193-6544
DOI
https://doi.org/10.1007/s40119-014-0029-4

Weitere Artikel der Ausgabe 1-2/2014

Cardiology and Therapy 1-2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.