Skip to main content
Erschienen in:

01.03.2018 | Research Article

Performance drifts in two-finger cyclical force production tasks performed by one and two actors

verfasst von: Fariba Hasanbarani, Sasha Reschechtko, Mark L. Latash

Erschienen in: Experimental Brain Research | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader–follower pattern generalized for two-effector tasks performed by one person.
Literatur
Zurück zum Zitat Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016a) The nature of constant and cyclic force production: Unintentional force-drift characteristics. Exp Brain Res 234:197–208CrossRefPubMed Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016a) The nature of constant and cyclic force production: Unintentional force-drift characteristics. Exp Brain Res 234:197–208CrossRefPubMed
Zurück zum Zitat Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016b) Unsteady steady-states: central causes of unintentional force drift. Exp Brain Res 234:3597–3611CrossRefPubMedPubMedCentral Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016b) Unsteady steady-states: central causes of unintentional force drift. Exp Brain Res 234:3597–3611CrossRefPubMedPubMedCentral
Zurück zum Zitat Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2018) Systematic, unintended drifts in the cyclic force produced with the fingertips. Mot Control 22:82–99CrossRef Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2018) Systematic, unintended drifts in the cyclic force produced with the fingertips. Mot Control 22:82–99CrossRef
Zurück zum Zitat Bosga J, Meulenbroek RG, Cuijpers RH (2010) Intra- and interpersonal movement coordination in jointly moving a rocking board. Mot Control 14:440–459CrossRef Bosga J, Meulenbroek RG, Cuijpers RH (2010) Intra- and interpersonal movement coordination in jointly moving a rocking board. Mot Control 14:440–459CrossRef
Zurück zum Zitat Candidi M, Curioni A, Donnarumma F, Sacheli LM, Pezzulo G (2015) Interactional leader-follower sensorimotor communication strategies during repetitive joint actions. J R Soc Interface 12(110):0644CrossRefPubMed Candidi M, Curioni A, Donnarumma F, Sacheli LM, Pezzulo G (2015) Interactional leader-follower sensorimotor communication strategies during repetitive joint actions. J R Soc Interface 12(110):0644CrossRefPubMed
Zurück zum Zitat Carson RG (1995) The dynamics of isometric bimanual coordination. Exp Brain Res 105:465–476PubMed Carson RG (1995) The dynamics of isometric bimanual coordination. Exp Brain Res 105:465–476PubMed
Zurück zum Zitat Debaere F, Van Assche D, Kiekens C, Verschueren SM, Swinnen SP (2001) Coordination of upper and lower limb segments: deficits on the ipsilesional side after unilateral stroke. Exp Brain Res 141:519–529CrossRefPubMed Debaere F, Van Assche D, Kiekens C, Verschueren SM, Swinnen SP (2001) Coordination of upper and lower limb segments: deficits on the ipsilesional side after unilateral stroke. Exp Brain Res 141:519–529CrossRefPubMed
Zurück zum Zitat Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs. external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776CrossRefPubMed Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs. external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776CrossRefPubMed
Zurück zum Zitat Feldman AG (1980) Superposition of motor programs. I. Rhythmic forearm movements in man. Neurosci 5:81–90CrossRef Feldman AG (1980) Superposition of motor programs. I. Rhythmic forearm movements in man. Neurosci 5:81–90CrossRef
Zurück zum Zitat Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391CrossRefPubMed Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391CrossRefPubMed
Zurück zum Zitat Feldman AG (2015) Referent control of action and perception: Challenging conventional theories in behavioral science. Springer, NYCrossRef Feldman AG (2015) Referent control of action and perception: Challenging conventional theories in behavioral science. Springer, NYCrossRef
Zurück zum Zitat Ganesh G, Takagi A, Osu R, Yoshioka T, Kawato M, Burdet E (2014) Two is better than one: physical interactions improve motor performance in humans. Sci Rep 4:3824CrossRefPubMedPubMedCentral Ganesh G, Takagi A, Osu R, Yoshioka T, Kawato M, Burdet E (2014) Two is better than one: physical interactions improve motor performance in humans. Sci Rep 4:3824CrossRefPubMedPubMedCentral
Zurück zum Zitat Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Mot Control 12:151–172CrossRef Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Mot Control 12:151–172CrossRef
Zurück zum Zitat Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356CrossRefPubMed Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356CrossRefPubMed
Zurück zum Zitat Jo HJ, Ambike S, Lewis MM, Huang X, Latash ML (2016) Finger force changes in the absence of visual feedback in patients with Parkinson’s disease. Clin Neurophysiol 127:684–692CrossRefPubMed Jo HJ, Ambike S, Lewis MM, Huang X, Latash ML (2016) Finger force changes in the absence of visual feedback in patients with Parkinson’s disease. Clin Neurophysiol 127:684–692CrossRefPubMed
Zurück zum Zitat Kay BA, Kelso JAS, Saltzman EL, Schoner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13:178–192CrossRefPubMed Kay BA, Kelso JAS, Saltzman EL, Schoner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13:178–192CrossRefPubMed
Zurück zum Zitat Kelso JAS (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge Kelso JAS (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge
Zurück zum Zitat Kelso JAS, DelColle JD, Schöner G (1990) Action-perception as a pattern formation process. Attention performance XIII 5:139–169 Kelso JAS, DelColle JD, Schöner G (1990) Action-perception as a pattern formation process. Attention performance XIII 5:139–169
Zurück zum Zitat Kennedy D, Rhee J, Shea CH (2016) Symmetrical and asymmetrical influences on force production in 1:2 and 2:1 bimanual force coordination tasks. Exp Brain Res 234:287–300CrossRefPubMed Kennedy D, Rhee J, Shea CH (2016) Symmetrical and asymmetrical influences on force production in 1:2 and 2:1 bimanual force coordination tasks. Exp Brain Res 234:287–300CrossRefPubMed
Zurück zum Zitat Kovacs AJ, Buchanan JJ, Shea CH (2009) Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy. Exp Brain Res 193:129–136CrossRefPubMed Kovacs AJ, Buchanan JJ, Shea CH (2009) Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy. Exp Brain Res 193:129–136CrossRefPubMed
Zurück zum Zitat Kovacs AJ, Buchanan JJ, Shea CH (2010) Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Exp Brain Res 201:249–259CrossRefPubMed Kovacs AJ, Buchanan JJ, Shea CH (2010) Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Exp Brain Res 201:249–259CrossRefPubMed
Zurück zum Zitat Lafe CW, Pacheco MM, Newell KM (2016a) Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency. Hum Mov Sci 47:186–196CrossRefPubMed Lafe CW, Pacheco MM, Newell KM (2016a) Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency. Hum Mov Sci 47:186–196CrossRefPubMed
Zurück zum Zitat Lafe CW, Pacheco MM, Newell KM (2016b) Bimanual coordination and the intermittency of visual information in isometric force tracking. Exp Brain Res 234:2025–2034CrossRefPubMed Lafe CW, Pacheco MM, Newell KM (2016b) Bimanual coordination and the intermittency of visual information in isometric force tracking. Exp Brain Res 234:2025–2034CrossRefPubMed
Zurück zum Zitat Lamb PF, Stöckl M (2014) On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clin Biomech 29:484–493CrossRef Lamb PF, Stöckl M (2014) On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clin Biomech 29:484–493CrossRef
Zurück zum Zitat Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322CrossRef Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322CrossRef
Zurück zum Zitat Latash ML (2017) Biological movement and laws of physics. Mot Control 21:327–344CrossRef Latash ML (2017) Biological movement and laws of physics. Mot Control 21:327–344CrossRef
Zurück zum Zitat Latash ML, Zatsiorsky VM (1993) Joint stiffness: Myth or reality? Hum Move Sci 12: 653-692CrossRef Latash ML, Zatsiorsky VM (1993) Joint stiffness: Myth or reality? Hum Move Sci 12: 653-692CrossRef
Zurück zum Zitat Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, New York Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, New York
Zurück zum Zitat Levy-Tzedek S, Ben Tov M, Karniel A (2011) Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. J Neurophysiol 106:2120–2126CrossRefPubMed Levy-Tzedek S, Ben Tov M, Karniel A (2011) Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. J Neurophysiol 106:2120–2126CrossRefPubMed
Zurück zum Zitat Li ZM, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286CrossRefPubMed Li ZM, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286CrossRefPubMed
Zurück zum Zitat Li ZM, Zatsiorsky VM, Latash ML (1999) Contributions of the extrinsic and intrinsic hand muscles to the moments in finger joints. J Clin Biomechs 15:203–211CrossRef Li ZM, Zatsiorsky VM, Latash ML (1999) Contributions of the extrinsic and intrinsic hand muscles to the moments in finger joints. J Clin Biomechs 15:203–211CrossRef
Zurück zum Zitat Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Move Sci 19:897–924CrossRef Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Move Sci 19:897–924CrossRef
Zurück zum Zitat Li ZM, Zatsiorsky VM, Latash ML (2001) The effect of finger extensor mechanism on the flexor force during isometric tasks. J Biomechs 34:1097–1102CrossRef Li ZM, Zatsiorsky VM, Latash ML (2001) The effect of finger extensor mechanism on the flexor force during isometric tasks. J Biomechs 34:1097–1102CrossRef
Zurück zum Zitat Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73CrossRefPubMed Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73CrossRefPubMed
Zurück zum Zitat Mojtahedi K, Whitsell B, Artemiadis P, Santello M (2017) Communication and inference of intended movement direction during human-human physical interaction. Front Neurorobot 11:21CrossRefPubMedPubMedCentral Mojtahedi K, Whitsell B, Artemiadis P, Santello M (2017) Communication and inference of intended movement direction during human-human physical interaction. Front Neurorobot 11:21CrossRefPubMedPubMedCentral
Zurück zum Zitat Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66:705–718CrossRefPubMed Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66:705–718CrossRefPubMed
Zurück zum Zitat Oliveira MA, Hsu J, Park J, Clark JE, Shim JK (2008) Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Hum Mov Sci 27:714–727CrossRefPubMedPubMedCentral Oliveira MA, Hsu J, Park J, Clark JE, Shim JK (2008) Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Hum Mov Sci 27:714–727CrossRefPubMedPubMedCentral
Zurück zum Zitat Parsa B, O’Shea DJ, Zatsiorsky VM, Latash ML (2016) On the nature of unintentional action: A study of force/moment drifts during multi-finger tasks. J Neurophysiol 116:698–708CrossRefPubMed Parsa B, O’Shea DJ, Zatsiorsky VM, Latash ML (2016) On the nature of unintentional action: A study of force/moment drifts during multi-finger tasks. J Neurophysiol 116:698–708CrossRefPubMed
Zurück zum Zitat Parsa B, Terekhov A, Zatsiorsky VM, Latash ML (2017) Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Exp Brain Res 235:481–496CrossRefPubMed Parsa B, Terekhov A, Zatsiorsky VM, Latash ML (2017) Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Exp Brain Res 235:481–496CrossRefPubMed
Zurück zum Zitat Poon C, Chin-Cottongim LG, Coombes SA, Corcos DM, Vaillancourt DE (2012) Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. J Neurophysiol 108:1335–1348CrossRefPubMedPubMedCentral Poon C, Chin-Cottongim LG, Coombes SA, Corcos DM, Vaillancourt DE (2012) Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. J Neurophysiol 108:1335–1348CrossRefPubMedPubMedCentral
Zurück zum Zitat Reed KB, Peshkin MA (2008) Physical collaboration of human-human and human-robot teams. IEEE Trans Haptics 1:108–120CrossRefPubMed Reed KB, Peshkin MA (2008) Physical collaboration of human-human and human-robot teams. IEEE Trans Haptics 1:108–120CrossRefPubMed
Zurück zum Zitat Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164CrossRefPubMed Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164CrossRefPubMed
Zurück zum Zitat Reschechtko S, Hasanbarani F, Akulin VM, Latash ML (2017) Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model. Neurosci 350:94–109CrossRef Reschechtko S, Hasanbarani F, Akulin VM, Latash ML (2017) Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model. Neurosci 350:94–109CrossRef
Zurück zum Zitat Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213CrossRefPubMed Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213CrossRefPubMed
Zurück zum Zitat Schieber MH (1999) Voluntary descending control. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San Diego etc, pp 931–949 Schieber MH (1999) Voluntary descending control. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San Diego etc, pp 931–949
Zurück zum Zitat Schoner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520CrossRefPubMed Schoner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520CrossRefPubMed
Zurück zum Zitat Shim JK, Oliveira MA, Hsu J, Huang J, Park J, Clark JE (2007) Hand digit control in children: age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Exp Brain Res 176:374–386CrossRefPubMed Shim JK, Oliveira MA, Hsu J, Huang J, Park J, Clark JE (2007) Hand digit control in children: age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Exp Brain Res 176:374–386CrossRefPubMed
Zurück zum Zitat Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–1718CrossRefPubMed Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–1718CrossRefPubMed
Zurück zum Zitat Solnik S, Reschechtko S, Wu Y-H, Zatsiorsky VM, Latash ML (2016) Interpersonal synergies: Static prehension tasks performed by two actors. Exp Brain Res 234:2267–2282CrossRefPubMedPubMedCentral Solnik S, Reschechtko S, Wu Y-H, Zatsiorsky VM, Latash ML (2016) Interpersonal synergies: Static prehension tasks performed by two actors. Exp Brain Res 234:2267–2282CrossRefPubMedPubMedCentral
Zurück zum Zitat Solnik S, Qiao M, Latash ML (2017) Effects of visual feedback and memory on unintentional drifts in performance during finger pressing tasks. Exp Brain Res 235:1149–1162CrossRefPubMed Solnik S, Qiao M, Latash ML (2017) Effects of visual feedback and memory on unintentional drifts in performance during finger pressing tasks. Exp Brain Res 235:1149–1162CrossRefPubMed
Zurück zum Zitat Sternad D, Collins D, Turvey MT(1995) The detuning factor in the dynamics of interlimb rhythmic coordination.Biol Cybern73:27–35CrossRefPubMed Sternad D, Collins D, Turvey MT(1995) The detuning factor in the dynamics of interlimb rhythmic coordination.Biol Cybern73:27–35CrossRefPubMed
Zurück zum Zitat Sternad D, Turvey MT, Saltzman EL (1999) Dynamics of 1:2 coordination: Sources of symmetry breaking. J Mot Behav 31:224–235CrossRefPubMed Sternad D, Turvey MT, Saltzman EL (1999) Dynamics of 1:2 coordination: Sources of symmetry breaking. J Mot Behav 31:224–235CrossRefPubMed
Zurück zum Zitat Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285CrossRefPubMed Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285CrossRefPubMed
Zurück zum Zitat Vaillancourt DE, Slifkin AB, Newell KM (2001) Visual control of isometric force in Parkinson’s disease. Neurophysiologia 39:1410–1418 Vaillancourt DE, Slifkin AB, Newell KM (2001) Visual control of isometric force in Parkinson’s disease. Neurophysiologia 39:1410–1418
Zurück zum Zitat Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340CrossRefPubMed Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340CrossRefPubMed
Zurück zum Zitat Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70:465–476CrossRefPubMed Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70:465–476CrossRefPubMed
Zurück zum Zitat Wilson AD, Bingham GP, Craig JC (2003) Proprioceptive perception of phase variability. J Exp Psychol Hum Percept Perform 29:1179–1190CrossRefPubMed Wilson AD, Bingham GP, Craig JC (2003) Proprioceptive perception of phase variability. J Exp Psychol Hum Percept Perform 29:1179–1190CrossRefPubMed
Zurück zum Zitat Wilson AD, Snapp-Childs W, Coats R, Bingham GP (2010) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205:513–520CrossRefPubMed Wilson AD, Snapp-Childs W, Coats R, Bingham GP (2010) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205:513–520CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195CrossRefPubMed Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195CrossRefPubMed
Zurück zum Zitat Zhang W, Zatsiorsky VM, Latash ML (2006) Accurate production of time-varying patterns of the moment of force in multi-finger tasks. Exp Brain Res 175:68–82CrossRefPubMedPubMedCentral Zhang W, Zatsiorsky VM, Latash ML (2006) Accurate production of time-varying patterns of the moment of force in multi-finger tasks. Exp Brain Res 175:68–82CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhou T, Solnik S, Wu Y-H, Latash ML (2014) Equifinality and its violations in a redundant system: Control with referent configurations in a multi-joint positional task. Mot Control 18:405–424CrossRef Zhou T, Solnik S, Wu Y-H, Latash ML (2014) Equifinality and its violations in a redundant system: Control with referent configurations in a multi-joint positional task. Mot Control 18:405–424CrossRef
Metadaten
Titel
Performance drifts in two-finger cyclical force production tasks performed by one and two actors
verfasst von
Fariba Hasanbarani
Sasha Reschechtko
Mark L. Latash
Publikationsdatum
01.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 3/2018
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-018-5179-5

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Neuartige Antikörpertherapie bremst MS über zwei Jahre hinweg

Eine Therapie mit dem C40-Ligand-Blocker Frexalimab kann MS-Schübe und neue MRT-Läsionen über zwei Jahre hinweg verhindern. Dafür spricht die Auswertung einer offen fortgeführten Phase-2-Studie.

Positive Phase IIb-Studie zu mRNA-gestützter CAR-T bei Myasthenia gravis

Eine auf das B-Zell-Reifungsantigen gerichtete mRNA-basierte CAR-T-Zell-Therapie wurde jetzt in einer ersten Phase IIb-Studie zur Behandlung der generalisierten Myasthenia gravis mit Placebo verglichen.

Therapiestopp bei älteren MS-Kranken kann sich lohnen

Eine Analyse aus Kanada bestätigt: Setzen ältere MS-Kranke die Behandlung mit Basistherapeutika ab, müssen sie kaum mit neuen Schüben und MRT-Auffälligkeiten rechnen.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.